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and Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126
Bari, Italy

(Received 26 November 2003)

Abstract. A double-slit experiment is analysed when the interfering particle
has an internal structure and one endeavours to obtain ‘which path’ information
by detecting the light that is spontaneously emitted. A compact expression is
derived for the visibility of the interference pattern: coherence depends on both
the spatial and temporal features of the emission process during the travel of the
particle to the screen. A bound is set on the temperature of a fullerene molecule
in a double-slit experiment in order that its quantum mechanical coherence be
maintained.

1. Introduction
The present paper discusses the interference ofmesoscopic systems. ‘Mesoscopic’

objects are neither microscopic nor macroscopic. They can be described by a wave
function, yet aremade up of a significant number of elementary constituents, such as
atoms. Most importantly, they are characterized by a nontrivial internal structure
that can have both quantal and classical features. A significant example, on which we
shall focus our attention, is a molecule of fullerene, made up of 60 nuclei of carbon
and 360 electrons, for a total of about 103 ‘elementary’ constituents. Although
fullerenes are fully quantum mechanical systems, they also have macroscopic-like
features and emit thermal (blackbody) radiation [1–3]. Recently the quantum
interference of fullerene molecules (C60 and C70) has been observed in a series of
pioneering experiments performed in Vienna [4, 5]. Our aim is to analyse the
interference of fullerene from a theoretical viewpoint.

2. Double-slit interference
We start by looking at the simplest quantum mechanical experiment: consider a

quantum system described by a wave packet impinging on a double slit. We assume
that the wave packet travels along direction þz and its transverse coherence length
is larger than the separation of the slits, so that the two wave packets emerging
from the slits are coherent with each other. The slits are parallel to y, have width
a and are separated by a distance d, along direction x. The problem is essentially
one-dimensional, the relevant coordinate being x.

Let the wave function emerging from one slit be hxj sliti ¼  slitðxÞ. The initial
state at the double slit is

j 0i ¼
1ffiffiffi
2

p ðj þi þ j �iÞ, j �i ¼ exp �
i

�hh

d

2
p

� �
j sliti, ð1Þ
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where p is the momentum operator and we assumed that the two wave packets do
not overlap, h þj �i ¼ 0, hence j 0i is normalized. Interference is observed at a
screen perpendicular to z, placed at a distance z ¼ L from the plane of the slits.
The intensity at the screen reads

IðxÞ ¼ h ðtÞjxihxj ðtÞi ¼ j ðx, tÞj2, j ðtÞi ¼ e�ip2t=2m�hhj 0i, ð2Þ

where t ¼ L=vz is the time of arrival of the wave packet at the screen. We shall
focus on the experiment [5, 6] and take the slits to have width a and to be separated
by a distance d ¼ 2a. We set d ¼ 100 nm, L ¼ 1.22m, m ¼ 1.197� 10�24 kg and
consider a beam with �vvz ¼ 128m/s, so that �z ¼ h=mvz ¼ 4:3 pm and t ¼ 9.47ms.
In this case we are looking at the far-field interference pattern. Therefore, by
taking the asymptotic limit t ! 1 of  (x, t) in (2), one gets

 ðx, tÞ ¼

ð
dp

ð2p�hhÞ
1
2

~  slit ð pÞ
ffiffiffi
2

p
cos

p d

2�hh

� �
eð�i=�hhÞ ðð p2=2mÞtÞ�pxð Þ

�
m

it

� �1=2
~  slit

mx

t

� �
eði=�hhÞ ððmx2Þ=ð2tÞÞ

ffiffiffi
2

p
cos

md

2�hht
x

� �
, ð3Þ

where ~  slitð pÞ ¼ h pj sliti is the Fourier transform of the wave packet emerging
from one slit. Using equation (3), the intensity pattern (2) reads

IðxÞ ¼ Islit ðxÞ 1þ cos 2p
x

X

� �h i
, ð4Þ

IslitðxÞ ¼
m

t
~  slit

mx

t

� ���� ���2, X ¼
ht

md
¼
�zL

d
¼ 52:46 mm: ð5Þ

Notice that the envelope function in (5) is correctly normalized, namelyÐ
dx IslitðxÞ ¼

Ð
dp j ~  slitð pÞj

2 ¼ 1.

3. Two-level molecule
So far the interfering system has been considered as a structureless particle.

However, we aim at describing a more complicated physical picture, that can arise
when the interfering system is endowed with a richer internal physical structure.
In order to obtain ‘which path’ information, one might shine laser light on the
molecule after it has gone through the slits, as with the Heisenberg–Bohm
microscope [6, 7] and look at the scattered photon. However, the situation here
would be different, because the internal state is excited by the laser and the
molecule spontaneously emits a photon with a given lifetime during its travel to the
screen.

The minimal requirement on �0 to maintain quantum coherence and preserve
the interference pattern is the Heisenberg condition [6]

�0 >�
2d: ð6Þ

However, we shall see that, at variance with the structureless case, this is not the
only criterion.
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Consider the Hamiltonian

H ¼ H0 þV, H0 ¼
p2

2m
þ �hh!0jeihej þ

X
i

�hh!ia
y

i ai,

V ¼
X
i

�ie
iki�xjeihgjai þ h:c:

� �
, ð7Þ

describing a two-level system of mass m, position x and momentum p, coupled
to the electromagnetic field, ½ai, a

y

j � ¼ �ij. The ground state jgi has energy 0, while
the excited state jei has energy �hh!0. The state of the total system will be written
j�toti ¼ j , �, nii � j i � j�i � jnii, where j i denotes the spatial part of the
wave function of the molecule, �¼ e, g and ni is the number of photons emitted
in the i-mode.

Due to laser excitation, the molecule emerges from the two slits in an excited
state j 0, e, 0i, where j 0i is given in equation (1). The evolution of the sponta-
neous emission process is readily computed in the Weisskopf–Wigner approxima-
tion [10] and yields [11]

j�totðtÞi ¼ e�i!0te��t=2j ðtÞ, e, 0i þ
X
i

e�i!it�iðtÞje
�iki�x ðtÞ, g, 1ii, ð8Þ

�iðtÞ ¼
�	

i

�hh

1� eið!i�!0Þt��t=2

ð!i � !0Þ þ i�=2
, ð9Þ

where j ðtÞi is given by (9) and � ¼ 2�
P

i �ð!i � !0Þj�ij
2=�hh2 is the decay rate, as

given by the Fermi golden rule. We see that in (8) the internal degrees of freedom of
the molecule get entangled with the photon field, so that the states in (8) are
all orthogonal to each other. Notice that

P
i j�iðtÞj

2 ¼ 1� e��t, hence j�totðtÞi is
normalized at every time. By assuming that the spontaneous emission process is
completely isotropic, the intensity at the screen reads

I0ðxÞ ¼ h�totðtÞjxihxj�totðtÞi

¼ exp ð��tÞIðxÞ þ ð1� e��tÞ

ð
d�n

4�
I�n!0=cðxÞ, ð10Þ

where d�n is the differential solid angle, n a unit vector. The interference pattern
(10) is made up of two terms: the first one is associated with those molecules that
have not emitted any photons, the second one with those molecules that have
emitted a photon and recoiled accordingly. The quantity I�n!0=cðxÞ represents the
partial interference pattern of those molecules that have emitted a photon of
momentum �hhk ¼ �hhn!0=c and reads

I�n!0=cðxÞ ¼ Iðx� vxtÞ, ð11Þ

where vx ¼ �hhkx=m is the x-component of the recoil velocity. By (11) and (4), the
average over the direction of the emitted photon yieldsð

d�n

4�
I�n!0=cðxÞ ¼ Islit ðxÞ

ð1
�1

d�

2
1þ cos

2�

X
x�

!0d

c
�

� �	 


¼ Islit ðxÞ 1þ sinc
!0d

c

� �
cos

2�

X
x

� �	 

, ð12Þ

where sincðxÞ � sin x=x and we used the equality 2��hh!0t=mcX ¼ !0d=c. It is
evident from this expression that when !0d=c ¼ �, i.e. �0 ¼ 2�c=!0 ¼ 2d the
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cosine is averaged over the whole interval 2� and interference term is completely
washed out, in agreement with the Heisenberg condition (6). For larger values
of �0 there is still some interference. By plugging (12) into (10) we finally obtain

I0ðxÞ ¼ IslitðxÞ 1þ V �t,
d

�0

� �
cos

2�

X
x

� �	 

, ð13Þ

V �t,
d

�0

� �
¼ e��t þ 1� e��tð Þ sinc

2�d

�0

� �
: ð14Þ

The interpretation of the visibility V derives from (10): the first term in the r.h.s. of
(14) is associated with those molecules that have not emitted any photon (and reach
the screen in an excited state), while the second term is associated with those
molecules that have emitted a photon before they hit the screen.

Let �0< 2d, so that the coherence condition (6) is not satisfied. Nevertheless,
we see from (14) that coherence is still largely preserved if �t <

�
1, because even

though the photon wavelength is small enough to yield information about the path
of the interfering particle, such path information is not accessible: it is, so to say,
stored in the internal structure of the molecule. Such information would be
available to an external observer only if the photon were emitted. Mathematically,

V �t,
d

�0
>
�

1

2

� �
’ V �t,1ð Þ ¼ expð��tÞ, ð15Þ

which tends to vanish if the decay is rapid (�t >
�
1) and to unity if the decay is

slow (�t <
�
1). In conclusion, the interference pattern is blurred out (V ’ 0), only if

the photon emission process yields both a good resolution, �0 <�
2d, and a quick

response, �t >
�
1.

4. Fullerene molecule
A molecule of fullerene is a mesoscopic system, that can absorb several visible

photons at once and undergo quite involved processes in its internal structure,
involving lifetimes, emission of blackbody radiation [2, 3] and complex ionization
processes [1, 8, 9]. In this section we consider the fullerene as a small black body,
that starts its evolution, immediately after the slits, in a highly excited state
characterized by a well-defined temperature. On its way to the screen, it emits
N ¼ n�4n photons of different energies and in random directions. As a conse-
quence the momentum of the molecule will recoil by the quantity 4p ’ �hhhki

ffiffiffi
n

p
,

where �hhhki is the average momentum of the emitted photons and n their mean
number. On the other hand the molecule loses a total energy 4E ’ n�hhhki=c
between the slits and the screen. Hence, its momentum will be changed by the
quantity

4p ’
4E

c
ffiffiffi
n

p : ð16Þ

Therefore the interference pattern will be only slightly affected by the emission
of a large number of low-energy photons. This is an interesting qualitative
conclusion.

A more quantitative relation can be obtained by treating the fullerene molecule
as a ‘macroscopic’ system that emits thermal radiation at temperature T. The
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energy and number of photons emitted by the surface A of the fullerene molecule
during its time of flight t is, respectively, [12]

4E ¼ �J0At, n ¼ ��0At, J0 ¼
�2

60

k4B
c2�hh3

T4, �0 ¼
�ð3Þ

2�2
k3B
c2�hh3

T3, ð17Þ

where kB is the Boltzmann constant, �ð3Þ ’ 1:202 the Riemann function and
� ’ 4:5� 10�5 an emissivity coefficient, due to the curvature of the emitting
fullerene surface [1, 3, 8]. Therefore by making use of (17), equation (16) reads

4p ’
�J0At

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��0At

p ¼
ffiffiffi
�

p
	ðAtÞ1=2T 5=2, 	 ¼

ffiffiffiffiffiffiffiffi
2

�ð3Þ

s
�3

60

k
5=2
B

c2�hh3=2
: ð18Þ

In order to observe interference, the transferred momentum 4p must satisfy the
coherence condition (6)

4p ¼
h

�0
<
�

h

2d
, ð19Þ

which translates into the following bound for the internal temperature T

T <
�
Tdec � ���1=5 1

ðAtd2Þ1=5
, ð20Þ

� ¼
1800 �ð3Þ

�4

� �1=5�hh c4=5

kB
¼ 8:59� 10�5Ks1=5 m4=5: ð21Þ

Equation (20) is a coherence condition. The quantity Tdec is the internal (blackbody)
temperature of a fullerene molecule at which decoherence effects should become
apparent in a double slit experiment. For the numerical values of the Vienna
experiment, by takingA ¼ 4�r2 ¼ 1:539� 10�18m (r ’ 3:5 Å is the fullerene radius)
and t ¼ 9:47ms [5, 9] we getTdec ’ 3700K.Notice that aboveT ’ 3000K fullerene
molecules begin to fragmentate (ionization is likely to occur at even lower tempera-
tures). Therefore, the temperature of the fullerene molecule will have only a small
influence on the visibility of the interference pattern, at least for the Vienna experi-
mental configuration. However, if the experiment is modified by letting the full-
erene pass through an interferometer of the Mach–Zender type in order to increase
the beam separation d, then intrinsic decoherence effects should come to light. The
behaviour of Tdec versus d (slit separation) is shown in figure 1 for a time of flight of
9.53ms [5]. Decoherence effects should be visible at about 2000K for a beam
separation of the order of half a micron.

5. Conclusions
We have studied the double-slit interference pattern and the coherence proper-

ties of a molecule with an increasingly complicated internal structure.
If the molecule is ‘elementary’, i.e. structureless, the usual description in terms

of the Heisenberg–Bohm microscope applies and interference is lost when a
photon of suitable wavelength is scattered off the molecule after the latter has
gone through a double slit.
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If, on the other hand, the molecule has an internal structure (for example a
two-level system), one still needs a photon of suitable wavelength to destroy
interference, but in addition the photon re-emission process must be rapid. If, for
instance, the photon is re-emitted only after the molecule has reached the screen,
no ‘which path’ information is available and interference (coherence) is preserved.

Finally, if the molecule can absorb and re-emit a large number of photons and
is complicated enough to have an internal temperature, one can properly talk of
‘mesoscopic interference’. In such a situation, one can obtain sensible results by
combining thermodynamical considerations with a pure quantum mechanical
analysis. The mesoscopic system will slowly ‘explore’ its environment by emitting
photons in the course of its evolution and its branch waves will slowly ‘decohere’
(namely, they get entangled with increasingly orthogonal states of the electro-
magnetic field, that plays the role of environment). In this sense, coherence—
viewed as ability to interfere—simply means isolation from the environment.
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