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Abstract

A pairwise clustering approach is applied to the analysis of the Dow Jones index companies,

in order to identify similar temporal behavior of the traded stock prices. To this end, the

chaotic map clustering algorithm is used, where a map is associated to each company and the

correlation coefficients of the financial time series to the coupling strengths between maps. The

simulation of a chaotic map dynamics gives rise to a natural partition of the data, as

companies belonging to the same industrial branch are often grouped together. The

identification of clusters of companies of a given stock market index can be exploited in the

portfolio optimization strategies.
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1. Introduction

Stock markets are recently triggering a growing interest in the physicists’
community. The objective of this attention is to understand the underlying dynamics
which rules the companies’ stock prices. In particular, it would be useful to find,
inside a given stock market index, groups of companies sharing a similar temporal
behavior. To this purpose, a clustering approach to the problem may represent a
good strategy. Clustering deals with the partitioning of a set of N elements into K

clusters, based on a suitable (and not unique) similarity criterion [1]. Non-parametric
methods represent the optimal strategy when no prior knowledge on the clusters to
find is available: these methods make few assumptions about the structure of the
data, rather they employ local criteria for reconstructing the clusters, e.g. by
searching for high density regions in the data space. Moreover, as the number of
clusters is not selected a priori, they are particularly suited when a hierarchical
structure, rather than a fixed partition, of the data should be obtained: this is the case
with stock index dynamics and portfolio optimization strategies [2,3]. Examples of
non-parametric methods are the linkage (agglomerative and divisive) algorithms [4],
whose output is a dendrogram displaying the full hierarchy of the clustering solutions
at different scales. The agglomerative approaches merge, at each step, the two
clusters with the smallest distance, starting from clusters containing only one
element. In this article we use a non-parametric clustering approach, named chaotic
map clustering (CMC) [5], which relies on the synchronization properties of a
chaotic map system [6,7] in order to obtain a hierarchy of classes without any
assumptions on the underlying structure of the data.

This paper is organized as follows: in Section 2 we give a brief review of the
chaotic map algorithm, suitably modified for pairwise clustering of financial times
series. Section 3 deals with the analysis of the companies’ stock prices. Finally, some
conclusions are drawn in Section 4.
2. Pairwise chaotic map clustering

The chaotic map clustering was originally introduced as a central algorithm, where
the elements to cluster are embedded in a D-dimensional feature space. In such a
picture, the data-points are viewed as sites of a grid, hosting a chaotic map dynamics:
the map variables xi 2 ½�1; 1�; i ¼ 1; :::;N; are assigned to each site of the lattice, and
short-range interactions between neighboring maps are introduced as exponential
decreasing function of the site distance. In the stationary regime, clusters of
synchronized maps appear, corresponding to high density regions in the original
data space. The mutual information between maps is used both as a similarity index
for building the clusters, and a scale parameter for reconstructing the hierarchical
tree [5].

It should be remarked that a pairwise version of the algorithm can be easily
implemented if an N � N matrix of similarities (not necessarily distances in the
mathematical sense) is provided instead of the feature vectors for all data.
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As far as one deals with clustering temporal patterns yiðtÞ; the correlation
coefficients cij 2 ½�1; 1� are a natural measure of similarity:

cij ¼
hY iY ji � hY iihY jiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhY 2
i i � hY ii

2ÞðhY 2
j i � hY ji

2Þ

q ; ð1Þ

where the temporal averages are computed over the whole duration of the time
series. In Ref. [8], the correlation coefficients between financial time series are used as
entries into the super-paramagnetic clustering (SPC) algorithm [9,10]. The SPC
algorithm shares the same philosophy of the CMC approach, the physical system
used to partition the data being an inhomogeneous ferromagnetic model: Potts spin
si are assigned, instead of map variables, to each data-point and short-range
interactions between neighboring sites are introduced. The spin–spin correlation
function replaces the mutual information as similarity index for clustering data. In
the super-paramagnetic regime, domains of aligned spins appear, corresponding to
the classes present in the data.

Kullmann et al. [8] generalize the SPC to the case of anti-ferromagnetic couplings
by introducing the following spin–spin strength as a function of the correlation
coefficients cij :

Jij ¼ sgnðcijÞ 1� exp �
n � 1

n

cij

a

h in
� �� �

; ð2Þ

where the sign function sgn maps positive/negative correlations between companies’
stock prices into positive/negative interactions between Potts spins, n is an even
positive integer tuning the shape of the interaction function (whose value should be
chosen so that a stable non-trivial partition can be obtained inside the hierarchical
solution), and a is the average of the largest correlation coefficients for each sequence
[8]:

a ¼
1

N

XN

i¼1

max
j

ðcijÞ : ð3Þ

We shall try to follow a similar strategy in our CMC approach. We first observe that,
in order to implement a chaotic map dynamics, the correlation coefficients between
financial time series should be mapped into positive interactions between maps,
ranging in [0; 1]. Hence, we are naturally led to adopt the couplings (2) for cijX0;
while setting Jij ¼ 0 for cijo0: In this way, we build up a partially coupled map
lattice with exponential increasing interactions between positively correlated
companies. In the case of randomly coupled systems, although exact synchronization
and formation of clusters of identical dynamical states are not found as in the
globally coupled case [6], yet, clusters of almost synchronized maps are still observed,
even for a significant fraction (up to 40–45%) of lacking connections [7]. By retaining
the interactions only between positively correlated time series, we bias the formation
of almost synchronized maps to correspond to groups of companies sharing the same
temporal behavior, while anti-correlated companies are likely to belong to different
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clusters. The chaotic map dynamics reads

xiðtþ 1Þ ¼
1

Ci

X
jai

Jijf ðxjðtÞÞ ; ð4Þ

where f ðxÞ ¼ 1� 2x2 is the logistic map, Ci ¼
P

jaiJij is a normalization factor, and
t denotes the evolution time of the chaotic map system (not to be confused with the
real time t of the financial series). A detailed description of the above-mentioned
dynamics for clustering purposes is described elsewhere [5]; roughly speaking, after a
certain equilibration time, the dynamics (4) yields a partition of the maps xi into
synchronized clusters, that remain stable during the remaining part of the t-
evolution. Applications of the CMC algorithm cover a number of fields, such as
buried land-mines detection by dynamic infrared imaging [11,12], human evolution
study with mitochondrial DNA sequences [13], and diagnosis of pathological
electroencephalographic patterns affected by Huntington’s disease [14,15].
3. Application to financial time series

Here we apply the CMC algorithm to cluster the companies of the Dow Jones (DJ)
market index, including N ¼ 30 stocks, whose names are listed in Appendix A,
together with the identifying tickers and the related industrial branches. We first
analyze one-year time periods, from 1998 to 2002. For each year, the correlation
coefficients (1) are computed for the logarithmic daily price variation time series

yiðtÞ ¼ lnðPiðt þ 1ÞÞ � lnðPiðtÞÞ ; ð5Þ

where PiðtÞ is the closure price of stock i at day t.
It should be remarked that, for each investigated period, the number of pairs of

anti-correlated companies Nco0 is very small in comparison with the total number of
pairs NðN � 1Þ=2 ¼ 435; and the mean value of the anticorrelations hcico0 is almost
zero (see Table 1). At this point it should be stressed that the very fact that almost all
stocks are correlated, and practically lack any anticorrelation, makes not easy any
possible clustering procedure.
Table 1

Number of pairs of anti-correlated stocks Nco0 and mean value of the anticorrelation hcico0

Year 1998 1999 2000 2001 2002

Nco0 0 25 34 11 1

hcico0 0 �0.0453 �0.0494 �0.0495 �0.0071

Nco0 and hcico0 must be compared with the total number of pairs NðN � 1Þ=2 ¼ 435 and with the mean

correlation hci ’ 0:28; respectively.
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As a result of the processing, a dendrogram displays the hierarchical structure of
the clusters at different values of the mutual information I ij defined as follows:


 extract a bitwise sequence Si from each map xiðtÞ; such that

Si ¼
1 if xiðtÞX0;

0 otherwise;

�
ð6Þ


 evaluate the probability PðSiÞ as the number of times the state Si occurs along the
sequence Si; normalized to the sequence length; in a similar way, PðSi;SjÞ is the

frequency of simultaneous occurrence of the states ðSi;SjÞ along the sequences Si

and Sj;



 compute the string entropy Hi and the joint entropy Hij as

Hi ¼ �
X

Si¼0;1

PðSiÞ ln PðSiÞ ; ð7Þ

Hij ¼ �
X

Si¼0;1

X
Sj¼0;1

PðSi;SjÞ ln PðSi;SjÞ ; ð8Þ


 the mutual information is then given by: I ij ¼ Hi þ Hj � Hij :

The mutual information is a measure of the correlations between maps [16], ranging
between I ij ¼ 0; for maps evolving independently, and I ij ¼ ln 2; for exactly
synchronized maps. For this reason, I ij can be appropriately adopted as a similarity
index for clustering the companies: by cutting the dendrogram at a certain level
I 2 ½0; ln 2�; the clusters thus obtained are made up of companies whose associated
maps are characterized by I ijXI : The level I can be suitably chosen by relying on a
certain stability criterion of the clustering solution. To this purpose, the cluster
entropy SðIÞ [6] can be used to select the most stable partition among the whole
hierarchy yielded by the algorithm, by looking for a plateau in the widest possible
range of I values:

SðIÞ ¼ �
XNI

k¼1

PI ðkÞ ln PI ðkÞ ; ð9Þ

where PI ðkÞ is the fraction of elements belonging to cluster k, and NI is the number
of clusters found at level I.

This model depends on one parameter, the positive even integer number n, which
tunes the range of the interactions (2). For each period, the optimal value of the
parameter n should be chosen according to the stability criterion of the entropy (9),
at different cluster partitions. As an example, we consider the processing relative to
the year 1999: Fig. 1 displays the entropy S in the plane spanned by I (mutual
information) and n, with n ¼ 2; 4; 6; . . . ; 24:We choose n ¼ 8 to be the optimal value,
by looking for the widest range of constant values of S, along the I-direction
(0:4tIt0:6).
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Fig. 1. Cluster entropy S in the plane spanned by the mutual information I and the parameter n. The

widest S-plateau along the I -direction (namely, the range of values of I for which S is constant) is

0:4tIt0:6 and corresponds to n ¼ 8: This analysis refers to year 1999.
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Once this parameter has been adjusted, the full hierarchy of clusters can be
displayed by a dendrogram: Fig. 2 shows the result obtained for the year 1999. The
dendrogram has been cut in the region of stable partitions at I ’ 0:6: For low value
of mutual information, all pairs of companies are linked together in one single
cluster, which splits into two big clusters at I ¼ 0:16: on one side, we clearly
recognize companies dealing mainly with capital goods (BA, CAT, HON) and basic
materials (AA, DD, IP). On the other side, we find a cluster of strongly correlated
companies represented by the branch marked by a star. This cluster, which gradually
breaks as the mutual information approaches its maximum value I ¼ ln 2; groups
together different industrial branches: financial (C, AXP, JPM), services (DIS, HD,
MCD, SBC, T, WMT), healthcare (JNJ, MRK), conglomerates (GE, UTX),
consumers non-cyclical (GM, KO, MO, PG). Besides this cluster, it should be
remarked the formation of technological cores (IBM and HPQ, INTC and MSFT).

For comparative purposes, the financial time series have been clustered by means
of an alternative simpler method: the agglomerative single linkage (SL) algorithm. In
this procedure, one first introduces the distance between the time series i and j

[17,18]:

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cijÞ

p
; ð10Þ

where cij is the correlation coefficient. The SL algorithm consists in merging at each
step the two closest clusters, relying on the following similarity index between
clusters C and C0:

dðC;C0Þ ¼ min
i2C;j2C0

dij : ð11Þ
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Fig. 2. Dendrogram obtained for the year 1999 (n ¼ 8), cut in the region of stable partitions at I ’ 0:6:
The branch marked by a star (not explicitly shown) groups together different industrial sub-classes:

financial (C, AXP, JPM), services (DIS, HD, MCD, SBC, T, WMT), healthcare (JNJ, MRK),

conglomerates (GE, UTX), consumers non-cyclical (GM, KO, MO, PG).
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The dendrogram obtained as a result of the SL clustering is displayed in Fig. 3: the so
called chaining effect, giving rise to elongated clusters, can be clearly observed. Notice
that this drawback is completely absent in our procedure, as can be seen in Fig. 2.

The analysis has been carried out for each of the 5 years considered (1998–2002).
In the following, we report the main clusters found for different years, together with
the values chosen for the parameter n, and the values of the mutual information at
which the dendrogram has been cut. Sub-clusters of companies belonging to the
same industrial branch have been underbraced:


 Year 1998, n ¼ 16; I ¼ 0:62
(1) DIS MCD T WMT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} KO MO PG|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl} JNJ MRK|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
(2) AXP C JPM|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl} GM


 Year 1999, n ¼ 8; I ¼ 0:24
(1) DIS HD MCD SBC T WMT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} KO MO PG|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl} AXP C JPM|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl} JNJ MR|fflfflfflfflfflfflffl{zfflfflffl

INTC MSFT|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl} GE UTX|fflfflfflfflfflffl{zfflfflfflfflfflffl} GM

(2) BA CAT HON|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl} DD IP|fflfflffl{zfflfflffl} EK XOM
Kfflfflfflffl}


 Year 2000, n ¼ 18; I ¼ 0:26
(1) BA CAT HON|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl} AA DD IP|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl} KO PG|fflfflfflffl{zfflfflfflffl} MMM UTX|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl} EK MCD

(2) AXP C JPM|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl} SBC T|fflfflffl{zfflfflffl} GE GM
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Fig. 3. Dendrogram obtained for the year 1999 using the agglomerative single linkage algorithm. The

similarity index d is defined in Eq. (11). Notice the ‘‘chaining effect’’, that tends to yield elongated clusters.
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 Year 2001, n ¼ 20; I ¼ 0:15
(1) DIS HD MCD SBC T WMT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} BA CAT HON|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl} AXP C JPM|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

AA DD IP|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl} GE MMM UTX|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl} EK GM|fflfflfflfflffl{zfflfflfflfflffl} MO XOM

(2) HPQ IBM INTC MSFT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}



 Year 2002, n ¼ 16; I ¼ 0:62

(1) AA DD IP|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl} CAT HON|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl} MMM UTX|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl} GM MCD XOM;

(2) AXP C JPM|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl} DIS SBC|fflfflfflfflfflffl{zfflfflfflfflfflffl} EK GE MRK

(3) HPQ IBM MSFT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} HD.
It is worth stressing the presence of some cores of companies which remain
strongly linked together over periods longer than 1 year: financial companies (AXP,
C, JPM, 98–02), services (DIS, MCD, T, WMT, 98–99, 01), consumers non-cyclical
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Fig. 4. Dendrogram found from the whole 5-year time period 1998–2002, with n ¼ 18: The main branches

have been marked by the industrial areas of the companies they are made of.
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(KO, MO, PG, 98–99), basic materials (AA, DD, IP, 00–02), capital goods (BA,
CAT, HON, 99–01), technology (HPQ, IBM, MSFT, 01–02), healthcare (JNJ,
MRK, 98–99), conglomerates (MMM, UTX, 00–02).

Once a partition of companies has been obtained, an efficient portfolio
could be made of one ‘‘representative’’ stock per cluster, thus ensuring a
diversification of the investment. The choice of the period length for
computing the correlation coefficients should be related to the flexibility of the
portfolio. From this point of view, an analysis covering the whole 5-year
period should be based on more stable correlation coefficients, thus leading to
more stable partitions (i.e., less hazardous investment), at the cost of a less
flexible portfolio. In Fig. 4, we report the full hierarchy of clusters found from the
whole 5-year length time period (n ¼ 18). We want to remark that no
anticorrelations have been found for such period. The main branches of the
dendrogram have been marked by the industrial areas of the companies they are
made of.
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4. Conclusions

In the present work, a pairwise version of the chaotic map algorithm has been
applied to the analysis of the companies’ stocks belonging to the Dow Jones market
index. The correlation coefficients between financial time series have been used as
similarity measures to cluster the temporal patterns. Once the coupling interactions
between maps are taken to be functions of these coefficients, the dynamics of such a
system leads to the formation of clusters of companies that can often be identified as
different industrial branches. The clustering output can be exploited to optimize the
portfolio composition.
Appendix A. Dow Jones stock market companies
AA
 Alcoa Inc.—Basic Materials

AXP
 American Express Co.—Financial

BA
 Boeing—Capital Goods

C
 Citigroup—Financial

CAT
 Caterpillar—Capital Goods

DD
 DuPont—Basic Materials

DIS
 Walt Disney—Services

EK
 Eastman Kodak—Consumer Cyclical

GE
 General Electrics—Conglomerates

GM
 General Motors—Consumer Cyclical

HD
 Home Depot—Services

HON
 Honeywell International—Capital Goods

HPQ
 Hewlett-Packard—Technology

IBM
 International Business Machine—Technology

INTC
 Intel Corporation—Technology

IP
 International Paper—Basic Materials

JNJ
 Johnson & Johnson—Healthcare

JPM
 JP Morgan Chase—Financial

KO
 Coca Cola Inc.—Consumer Non-Cyclical

MCD
 McDonalds Corp.—Services

MMM
 Minnesota Mining—Conglomerates

MO
 Philip Morris—Consumer Non-Cyclical

MRK
 Merck & Co.—Healthcare

MSFT
 Microsoft—Technology

PG
 Procter & Gamble—Consumer Non-Cyclical

SBC
 SBC Communications—Services

T
 AT&T Gamble—Services

UTX
 United Technology—Conglomerates

WMT
 Wal-Mart Stores—Services

XOM
 Exxon Mobil—Energy
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