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We study the effects of dynamical imperfections in quantum computers. By considering an explicit example,
we identify different regimes ranging from the low-frequency case, where the imperfections can be considered
as static but with renormalized parameters, to the high-frequency fluctuations, where the effects of imperfec-
tions are completely wiped out. We generalize our results by proving a theorem on the dynamical evolution of
a system in the presence of dynamical perturbations.
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In any experimental implementation of a quantum infor-
mation protocolf1g one has to face the presence of errors.
The coupling of the quantum computer to the surrounding
environment is responsible for decoherencef2g, which ulti-
mately degrades the performances of quantum computation.
The presence of static imperfections, although not leading to
any decoherence, may also be detrimental for quantum com-
puters. For instance, a small inaccuracy in the coupling con-
stants, inducing as a consequence to errors in the quantum
gates, can be tolerated only up to a certain thresholdf3g.
Moreover, the role of static imperfections depends on the
regime, chaotic or not, of the system under considerationf3g.
The stability of a quantum computation in the presence of
static imperfections has been already analyzed both in terms
of fidelity f3–5g and entanglementf6g.

A strict separation in “static” imperfections and “dynami-
cal” noise may not be always satisfactory. Dynamical noise
may be considered at the same level as static imperfections,
if its evolution occurs on a scale much larger than the com-
putational time. In Ref.f4g it was suggested that the effects
of static imperfections can be more disruptive than noise for
quantum computation. In this paper, we intend to explore this
problem in more detail. The model we consider, in spite of
its simplicity, enables one to grasp the interplay between the
different time scales that appear in the problem. We consider
each qubit coupled to a stochastic variable that changes in
time with a fixed frequency. Below a given thresholdsfre-
quencyd, the errors can be considered as static, and thus can
be corrected by using any of the known methods. The differ-
ence between the chaotic and the other dynamical regimes,
found for static imperfections, holds also in the quasistatic
case. We then generalize our results, by proving a theorem
that states that, under general assumptions, in a perturbed
system, unitary dynamical errors are averaged to zero in
probability. Our results can be relevant in the context of the
strategies that have been proposed during the last few years
in order to suppress decoherencef7g.

Model. Following f3,4g, we model a quantum computer
as a lattice of interacting spinssqubitsd. Due to the imperfec-
tions, the couplings between the qubits and with an external
field are both random and fluctuate in time. We consider
n qubits on a two-dimensional lattice, described by the
Hamiltonian

Hstd = o
j=1

n

fD0 + d jstdgsz
s jd + o

ki,jl
Jijstdsx

sidsx
s jd, s1d

where thesa
sid’s sa=x,y,zd are the Pauli matrices for qubiti

and the second sum runs over the nearest-neighbor pairs. The
energy spacing between the up and down states of a qubit is
D0+distd, where thedistd’s are uniformly distributed in the
interval f−d /2 ,d /2g and theJijstd’s in the interval f−J,Jg
szero means and variancesd 2s2 and 4J2s2, respectively,
with s2=1/12d. We model the dynamical noise by supposing
that bothdistd andJijstd change randomly after a time inter-
val t. Within the time interval they are constant.

For J=d=0 the spectrum of the Hamiltonian is composed
of n+1 degenerate levels, with interlevel spacing 2D0, cor-
responding to the energy required to flip a single qubit. We
study the cased ,J!D0, in which the degeneracies are re-
solved and the spectrum is composed byn+1 bands. In this
limit the coupling between different bands is very weak and
each state is effectively coupled to Osnd other states inside
the band. We assume free boundary conditions and express
all the energy in unitsD0 s"=1d.

In the following we analyze the behavior of the fidelity
f8g and the error

Fstd ; ukCuUstduClu2, Et = − ln F, s2d

starting from an initial stateuCl, which is an eigenstate of
sz

s jds j =1,… ,nd, Ustd being the unitary evolution generated
by s1d. We concentrate on the central band of zero total mag-
netization, characterized by the highest density of states, and
for which one expects the effect of noise to be most pro-
nounced.

Results. The decay of fidelity due tostatic imperfections
sconstantd’s and J’sd is displayed in the inset of Fig. 1.
Systems1d is characterized by two distinct dynamical re-
gimes: the Fermi golden rulesFGRd sJ,Jcd and the ergodic
regimesJ.Jcd, whereJc,d /n f3,6g. The FGR holds below
thresholdsweak couplingd and is characterized by a Lorent-
zian local density of states with a widthGFGR~J2reff, where
reff~1/d is the density of states directly coupled to the initial
state. The ergodic regime takes place when all the levels
inside the band participate to the dynamics: the local density
of states has a Gaussian shape with varianceGerg

2 ~J2 and
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coincides with the density of states. The fidelity decay is the
Fourier transform of the local density of statesf9g and al-
ways starts with a quadratic lawssee inset Fig. 1d, indepen-
dently of the regime. After this initial common regime, fidel-
ity follows an exponential or a Gaussian decay with
characteristic ratesGFGR,Gerg, respectivelyf3g. In the strong-
couplingsergodicd regime the decay of fidelity is the result of
many different transitionsf9g: Fstd.pki,jl cos2sJij td, yielding

the above-mentioned Gaussian decayFstd.e−J2nt2.
This was the static picture. In the case ofdynamicalim-

perfections, different regimes emerge as a function of the
frequency 1/t. Below a critical time scaletc the different
behavior due to the ergodic and FGR regimes cannot be re-
solved anymore. This can be clearly seen in Figs. 1 and 2. An
additional ssmootherd crossover appears at an even higher
frequency 1/tp sFig. 2d when the noise frequency become
comparable with the single qubit natural frequencys,D0d.
The errorEtstd at sfixedd time t tends to vanish ast de-
creases. From this perspective the overall trend is similar to

the motional narrowing in nuclear magnetic resonancef10g.
Most interesting in what we discuss is the emergence of dif-
ferent dynamical regimes as a function oft.

An explicit calculation of the error to orderJ2 yields

Etstd = 4J2s2fNgstd + gsDtdg, s3d

wheret=Nt+Dt, with N integer, 0øDt,t, and

gstd = 2E
0

t

dsE
0

s

du sinc2sdudfn↑↓ + n↑↑ coss4D0udg

= n↑↓ fsdtd/d2 + n↑↑Ddt fs2D0td/d2, s4d

n↑↑sn↑↓d being the number of nearest-neighbor parallel
santiparalleld pairs in the initial state, sincsxd=ssinxd /x,
Dy fsxd=ffsx+yd−2fsxd+ fsx−ydg /2 and

fsxd = Cis2xd + 2x Sis2xd − lns2xd + coss2xd − g − 1, s5d

Ciszd, Siszd, andg.0.577 being the cosine and sine integral
functions, and Euler’s constant, respectively. Note that, due
to the convexity ofgstd, the errorEtstdø4J2s2tgstd /t, the
inequality is saturated whent /t=N, thus providing a simple
interpolation ofs3d. The functiongstd can be approximated
in several important limits. Fortd!1

gstd . t2fn↑↓ + n↑↑ sinc2 s2D0tdg, s6d

which yieldsgstd.nct
2 for t&tp=p /4D0 andgstd.n↑↓t2

sergodic regimed for t*tp ssee Fig. 2d, where the total num-
ber of links nc=n↑↓+n↑↑ f11g. On the other hand, when
td@1, by plugging the aymptotic expansion ofs5d into s4d,
one gets

gstd .
n↑↓
d2 fpdt − lns2dtd − g − 1g. s7d

Note that the limittd@1 is within the range of applicability
of Eq. s3d, only in the FGR regime.

Substituting these approximate expressions in Eq.s3d, the
error at a fixed timet for different t values scales like

Etstd . 4J2s2t5
nct t , tp sall regimesd
n↑↓t tp , t , tc sall regimesd
n↑↓t t . tc,J . d sergodicd
n↑↓p/d t . tc,J , d/n sFGRd.

6
s8d

In Fig. 2 we show the scaling ofEtstd with t for different
values of d. For the ergodic regime we chooseJ=d,
while the FGR is characterized byJ!d. As t,tc the two
distinct ergodic and FGR behaviors of the static casescom-
pared in Fig. 2 only for the sets withn↑↓=8d are not resolved.
Equationss6d and s7d, plotted in Fig. 2, are in excellent
agreement with the numerical results. The additional kink at
t.tp=p /4D0 sets in when single spin dynamics starts to
play a role. We also checked thattp is independent onJ and
d, in agreement with Eq.s6d. The transition att=tc is strik-
ing and occurs when the error starts deviating from the linear
behavior given by Eq.s8d. In fact, the crossover between the
two regimes could be defined by equating the third and the
fourth line of s8d, that is fort=p /d, which for d=0.3 would

FIG. 1. Fidelity as a function of time forn=14 qubits in the
FGR regimesJ=2310−2, d=4310−1d and from top to bottom
t=1,3,5,10,20,25sstatic imperfectionsd. Inset: Fidelity as a function
of time in the ergodicsJ=d=2310−2, dashed lined, and in the FGR
regimesfull lined: note thescommond short-time quadratic law.

FIG. 2. ErrorE as a function oft for t=25, n=10, J=5310−3,
in the ergodic regimed=5310−3, n↑↓=8 ssquaresd, n↑↓=13 stri-
anglesd, and in the FGR regimed=3310−1 scirclesd. The fits are
given by Eqs.s3d, s6d, and s7d, with s2=1/12, nc=13, D0=1, and
sn↑↓ ,n↑↑d equal tos8, 5d sdashedd, s13, 0d sdot-dashedd. The transi-
tion attc is shown only in the former case. All the errors scale asJ2

sdata not shownd.
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give t.10.5. However, since the saturation value
Etstd=GFGRt=4J2s2n↑↓pt /d given by Eq.s8d is reached only
for dt@1 and since the transition is sharp, a much
more accurate way to definetc is by looking at the point for
which the deviation from the linear behaviorfthird line in
Eq. s8dg becomes apparent. To this purpose we keep the
next-leading correction to Eq.s6d and approximate
sinc2sdud.1−sdud2/3 sfor t&1/dd in the integrals4d. For
t*tp we obtain

gstd .
n↑↓
d 2Fsdtd2 −

sdtd4

18
G . s9d

If the plot resolution in Fig. 2 is some fraction« of the total
vertical range 4J2s2n↑↓t2, the error curve starts deviating
from the linear behavior whenst /tdsdtd4/ s18d 2d.«t2, i.e.,

tc =
s18«td1/3

d 2/3 , s10d

which for t=25, d=0.3, and«=1/40 yields tc=5, in full
agreement with Fig. 2. In Fig. 3 we show the errorEtstd
with fixed J and differentd values. The scaling of the critical
thresholdtc is clearly visible. We also checked thattc does
not depend onJ sdata not shownd. The inset of Fig. 3 shows
the dependence oftc as a function ofd, confirming the
predictions10d.

Theorem.After having presented the overall picture of
dynamical imperfections on the fidelity of computation, we
complete our analysis and set up a general framework to
consider the effect of a time-dependent noise on the evolu-
tion of a quantum system

Hstd = H0 + jstdV, s11d

whereH0 is time independent andHstd varies with a given
characteristic timet, according to the stochastic process with
independent incrementsjstd=ok=1

N xfkt−t,ktdstdjk, wherexA is
the characteristic function of the setA andhjkjk are indepen-
dent and identically distributed random variables, with ex-
pectationsEfjkg=0, Varfjkg=Efjk

2g=s2,`. The time evolu-
tion operator over the total timet=tN is given by

UNstd = p
k=1

t/t

expf− isH0 + jkVdtg, s12d

where a time-ordered product is understood, with earlier
times slower kd at the right. Let us assume, for simplicity,
thatH0 andV are bounded operators, so thatUstd is a norm-
continuous one-parameter group of unitaries and all our sub-
sequent estimates are valid in norm. We are interested in the
existence and form of the limiting time evolution operator
UNstd for N→`. When expanding the product, one finds that
the term independent oft is 1, while the term proportional to
t reads −iH0t− iVtok=1

N jk/N. Now, according to the weak law
of large numbersf12g, P−limN→`ok=1

N jk/N=Efjkg=0, for we
assumedEfjk

2g=s2,`, and the limit is taken in probability.
Therefore, forN→`

1 − iH0t − iVt
1

No
k=1

N

jk→
P

1 − iH0t. s13d

Analogously, by using the weak law of large numbers, one
can prove that all higher powers ofVt vanish in the limit,
thus obtaining

Ustd ; P − lim
N→`

UNstd = exps− iH0td, s14d

in the following sense

lim
N→`

PsiUNstd − exps− iH0tdi ù «d = 0, s15d

uniformly in each compact time interval. If the termjstdV is
viewed as exemplifying the effect ofsdynamicald error-
inducing disturbances, the above result physically implies
that the effects of the errors are wiped out if their character-
istic frequencyt−1 is sufficiently fast. This defines the purely
dynamical regime.

Another viewpoint can also be adopted, that is somewhat
complementary to the above one. Given a characteristic fre-
quency of the noise, it is possible to establish aneffective
value of the strength of the imperfections so that the above
result holdssapproximatelyd. In this sense, a natural question
is what happens for large butfinite N. This question can be
answered by remembering that under the same hypotheses,
according to the central limit theorem, the limiting random
variable h=limN→`ok=1

N jk/ÎN exists and is Gaussian with
meanEfhg=0 and varianceEfh2g=s2, namely it is distrib-
uted like fshd=s2ps2d−1/2 exps−h2/2s2d. Thus, by following
the same steps that led tos14d, we find that forN@1

UNstd , exps− iH0tdexps− ihVt/ÎNd. s16d

Equations16d implies then that forfixedt, the system “feels”
an effective interaction strengtheeff=siVi /ÎN~siViÎt.

For intermediate values ofN, Eq. s16d is no longer valid,
because it hinges upon the commutativity ofH0 andV. How-
ever, by assuming thatV!H0 se.g., in normd, a straightfor-
ward expansion shows that the perturbationV is replaced by

FIG. 3. Error at timet=50, for n=10, J=5310−3 and different
d values. The squares represent the ergodic regimed=J. The FGR
regime is plotted ford=1,2,3,5310−1 sempty, pointed, dashed,
full circles, respectivelyd. Inset:tc as a function ofd for n=10,12,14
scircles, squares, and diamonds, respectivelyd. The dashed line is
proportional tod−2/3, in agreement with Eq.s10d.
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V̄std =
1

t
E

0

t

dt eiH0tVe−iH0t, s17d

so that, fortiH0i*2p, the effective perturbation becomes

V̄std → VZ = o
k

PkVPk, s18d

where Pk are the eigenprojections ofH0 sH0=olkPkd.
This phenomenon is reminiscent of the quantum Zeno
subspacesf13g.

The generalization of the above results to a Hamiltonian
with a family of independent stochastic processes with zero
mean and finite variances is straightforward. This is the case
of the Hamiltonians1d, which reads

Hstd = H0 + d j0std ·V0 + 2J jstd ·V , s19d

where H0=o jD0sz
s jd, sV0d j =sz

s jd, sVdi j =sx
sidsx

s jd, and
j0j =sj0d j and ji j =sjdi jsi , j =1,¯ ,nd are independent
random variables uniformly distributed in the interval
f−1/2,1/2g.

We can then reinterpret our previous results in the light of
the above theorem, by applying the static resultsf9g, outlined
before Eq.s3d to the sstaticd evolution with renormalized
couplingss16d swith hV→h ·Vd. Thus, independently of the
interaction strength and the correspondent dynamical regime,
for sufficiently largeN sor smallt= t /Nd, by expandings16d
to Os1/Nd, one finds a quadratic decay law

Etstd ,
1

N

t2

tZ
2 =

t

tZ
2t st , tpd, s20d

wheretZ
−2=4J2kCush ·Vd2uCl=4J2ncs

2 andtp.D0
−1 fthe H0

time scale, sees17dg. On the other hand, for smallerN,
i.e., t.tp, the effective interactions18d is given by
sVZdi j =s+

sids−
s jd+s−

sids+
s jd, whence

Etstd ,
1

N
Gerg

2 t2 = Gerg
2 tt st . tpd, s21d

whereGerg
2 =4J2kCush ·VZd2uCl=4J2n↑↓s2. Therefore, we re-

cover the linear growth of the errorswith the correct coeffi-
cientsd, that describes both regimes up totc in Eq. s8d.

Conclusions. We studied the effects of dynamical imper-
fections on a quantum computer model, depending on the
frequency of the external noise. Below a frequency thresh-
old, imperfections can be considered static, although with
renormalized parameters, and one observes two different dy-
namical regimes. Above this threshold these regimes become
unresolved. These results are independent of the form and
the size of the quantum computer. They remain valid under
quite general conditions on the system Hamiltonian, allow-
ing a more general application of these findings.

Our results show that it is crucial to optimize the comput-
ing time scale, by choosing it between the two competing
types of noisesstatic and dynamicd. In turn, this suggests
strategies to develop general error correcting techniques.
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