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Dynamical imperfections in quantum computers
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We study the effects of dynamical imperfections in quantum computers. By considering an explicit example,
we identify different regimes ranging from the low-frequency case, where the imperfections can be considered
as static but with renormalized parameters, to the high-frequency fluctuations, where the effects of imperfec-
tions are completely wiped out. We generalize our results by proving a theorem on the dynamical evolution of
a system in the presence of dynamical perturbations.
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In any experimental implementation of a quantum infor- n _ -
mation protocol[1] one has to face the presence of errors. H(t) = > [Ag+ 51(0]0;” + > Jij(t)oi')o-f('), (1)
The coupling of the quantum computer to the surrounding =1 ()
environment is responsible for decoheref2g which ulti- where theo"s (a=x,y,2) are the Pauli matrices for qutiit

mately degrades the performances of quantum computation, § the second sum runs over the nearest-neighbor pairs. The

The presence of static imperfection;, although not leading tgnergy spacing between the up and down states of a qubit is
any decohe_rence, may also b_e detnment_al for q“a”t%’m COHXO+ &(1), where theg(t)'s are uniformly distributed in the
puters. For instance, a small inaccuracy in the coupling con.

. . i interval [-6/2,6/2] and theJ;(t)’s in the interval[-J,J]
stants, inducing as a consequence to errors in the quantu Dero means and variance%?laz and 4202, respectively
gates, can be tolerated O("V. up to a .certain threshg]d with 6?=1/12). We model the dynamical no}se by suppos,ing
Moreover, thg role of static imperfections depgnds on theﬁhat botha (t) andJ; (t) change randomly after a time inter-
regime, chaotic or not, of the system under considerdgn !

The stability of a quantum computation in the presence O]val 7. Within the time interval they are constant.

static imperfections has been already analyzed both in termsf FgrlJzézo thetsplectrtjm o.ft;[]h.e tHalmllt(IJman IS composed
of fidelity [3-5] and entanglemers]. of n egenerate levels, with interlevel spacingy2cor-

A strict separation in “static” imperfections and “dynami- responding to the energy required to flip a single qubit. We

cal” noise may not be always satisfactory. Dynamical noiseStuIdydthedc?ﬁes"J<$°’ m.Wh'Ch the gegen;:ragesl a;(ra]_re-
may be considered at the same level as static imperfection olved and Ihé spectrum IS compose 'bﬂ. ands. In this
if its evolution occurs on a scale much larger than the com-”;nlt the coupling between different bands is very weak and

putational time. In Ref[4] it was suggested that the effects each state is effectively coupled (19 othe_r_states inside
of static imperfections can be more disruptive than noise fthe band. We assume free boundary conditions and express
quantum computation. In this paper, we intend to explore thi&!l the energy in unitsy, (7=1). _ o
problem in more detail. The model we consider, in spite of N the following we analyze the behavior of the fidelity
its simplicity, enables one to grasp the interplay between th&8] and the error
different time scales that appear in the problem. We consider F(t) = [(¥|UM)[P)]% E=-InF, (2)
each qubit coupled to a stochastic variable that changes in o o .
time with a fixed frequency. Below a given threshdfce-  Starting from an initial stat¢¥), which is an eigenstate of
quency, the errors can be considered as static, and thus cam, (j=1,...,n), U(t) being the unitary evolution generated
be corrected by using any of the known methods. The differby (1). We concentrate on the central band of zero total mag-
ence between the chaotic and the other dynamical regimesgtization, characterized by the highest density of states, and
found for static imperfections, holds also in the quasistatidor which one expects the effect of noise to be most pro-
case. We then generalize our results, by proving a theoremounced.
that states that, under general assumptions, in a perturbed Results The decay of fidelity due tstatic imperfections
system, unitary dynamical errors are averaged to zero ifconstantd's and J's) is displayed in the inset of Fig. 1.
probability. Our results can be relevant in the context of theSystem(1) is characterized by two distinct dynamical re-
strategies that have been proposed during the last few yeagémes: the Fermi golden rulé&GR) (J<J.) and the ergodic
in order to suppress decoherer@é regime(J>J.), whereJ.~ 6/n [3,6]. The FGR holds below
Model Following [3,4], we model a quantum computer threshold(weak coupling and is characterized by a Lorent-
as a lattice of interacting spirigubits. Due to the imperfec-  zian local density of states with a widifrggrx J°pes, Where
tions, the couplings between the qubits and with an externgl.ec 1/4 is the density of states directly coupled to the initial
field are both random and fluctuate in time. We consideistate. The ergodic regime takes place when all the levels
n qubits on a two-dimensional lattice, described by theinside the band participate to the dynamics: the local density
Hamiltonian of states has a Gaussian shape with variaﬁégoc\]2 and

(i)
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the motional narrowing in nuclear magnetic resonarics.
Most interesting in what we discuss is the emergence of dif-
ferent dynamical regimes as a function of

An explicit calculation of the error to orde¥ yields

Eq(r) = 43%°[Ng(7) + g(A)], )
wheret=N7+At, with N integer, O<At<r, and

F(t)

0.9

g(n) = ZJTdsf du siné(du)[n;| + Ni; cog4Aqu)]
0 0

085 ' 10 ‘ 20 =n,, f(87)/6%+ ny Dy, F(2A7)1 62, (4)

n;(ny) being the number of nearest-neighbor parallel
FGR regime(J=2x1072, §=4x101) and from top to bottom gm;“(p?[aflfl?) +pz;1|_rszf|(n)4t-f]lc((a lnl;u]e;lz sta;[je, site) =(sinx) 1,
7=1,3,5,10,20,2%static imperfections Inset: Fidelity as a function y TO=LTX+Y X X=y an

of time in the ergodi¢J=5=2x 1072, dashed ling and in the FGR f(x) = Ci(2x) + 2x Si(2x) — In(2x) + cog2x) — y- 1, (5)
regime(full line): note the(commor) short-time quadratic law.

FIG. 1. Fidelity as a function of time fon=14 qubits in the

Ci(2), Si(z), andy=0.577 being the cosine and sine integral

coincides with the density of states. The fidelity decay is thdunctions, and Euler's constant, respectively. Note that, due

Fourier transform of the local density of stafe and al- (© the convexity ofg(7), the errork(r) <4J%o’tg()/ 7, the

ways starts with a quadratic la@ee inset Fig. )l indepen-  Inéquality is saturated whemi7=N, thus providing a simple
dently of the regime. After this initial common regime, fidel- Interpolation of(3). The functiong(r) can be approximated

ity follows an exponential or a Gaussian decay within Several important limits. Foré<1

characteristic rateBrgr, I'erg respective!)[3]_. In the strong- g9(n) = 7n;, +ny; sin (24071, (6)
coupling(ergodig regime the decay of fidelity is the result of ) )

many different transitionf9]: F(t) =TI, ;, cog(J;t), yielding ~ which yieldsg(r) =ncr* for 7= 7,=m/4A, andg(7) =n, 7
(ergodic regimgfor 7= 7, (see Fig. 2, where the total num-
ber of links n;=n; +n;; [11]. On the other hand, when
76> 1, by plugging the aymptotic expansion @) into (4),
%ne gets

the above-mentioned Gaussian de&df) =e™ e,

This was the static picture. In the casedyinamicalim-
perfections, different regimes emerge as a function of th
frequency 1#. Below a critical time scaler, the different
behavior due to the ergodic and FGR regimes cannot be re-
solved anymore. This can be clearly seen in Figs. 1 and 2. An
additional (smoothey crossover appears at an even higher o o o
frequency 1#, (Fig. 2 when the noise frequency become Note that the I|m|t75>1 is W|th|.n the range of applicability
comparable with the single qubit natural frequerieyAy).  ©f EQ. (3), only in the FGR regime. o
The errorE(7) at (fixed) time t tends to vanish as de- Substituting these approximate expressions in(By.the

creases. From this perspective the overall trend is similar t§'70F @t @ fixed time for different 7 values scales like

g(n) = %%[war— In(257) - y - 1]. )

N.T T<T, (all regimes
107 ' ' 3 Nt T<r<r all regime
E( A'AE E(n) = 4202 Tl p c ( g. $
i e nr  1>1,J=45 (ergodig

nymé 7> 17,J<dn (FGR.
(8

In Fig. 2 we show the scaling d&(7) with 7 for different
values of §. For the ergodic regime we choos&= 4,
while the FGR is characterized < 8. As <7, the two
distinct ergodic and FGR behaviors of the static casen-
pared in Fig. 2 only for the sets with| =8) are not resolved.
Equations(6) and (7), plotted in Fig. 2, are in excellent
agreement with the numerical results. The additional kink at
FIG. 2. ErrorE as a function ofr for t=25,n=10,J=5x 103,  7=7p=7/4A, sets in when single spin dynamics starts to
in the ergodic regimes=5x10°3, n, =8 (squarey n; =13 (tri- play a role. We also checked thatis independent od and
angles, and in the FGR regimé=3x 10°! (circles. The fits are &, in agreement with E(6). The transition at=r is strik-
given by Egs.(3), (6), and(7), with 0?=1/12,n,=13,A,=1, and  ing and occurs when the error starts deviating from the linear
(n;;,n;y) equal to(8, 5) (dashed| (13, 0 (dot-dashell The transi-  behavior given by Eq8). In fact, the crossover between the
tion at 7, is shown only in the former case. All the errors scald%as two regimes could be defined by equating the third and the
(data not shown fourth line of (8), that is forr=/ 8, which for §=0.3 would
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E) [ ' ' ' ' A
0.15H0F q\g . y Un) =TT exd—i(Ho+ V)71, (12
E kel

where a time-ordered product is understood, with earlier
times (lower k) at the right. Let us assume, for simplicity,
thatH, andV are bounded operators, so thii) is a norm-
continuous one-parameter group of unitaries and all our sub-
sequent estimates are valid in norm. We are interested in the
existence and form of the limiting time evolution operator
Uy(t) for N— . When expanding the product, one finds that
FIG. 3. Error at timet=50, forn=10, J=5x 103 and different the term independent ¢fis 1, while the term proportional to

5 values. The squares represent the ergodic regime The FGR ¢ réads Hot=IVEZiL, &/ N. Now, ?\lccord'ng to the weak law
regime is plotted fors=1,2,3,5< 107! (empty, pointed, dashed, Of large numbergl2], P—limy_..2-; &/ N=E[§]=0, for we
full circles, respectively Inset:7, as a function o for n=10,12,14 ~ assumedE[&]=0? <, and the limit is taken in probability.
(circles, squares, and diamonds, respectivélhe dashed line is Therefore, forN— oo

proportional tos 23, in agreement with E¢(10).

18 P
give 7=10.5. However, since the saturation value 1 _'Hot_'VtNE &1 —iHgt. (13
E«(7)=T'rert=4J%0®n; mt/ § given by Eq.(8) is reached only k=1
for 7>1 and since the transition is sharp, a much
more accurate way to defing is by looking at the point for
which the deviation from the linear behavifthird line in
Eqg. (8)] becomes apparent. To this purpose we keep th
next-leading correction to Eq.(6) and approximate _ . _ :
siné(8u) = 1-(8u)?/3 (for r=1/6) in the integral(4). For U ="p- ,\IJ'LTLUN(D = expl=iH,t), (14)
7= 7, We obtain

Analogously, by using the weak law of large numbers, one
can prove that all higher powers &ft vanish in the limit,
éhus obtaining

(o7

18 ©

} in the following sense

g(n) = %%{(57)2— _ |
lim P([Un(t) - exp(=iHgt)[| = £) = 0, (15)

If the plot resolution in Fig. 2 is some fractianof the total

vertical range 4202”wt2’ the error curve sgarts gle_vlatlng uniformly in each compact time interval. If the terft)V is
from the linear behavior wheft/ 7)(57)*/(185 %) = &t*, i.e., viewed as exemplifying the effect ofdynamical error-
(18et)13 inducing disturbances, the above result physically implies
Te= TR (100  that the effects of the errors are wiped out if their character-
g istic frequencyr* is sufficiently fast. This defines the purely
which for t=25, §=0.3, ande=1/40 yields 7.=5, in full  dynamical regime. _
agreement with Fig. 2. In Fig. 3 we show the erffr) Another viewpoint can also be adppted, that is somgwhat
with fixed J and differents values. The scaling of the critical Complementary to the above one. Given a characteristic fre-
thresholdz, is clearly visible. We also checked thatdoes —duency of the noise, it is possible to establishedfective
not depend od (data not shown The inset of Fig. 3 shows value of the streng.th of the |mperfectlons so that the apove
the dependence of, as a function ofs, confirming the _result holds(approximately. In_thls sense, a natu_ral question
prediction(10). is what happens for Iarg_e béihite N. This question can be
Theorem.After having presented the overall picture of @nswered by remembering that under the same hypotheses,
dynamical imperfections on the fidelity of computation, we &ccording to the celr\}tral limit theorem, the limiting random
complete our analysis and set up a general framework t¥ariable n=limy_.2.,&/VN exists and is Gaussian with

consider the effect of a time-dependent noise on the evolu€anE[#]=0 and variancé[ 77°]=o?, namely it is distrib-
tion of a quantum System uted ||kef(7])=(2’77'0'2)_1/2 EX[X—WZ/ZO'Z) ThUS, by fOllOWII’]g

the same steps that led (d4), we find that forN>1

H(t) =Ho + &)V, (11

whereH, is time independent and(t) varies with a given Un(t) ~ exp(= iHot)exp(— i zVt/VN). (16)
characteristic timer, according to the stochastic process with quation(16) implies then that fofixed 7, the system “feels”
independent incrementst) =i Xk (. Wherexa is  an effective interaction streng;= o V[|/ N = of|V|\ 7.

the characteristic function of the s&tand{¢}, are indepen- For intermediate values i, Eq. (16) is no longer valid,
dent and identically distributed random variables, with ex-because it hinges upon the commutativity-gfandV. How-
pectationsE[ &,]=0, Var[gk]:E[gﬁ]:az<oo. The time evolu-  ever, by assuming that<H, (e.g., in norm, a straightfor-
tion operator over the total time=7N is given by ward expansion shows that the perturbatibis replaced by
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— (T 18t

V(r)=—] dt " otve'd, 17 E(n)~—-5=357 (1<7), (20
TJo N Tz 'T%

_ _ where 777=43V|(5-V)¥)=43n.0? and 7,~ Ag" [the Hg
so that, forr|Ho[|=2m, the effective perturbation becomes  ime scale, sed17)]. On the other hand, for smalléx,
- ie., 7>, the effective interaction(18) is given by
V(1) — V= > PVP,, 18 (Vo) :aﬁf’aﬁ”wﬂ')oi“, whence
k

. o Et(T)NEF(ZarQIZ:F(ZgrgtT (1> 1), (21)
where P, are the eigenprojections ofHy (Hy==\P)). N

This phenomenon is reminiscent of the quantum Zengynherer2 :4\]2(\1,‘(”,\/2)2“1,):4\]2””02_ Therefore. we re-

erg
subspacef13]. cover the linear growth of the erréwith the correct coeffi-

The generalization of the above results to a Hamiltoniarbiems that describes both regimes upoin Eg. (8).
with a family of independent stochastic processes with zero CoﬁclusionsWe studied the effects of dynamical imper-

mean and finite variances is straightforward. This is the casgctions on a quantum computer model, depending on the

of the Hamiltonian(1), which reads frequency of the external noise. Below a frequency thresh-
old, imperfections can be considered static, although with
H(t) =Hg+ 8 &(t) - Vo + 2] &(t) -V, (19 renormalized parameters, and one observes two different dy-

namical regimes. Above this threshold these regimes become

where HOZZ]‘AOO'(]), (Vo)j:(rij)’ (V)ij:fff?(ff(j), and unresplved. These results are independent of the form and

& =(£&); and &=(&;(i,j=1,--,n) are independent the size of the quantum computer. They remain valid under
j i ij ijAt v

. ; 0 . : quite general conditions on the system Hamiltonian, allow-
Eérﬁgml/éanables uniformly distributed in the interval ing a more general application of these findings.

. . . . Our results show that it is crucial to optimize the comput-
We can then reinterpret our previous results in the light of;

- , - ng time scale, by choosing it between the two competing
the above theorem, by applying the static redi@lisoutlined types of noise(static and dynamic In turn, this suggests
before Eq.(3) to the (statig evolution with renormalized

- g X strategies to develop general error correcting techniques.
couplings(16) (with »V— 5-V). Thus, independently of the
interaction strength and the correspondent dynamical regime, This work was supported by the European Community
for sufficiently largeN (or small 7=t/N), by expandingd16)  under Contracts IST-SQUBIT, IST-SQUBIT2, and RTN-

to O(1/N), one finds a quadratic decay law Nanoscale Dynamics.
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