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Abstract

We exhibit a specific implementation of the creation of geometrical phase through the state-space evolution generated by
the dynamic quantum Zeno effect. That is, a system is guided through a closed loop in Hilbert space by means a sequence of
closely spaced projections leading to a phase difference with respect to the origina state. Our goal is the proposal of a
specific experimental setup in which this phase could be created and observed. To this end we study the case of neutron
spin, examine the practical aspects of realizing the ‘projections’, and estimate the difference between the idealized
projections and the experimental implementation. © 1999 Elsevier Science B.V. All rights reserved.

PACS: 03.65.Bz; 03.75.Be; 03.75.Dg

1. Introduction

The effect of the observer in quantum mechanics
is perhaps nowhere more dramatic than in the collec-
tion of phenomena loosely (and casually) known as
the ‘quantum Zeno effect’. This was first formulated
by von Neumann [1,2], and is deeply rooted in
fundamental features of the tempora behavior of
quantum systems [3]. During the last decade there
has been much interest in this issue, mainly because
of an idea due to Cook [4], who proposed using
two-level systems to check this effect, and the subse-
guent experiment performed by Itano et al. [5]. New
experiments were proposed, based on the physics of
the simplest of two-level systems. Neutron spin and
photon polarization [6,7].

Most of the referenced papers deal with what
might be called the ‘static’ version of the quantum
Zeno effect. However, the most striking action of the
observer is not only to stop time evolution (e.g., by
repeatedly checking if a system has decayed), but to
guide it. In this article we will be concerned with a
‘dynamical’ version of the phenomenon: we will
show how guiding a system through a closed loop in
its state space (projective Hilbert space) leads to a
geometrical phase [8-12]. This was predicted on
general grounds [13], but here we use a specific
implementation on a spin system [14] and propose a
particular experimental context in which to see this
effect. It is remarkable that the Berry phase that is
discussed below is due to measurements only: no
Hamiltonian is needed.
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2. Forcing the pot to boail

We summarize the main features of the quantum
Zeno effect (QZE). Prepare a quantum system in
some initial state (0). In time dt, by the Schrodi-
nger equation, its phase changes by O(dt) while the
absolute value of its scalar product with the initial
state changes by O(dt?).

The dynamical quantum Zeno effect exploits the
above features and forces the evolution in an arbi-
trary direction by a series of repeated measurements:
Let ¢ evolve with the Hamiltonian H, so that in the
absence of observations its evolution would be (T)
= exp(—iHT)¢/(0) (we take A = 1 throughout). Let
there be a family of states ¢, k=0,1,...,N, such
that ¢, = (0), and such that successive states differ
little from one another (i.e., [{ ¢, 1| P )1 isnearly 1).
Now let 6T=T/N and a T,=Kk4&T project the
evolving wave function on ¢,. Then for sufficiently
large N, ¢(T) = ¢, . [The usual QZE is the specia
case d)k = ¢0(= lﬁ(o))v k]

In the following we consider an experiment in-
volving a neutron spin. It should be clear, however,
that our proposal is valid for any system with the
same two-level structure.

2.1. Evolution with no Hamiltonian

Assume first that there is no Hamiltonian acting
on the system: one can think, for instance, of a
neutron crossing a region where no magnetic field is
present. The time-evolution is due to measurement
only.

The system starts with spin up along the z-axis
and is projected on the family of states

¢kEEXp(_i9k‘T'n)(é)

_ ak
WItthEW, k=0,...,N, (2.1)

where o is the vector of the Pauli matrices and

n=(n,,n,,n,) aunit vector (independent of k).

We assume that the system evolves for atime T
with projections at times T, = k6T (k=1,..., N and

5T =T/N). The fina state is [qﬁo - (é”

|¢I(T)> =|¢N><¢N|¢N—1> e <¢2|¢1><¢1|¢0>

a  a\N
= |¢N>(cosﬁ + mzsmﬁ)
=cosN(E)(1+ in tani)NIqu>
N 7N

N3 exp(ian,)|¢y>
=exp(ian,)exp( —iao - n)ldy). (2.2)

Therefore, as N — o, (T) is an eigenfunction of
the final projection operator Py, with unit norm. If
cos®=n, and a= ,

Y(T) =exp(imcosO)(—1)p,
=exp[ —im(1—cosO)] ¢,
= exp(—i2/2) b, (23)

where (2 is the solid angle subtended by the curve
traced by the spin during its evolution. The factor
exp(—i/2) is a Berry phase and it is due only to
measurements (the Hamiltonian is zero). Notice that
no Berry phase appears in the usua quantum Zeno
context, namely when ¢, o ¢, V k, because in that
cae a=0in(2.2).

To provide experimental implementation of the
mathematical process just described, one could (in
principle) let a neutron spin evolve in a field-free
region of space. With no further tinkering, the spin
state would not change. However, suppose we place
spin filters sequentially projecting the neutron spin
onto the states of Eq. (2.1), for k=0,...,N. Thus
the neutron spin is forced to follow another trajec-
tory in spin space. The essence of the mathematical
demonstration just provided is that while N measure-
ments are performed, the norm of wave function that
is absorbed by the filtersis N- O(1/N?) = O(1/N).
For N — oo, this loss is negligible. Meanwhile, as a
result of these projections, the trgjectory of the spin
(in its space) is a cone whose symmetry axis is n.
By suitably matching the parameters, the spin state
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Fig. 1. @ Spin evolution due to N =5 measurements. b) Solid
angles.

can be forced back to its initial state after time T
[14].

It is interesting to look at the process (2.2) for N
finite. The spin goes back to its initial state after
describing a regular polygon on the Poincaré sphere,
asin Fig. 1a. After N(< «) projectionsthe final state
is

a  _ ay\n
[y (T)) = (COSN + mzsmﬁ)
xexp(—iao-n)ldy). (2.4)
For a= 7 the spin describes a closed path and

T m\N
[y (T)) = (cosﬁ + inzsinﬁ) exp( —im)ldy)

N/2
(cos2 + n2sin —)
N

a
xexp(iNarctan(nZtanN))

xexp(—im)ldg). (2.5)

The first factor in the far r.h.s. accounts for the
probability loss (N is finite and there is no QZE).
We can rewrite (2.5) in the following form:

[y (T)> = pnexp(—iBy)l o), (2.6)
where
N/2
oy = (0052% + nisinzﬁ) : (2.7)
v
By=m7— Narctan(cos@tanﬁ). (2.8)

In the ‘continuous measurement’ limit (QZE), we
have
p= lim py=1,

N—
0
B= lim ﬁN=7T(1—COS@)=E, (2.9)
N— o«

where (2 is the solid angle subtended by the circular
path, viewed at an angle @ (see Fig. 1a). We recover
therefore the result (2.3).

The relation between the solid angle and the
geometrical phase is valid also with a finite number
of polarizers N. Indeed, it is straightforward to show
that the solid angle subtended by an isosceles trian-
gle with vertex angle equal to 2« (Fig. 1b) has the
value
0,,=2a— 2actan(cosBtana). (2.10)

Hence if the polarizers are equally rotated of an
angle 27/N, the spin describes a regular N-sided
polygon, whose solid angle is

aa
Oy =NO,, =27 — 2Narctan(cos@tanﬁ)

=28\, (2.11)
where we used the definition (2.8). This result is of
course in agreement with other analyses [15] based
on the Pancharatnam connection [8].

The above conclusion can be further generalized
to the general case of an arbitrary (not necessarily
regular) polygon. Indeed, if the polarizers are rotated
at (relative) angles a, with n=0,...,N, so that

N

Y 2a,=2m,
n=1
the solid angle is

(2.12)

Oy = Z 0y, =2m—2 Z arctan(cos®tana,,).
= n=1

(2.13)

This is also twice the Berry phase. Notice that if all
a,— 0 as N— o one again obtains the limit (2.3):

0'= lim Q,=27—2 lim Zacos@ 0.

N— o« N—>oc

(2.14)

We emphasi ze that these predictionsfor the N < oo
case are not trivial from the physical point of view.
The above phases are computed by assuming that,
during a ‘projection’ a la von Neumann, the spin
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follows a geodesics on the Poincaré sphere. The
mathematics of the projection has no such assump-
tions. The ‘postulate’s only job is to relate al this
projection formalism to measurements.

2.2. Evolution with a non-zero Hamiltonian

Let us now consider the effect of a non-zero
Hamiltonian
H=po-b, (2.15)
where b= (b,,b,,b,) is a unit vector, in general
different from n. One can think of a neutron spin in
a magnetic field. See Fig. 2.

If the system starts with spin up it would have the
following — undisturbed — evolution:

(1) =exp(—i,uta-b)(é).
Now let the system evolve for atime T with projec-
tions at times T, =koT (k=1,..., N and 8T=

T/N) and Hamiltonian evolution in between. Defin-

ing Py =gy (pol= ((1) 8) the 2 X 2 projection

operator at stage-k is
Pc=1d) (bl =exp(—i0,a-n)Poexp(if o -n)
(2.17)

(2.16)

and the state evolves to

N
. 1
[1[Piep(~insTor- b)]}(o),
(2.18)

where here and in subsequent expressions a time-
ordered product is understood [with earlier times

$(T) =

Z

Y(O)=y(T)

>

y

Fig. 2. Spin evolution with measurements and non-zero Hamilto-
nian.

(lower k) to the right]. Using PZ = P,, Eqg. (2.18)
can be rewritten

¥(T) =exp(—ia(r'n)[k]j[18k}((l)), (2.19)

with

B, = Pyexp(i6 o -n)exp( —iudTo - b)
Xexp(—if,_,0-n)P, (2.20)

(6,=0). The computation of B, requires a bit of
SU(2) manipulation. By using

[0-A,0-B]=2i0-AXB
(o-A)(o-B)(o-A)=2(A-B)o-A

—-(A-A)o-B, (2.22)
valid for c-number A and B, one gets

(2.21)

exp(ifo-n)o-bexp(—ifo-n)=0o-b, (2.23)
with
b(6) =bcos26+n(b-n)(1— cos26)

+b X nsin26, (2.24)

which is the vector b rotated by 26 about the n-axis.
The calculation of B, is now straightforward:

B, = Poexp(i80a - n)exp( —iudTo - b(6,_,))
Po=Py(1+i800-n—iudTa-b(6,))P,
+0(1/N?), (2.25)
where 60 = 6, , — 6, is k-independent. Second or-
der terms in 1/N drop out when the product (2.19)

is computed for N — o, so that
N

N
[1B.= [1Py(1+i800 n—insTe b(6,))P,
k=1 k

I
-

—z

{Po+iPy(860 - n

~
I
[u

—udTo- B(6,))Po)
N ~
- k]:[l Po{l +i[ 86n, — u8Thy( 9k)]}

- poexp{i ¥, (30n, — uTh( eo)}'
k=1

(2.26)

where we have used P,0,P,=Py0,P,=0 and
Py o, Py = P,. The continuum limit can be computed
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by letting the summations in (2.26) become integrals
in dT and d6. Moreover, dT/d6=T/a, which
enables one to change integration variable and get
for the ‘(1,1 component of IT} ,B, (al other
components being zero)

-
exp inzfoade— i,ugfoa[bzcosw

+(b-n)n,(1—cos26) + (bxn),sin26]do

T

] ] sin2a
= exp Inza—lp«g b

22
sin2a
>
1—0052a])

+(b-n)nz(a—

+(bXn), , (2.27)

The final state is an eigenstate of Py, with unit norm,
independent of the Hamiltonian H:

~ T[ sin2a
B R

sin2a
> |
1—0032a])

P(T) =exp

+(b-n)nz(a—
+(bxn),

X exp(ian, —iao - n)(cl)). (2.28)

The first factor in (2.28) is obviously the ‘ dynamical

phase’. Note that up to a phase, (1) isjust ¢,, with
k=tN/T. Therefore

[OT<w(t)|H|¢(t)>dt

T ,a
= — [ {olexp(i60 n)po-b
a’o

Xexp(—ifo-n)lg,»do

sin2a sin2a
=uT b2?+(b~n)nz(l— oa )
1—cos2a
+(bxn)zT}, (2.29)

because the phases drop out in the above sandwich.
It follows that the remaining phase in (2.28), when
the spin goes back to itsinitial state, is the geometri-
cal phase. When a= 7

#(T) = exp( ~i2/2)exp(~iuT(b- )3
(2.30)

where (2 is the solid angle subtended by the curve
traced out by the spin, as in (2.3), and uT(b-n)n,
yields the dynamical phase, as can also be seen by
direct computation of (2.29). We remark that if time
ordered products are looked upon as path integrals
[16], then our above demonstration is effectively a
path integral derivation of the geometrical phase.

A practical implementation of the process just
described would involve an experimental setup simi-
lar to the one described after Eq. (2.3), but with a
magnetic field whose action on the spin is described
by the Hamiltonian (2.15). If the neutron were to
evolve only under the action of the Hamiltonian, its
spin would precess around the magnetic field. How-
ever, the sequence of spin filters, which project the
neutron spin onto the states (2.1), compel the spin to
follow the same trgjectory as in the previous case
[Eg. (2.2)], i.e. a cone whose symmetry axisis n. As
above, the spin acquires a geometrical phase, but
now there is a dynamical phase as well.

2.3. A particular case

It is instructive to look at a particular case of
(2.28)—(2.30). We first note that if w=0 in (2.28)
we recover (2.2). Now let b = n. In this situation the
projectors and the Hamiltonian yield the same trajec-
tory in spin space (although, as will be seen, at
different rates). If u=0 (so that H=0), the spin
evolution is only due to the projectors and the final
result was computed in (2.3)

P(T) =exp(—i£2/2) do.

If, on the other hand, there is a nonvanishing Hamil-
tonian (2.15), but no projectors are present, a cyclic
evolution of the spin is obtained for uT = 7. The
calculation is elementary and yields

P(T) =exp(—im)do.

(2.31)

(2.32)



P. Facchi et al. / Physics Letters A 257 (1999) 232240 237

Table 1
Phases for cyclic spin evolutions
H=0 H=po-b H=po-b
and projections no projections and projections
Pgeom 0/2 0/2 0/2
Payn 0 T—0/2 ©n,
Dot = ‘;bgeom + ‘;bdyn 0/2 w(=uT) 0/2+ uTn,
cyclic evolution cyclic evolution cyclic evolution
due to projections dueto field due to projections

Observe that the dynamical phase in this case is
[uT=a,b=nand a= 7 in Eq. (2.29)]

/OT<w(t)|H|¢(t)>dt= an,=w[1-(1-n,)]

=7—0Q/2. (2.33)
Therefore, the ‘7' phase in (2.32) can be viewed, a
la Aharonov and Anandan [13], as the sum of a
geometrical (£2/2) and adynamical (= — £/2) con-
tribution.
Now let both the Hamiltonian and the projectors
be present. From Eq. (2.30), one gets

W(T) = exp( 1 0/2)exp(~iuTn)[ 1) (230

Notice that the value of w is now arbitrary, so that
wT is not necessarily equal to 7 (the cyclic evolu-
tion of the spin is due to the projectors, not to the
Hamiltonian). When uT < 7, the projections are too
‘fast’ and do not yield (2.32). On the other hand,
when uT > 7r, the projections are too slow and
supply less phase, in comparison with Eq. (2.32).
Only in the case uT = 7 do the projections yield the
right phase in (2.32). Their presence is superfluous
in this case: one would obtain exactly the same
vector and the same phase without them. Our conclu-
sions are summarized in Table 1. In some sense, one
may say that the Hamiltonian dynamics provides a
‘natural clock’ for the phase of the wave function.

3. A gedanken experiment

An experimental implementation with neutrons
would be difficult because it would involve putting a
QZE set-up inside an interferometer in order to
measure phase. We therefore restrict ourselves to a
‘ gedanken experiment’ based on the use of *He as a
neutron polarization filter [17]. It is well known [18]
that Helium 3 is ‘black’ to neutrons but polarized

3He only absorbs one spin state of a neutron beam —
hence acts as a 50% absorber of a beam; the rest of it
emerges fully polarized. In practice an external mag-
netic field is used to maintain the polarization axis of
the 3He. If this external bias field were to be given a
slow twist aong a longitudina axis, the state of
polarization of the *He should follow the direction of
the twist. A neutron beam propagating through a cell
of high-pressure polarized *He along an axis aigned
with the direction of twist will become fully polar-
ized and should develop a Berry phase according to
the argument of the previous section.

From an experimental perspective a significant
problem is that we so far lack a notion of slowness
(as when we speak of ‘slow twist’ of the B field). In
the previous calculation, it is implicitly assumed that
6 changes more slowly than t (time): in other words,
the relaxation processes in the *He are given enough
time (are fast enough) to function as a polarizer. A
full treatment of this problem should therefore de-
scribe the physics of the projection process. We now
tackle this issue and see that the notion of slowness
can be given quantitative meaning in terms of a
condition for adiabaticity.

In practice, the absorption of the non-selected
spin state occurs over a finite distance, of the order
of one or two centimeters. This situation can be
modeled via the following family of effective (non-
hermitian) Hamiltonians:

He= —iVIgd ) (o, (3.2)
where V is area constant and

o =ep(~io,om)( )

with =, k=0,....N. (3.2)

Note that (& l¢ ) =0 [see Eq. (2.1)]. We first
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assume, for simplicity, that no externa (®*He align-
ing) magnetic field is present. We define
P& =l ) (ol

=exp(—if o -n)Ps exp(if o-n);

(Po" =ldg <o ). (33)
Obviously Pt =1—P,, where P, was defined in
(2.17). The evolution engendered by the above
Hamiltonian reads

e M =P+ Pt

—ep(=igom)( 5 OJes(ioen

= Pl/(, (34)
where (inserting #)
e=e v/t (3.5)

is a parameter yielding an estimate of the efficiency
of the polarizer. One can estimate a minimal value
for V: for a thermal neutron (speed v = 2000m/s)
and an absorption length # on the order of 1cm for
the wrong-spin component, one gets 7=//v = 5us
and one obtains a good polarizer for V> #h /7=
1072°J =10 "meV.

The evolution can be computed by using the
technique of Section 2 (P, = P, + €*/?P4"):

W (T) = exp( —iao- n) Pg)[r[s'k}((l)), (36)
k=1

with T= Nr and
N N
[18,=TT1/Ps(1+i860n)/Py
k=1 k=1
N
= [T Py+i/Py (860 -n)/Py
k=1

N
1+i86n, i80eY?n_
PN _ , (3.7
i60e¥/?n, e(1—id0n,)
where n,=n,+in,. The evauation of the above

matrix product when N — % is lengthy but straight-
forward. One gets

Y'(T) =exp( —iao - n).Ap,, (3.8)
where
e—ab
=3
Ach(ad) + (b+in,)sh(ad) in_sh(ad)
in, sh(ad) Ach(ad) — (b+in,)sh(ad) )’

(3.9)

with

b=ﬁ, A= b2+2ibnz—l. (310)

We are interested in the limit of large b= VT /2af.
Indeed, larger values of b correspond to more ideal
polarizers. In fact y =V /A represents the absorption
rate of the wrong component of the spin, while
w=2a/T isthe angular velocity of precession (the
spin describes an angle of 2a in time T). The
parameter b= y/w is the ratio of these two quanti-
ties. Large values of b imply
V>, (3.11)
i.e.,, an absorption rate much larger than the velocity
of precession. In other words, the spin rotation must
be sufficiently slow to allow the absorption of the
wrong component of the spin. By introducing the
neutron speed v, one can define the absorption length
/=v/vy=vh/V and the length covered by the neu-
tron while rotating for 1 rad, L=v/w=0vT/2a.
Hence (3.11) reads
L>/.
These are al conditions of adiabaticity.
In the large b limit, using the definition (3.10),
(3.9) becomes

(3.12)

e (A4 btin, in_
B 2A in+ A_b_inz
+ O(e 22
1-n2  n_
J— I_
= exp(ian,) n, 2b 2b
i— 0
'2b
1
+0 F)' (3.13)

Remembering the definition of b in (3.10), one gets

ha®(n2—1)  han_
i

. . VT VT
A#=exp(ian,) han,
i 0
VT
2ah \? .
+0 (W) —exp(ian,) Py,
h Ml 3.14
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The above formula yields the first corrections to an
ideal, purely adiabatic evolution. Basically, the sys-
tem is projected on dlightly different directions,
thereby rotating in spin space. But if the system ‘on
its own’ (i.e, through its dynamics) manages to
rotate significantly between projections, then more
will be absorbed on the next projection and it will
not follow the rotating field, at least not without loss
of probability (or intensity).

It is interesting to note that the same result can be
obtained by considering a continuous version of the
effective Hamiltonian (3.1)

H(t) = —iVP*(t) = —iVUT(t) P4 U(1),
(3.15)

where
a
u(t) =exp(i?t¢r- n)

is a unitary operator (rotation). The state vector ()
satisfies the Schrodinger equation

(3.16)

3,0(t) =H(t) (1), (3.17)
Consider now the following rotated vector:
(1) =U(t)e(t). (3.18)

It is easy to prove that it satisfies the equation
3. (t) = His (1), (319)
where

H=iU(t)U'(t) + U(t)H(t)U(t)

a

= <o n—iVPy (3.20)

is independent of t. One then gets
y () =UT (1)
a -
=exp(—i?t¢r- n)exp(—th)ljf(O),
(3.21)

where
HT= —ao-n—iVIP; = —aM,

M:(nZ n

n, -n,+i2bJ’ (3.22)

b being defined in (3.10). Hence one obtains

exp( —iHT) = exp(iaM ) =.# (3.23)

and (3.21) yields (3.8). Observe that
~ o-n

H= —(,UT - i’}’POL y (324)
from which it is apparent the previous interpretation
of the coefficients w and y.

The above calculation was performed by assum-
ing that no external field is present. However, we do
need an external B field, in order to align *He. Its
effect can be readily taken into account by noticing
that, when the neutron crosses the region containing
polarized 3He, if the conditions for adiabaticity are
satisfied, the neutron spin will always be (almost)
parallel to the direction of *He and therefore to the
direction of the magnetic field. The resulting dynam-
ical phase is therefore trivial to compute and reads
¢ayn = uBT/A. In order to obtain the geometric
phase in a redistic experiment, such a dynamical
phase should be subtracted from the total phase
acquired by the neutron during its interaction with
®He. Incidentally, notice that this is experimentally
feasible: one can take into account the contribution
of alarge dynamical phase due to the magnetic field
and neatly extract a small Berry phase [19]. The
novelty of our proposal consists in the introduction
of polarizing *He to force the neutron spin to follow
a given trajectory is spin space.

An dternative realization relies on a set of dis-
crete *He polarization filters with progressively tilted
polarization axes, as a finite-difference approxima-
tion to the system discussed above. Such a system
would be a neutron analog of a set of polaroid filters
with progressively tilted axes through which a pho-
ton beam propagates with little or no loss (in the
limit of small angles) as proposed by Peres [2].
However, in the case discussed in this Letter, the
axes of the neutron polarizers need not belong to a
single plane and the neutron can acquire a Berry
phase as well as change in polarization direction.

After completion of this paper we learned of
interesting related work by Berry and Klein and by
Pati and Lawande. See Refs. [20,21].
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