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Various physical phenomena are similar to such an extent that their mathemat-
ical description is alike. This elementary truth is demonstrated in many fields
of physical research, and cross-fertilization is a powerful tool of contemporary
physics. Remarkably, quantum mechanics, developed at the beginning of the
20th century, has proven that particles may behave like waves. Electromag-
netic waves associated with the propagation of light can be described by
the wave equation, whereas matter waves, associated with moving particles,
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are governed by Schrodinger wave equation. Therefore, both phenomena can
be treated within a similar optical framework. This is also the case with
neutrons—neutral particles discovered in 1932 by J. Chadwick. Although
their internal structure is complicated, at a first approximation they can be
seen as massive particles, almost noninteracting with their neighborhood at
a distance. Often, the interaction of neutrons with matter can be described
by effectively introducing some phenomenological parameters such as the
indexes of refraction and absorption. This establishes a full analogy with
geometric and wave optics, including polarization effects, provided the spin
of the neutron is not neglected. The area of neutron physics in which such an
“optical” approximation holds is called neutron optics. Concerning imaging
and other precise measurements, neutrons have many advantages over light
quanta—photons. For example, common neutron detectors have very high
intrinsic quantum efficiencies—more than 99%. Moreover, neutrons can be
literally counted one by one, something that is not possible with commercial
single-photon detectors.

Unlike photons or electrons, neutrons interact with matter through all four
basic physical interactions. In particular, they are subject to the strong inter-
action, thus making it possible to distinguish between different isotopes of the
same element. In addition to possessing well-defined particle attributes such
as a nonvanishing mass, “size,” and magnetic moment, neutrons, as quantum
theory predicts, also show wave behavior, governed by their de Broglie wave-
length. For all these reasons, neutrons are suitable tools not only for imaging
and precise measurements, but also for fundamental experiments aimed at
testing the predictions of the quantum theory, such as the wave-particle
duality, the projection postulates, topological phases, and other effects.

Compared with available light sources, neutrons have certain disadvan-
tages. The absence of strong coherent sources of neutrons with intensities
comparable to lasers in optics is the main distinction that should be men-
tioned. Coherent beams are usually generated by spectral filtering of thermal
beams provided by fission reactors. Because intensities of thermal neutron
beams are already rather low, the detected signals typically have a much
worse signal-to-noise ratio than the corresponding optical signals. Therefore
in neutron optics it is particularly important to propose methods capable of
extracting as much information as possible from the detected noisy data.

The purpose of this chapter is twofold. One goal is to present some
minimal theoretical tools necessary for the understanding of the subtle and
fundamental effects associated with neutrons optics and reported in the
recent literature. The second goal is to provide an up-to-date overview
of the neutrons experiments that reveal the quantum mechanical nature of
neutrons. For this reason, several neutron optical measurement techniques are
discussed.
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This chapter is composed of two parts. The first part is addressed to
readers who are not familiar with the subject. Section II reviews some basic
concepts of experimental interferometry, Section III introduces some notions
of neutron optics. The second part is somewhat more specialized and deals
with applications and measurement techniques. Section IV starts with the
simple one-parameter phase measurement. Section V discusses transmission
tomography, and phase tomography (at very low intensities) in the subject of
Section VI. Three-beam interference and which-way information are analyzed
in Section VIIL. Section VIII introduces a novel tomographic method based
on the quantum Zeno effect, and Section IX investigates the sensitivity to
fluctuation and the onset to decoherence. Section X concludes with a sophisti-
cated full-quantum tomographic method for neutron wave packets. Section XI
provides a summary. Throughout the entire chapter, attention is directed to the
wave-particle duality and decoherence in neutron interferometry, as well as to
the utilization of quantum effects for improving classical imaging.

II. NEUTRON OPTICS: EXPERIMENTAL INTERFEROMETRY

Neutron optics covers a wide field of applications in which the full exploita-
tion of beam coherence yields the high sensitivity of neutron optical devices.
The following sections present a short introduction to neutron optics, focusing
on thermal neutron beams and perfect-crystal interferometry. In addition,
we include some preparatory details and close with an outlook of further
improvements and future applications of this extremely sensitive technique.

A. Beam Preparation

Neutron beams are primarily produced in fission processes with an initial
energy of approximately 2 MeV. Then they are successively slowed down
by collision processes, and after about 20 collisions the neutrons reach
thermal energies (*25 meV, which corresponds to a de Broglie wavelength
of A = 0.18 nm). Then, on average, they experience another 500 collisions
until they leave the moderator and enter the beam guide. The energy distri-
bution can be assumed to be Maxwellian until wavelength selection by the
crystals. After Bragg reflection at the perfect-crystal monochromator, and
Laue transmissions through the interferometer lamellas, the remaining quasi-
monochromatic momentum distribution can be approximated by an overlap
of Gaussian distributions with dk/k < 1072 (Rauch and Werner, 2000a;
Baron, 2005).
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B. Neutron Interactions in Matter and Fields

The dominant neutron interaction is the short-range (R < 2 fm) nuclear
interaction, contributions of long-range interactions with nonmagnetic sub-
stances below 1%. In interferometry experiments, only forward scattering is
relevant, which directly relates to the bound coherent scattering length b,. It is
a phenomenological constant that defines the strength of the optical potential,

_  27h?
V = ~—b.N, (H
m

with N the number of nuclei per unit volume. Most isotopes have a positive
coherent scattering length, but some are known with a negative b,. It is defined
positive for repulsive optical potentials V > 0, with an index of refraction
smaller than unity, and negative for weak attractive potentials without bound
states. An important quantity in neutron optics is the index of refraction for
neutrons moving through a mean optical potential V (Goldberger and Seitz,

1947):
vV /\2N o, UrNA
= J1l—==1-"— , )
E 2,\

where E and A denote the neutron energy and wavelength, which are associ-
2mE

Fl—z’
the sum of the absorption (o,) and scattering (o) cross sections. The elements
04, 05, and b, are well known for most isotopes (Sears, 1992). The reaction
cross section determines the beam attenuation, which can be approximated
by an exponential law, if it is assumed that a quasi-monochromatic well-
collimated beam with intensity /o transmits a thin target of thickness d,

=1 exp(— Z(Gﬂ\’),d). (3)

The product X; = (0, N); is called the macroscopic cross section of the i-th
isotope. According to the definition of the index of refraction, the phase shift
is a complex quantity:

ated by the dispersion relation k = and o, is the reaction cross section,

@ =k(1—-n)d=o +id;, “)

but for thermal neutrons (E > V) and low-absorbing materials, the imaginary
phase is negligible. In a mixture of m isotopes the total phase shift is as
follows:

Prue = ZA(Nb Yid. )

i=1
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Due to their magnetic moment, neutrons experience a strong interaction
in magnetic fields (Badurek er al., 1976) which, for magnetic materials, is
comparable with the nuclear interaction:

o 2M§

) = -, =
mag 2 * hv

Here o represents the Pauli spin vector, e the spin rotation vector around
the orientation of magnetic induction B, v the neutron velocity, and p the
magnetic neutron moment. A neutron moving in an electric field E along path
[ experiences a weak effective magnetic field, which creates a small phase
shift (Cimmino et al., 1989):

Bds. (6)

2p
b = +—EI. )
hic
The area A, enclosed by an interferometer loop, relates directly to the
sensitivity for gravity investigations (Colella et al., 1975):
2emimg,g AN |
Dgray = _lh—zg sing, 3
where m; and mg are the neutron inertial and gravitational mass and ¢
describes the crystal tilt from the horizontal plane.

C. Perfect-Crystal Neutron Interferometry

In a monolithic perfect-crystal interferometer, invented by Bonse and Hart
(1965) for X-rays, and by Rauch et al. (1974) for neutrons, all silicon nuclei
are perfectly aligned, leading to a well-defined potential in the whole interfer-
ometer (Windisch and Becker, 1990). The world’s largest interferometer has
the following characteristics (Zawisky et al., 2002):

Path length 21 cm
Macroscopic beam separation 5cm-15 cm
Number of unit cells 42 x 10%

The dynamic diffraction of thermal neutrons in a perfect-crystal lattice is
described within the Schrédinger theory (Sears, 1989; Rauch and Petraschek,
1976, 1978; Petraschek and Rauch, 1976), where the neutron energy E is a
constant of motion:

h2
[m—A+W0—4W®=Q ®)
2m
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The lattice potential is given in first Born approximation by the Fermi
pseudo-potential where r;’s describe the positions of the scattering nuclei:

21 h?b,

V(r) = S(r—rj). 10
== Z (r—r;)) (10)

J

In the reciprocal lattice, the potential reads:

2m b, : .

\% — —iq-R; —iq-a; , 11
(@) mNZVZZe Xije (11)

J

where R; denotes the position of cell j, a; the position of nucleus i in the
cell, N, the number of unit cells, and V, the volume of the unit cell. The
first lattice factor is nonvanishing only if the momentum transfer q equals a
reciprocal lattice vector G = hg| + kg, + (g3 with Miller indexes (hkl)

1 .
~ D e Ri=1 ifq=G (= 0otherwise). (12)
Z .
J

The second factor in Eq. (11) is called a structure factor because it depends
on the crystal structure:

F=Ze_q'a[=8 forh+k+1=0,4,812,.... (13)

1

The resulting optical potential is very weak compared to the neutron energy.
For example,

v
V(220) =5.2 x 1078 eV, T =2x 1076, (14)

If a crystal plate is rotated around so that the incident angle y approaches
the Bragg angle 0p, then two diffracted beams ¥ p are observed (Figure 1).
The partial states ¥; o(g) and ¥y, o(m) in the interferometer are determined
by the transmission and reflection amplitudes ¢, r and the accumulated phases
(Figure 2):

.2y _
Wo =W o+ W0 = (trr +rro)e 20 )y (15)

Coefficients r(y), ¢(y) are in general different and depend on the deviation
parameter, y o (fp — y), of the incoming beam from the Bragg condition;
Ap is a characteristic parameter in crystal diffraction. The ideal crystal
interferometer has to fulfill several criteria (Bauspiess et al., 1978) as follow:

o Distortion-free crystal with constant lattice spacing
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FIGURE 1. Generation of two coherent beams in a perfect-crystal beamsplitter when y
approaches the Bragg angle (Laue transmission).
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FIGURE 2. A one-loop perfect-crystal interferometer of the Mach—Zehnder type.

e ds = dy1 = dyr = da (S = Splitter, M = Mirror, A = Analyzer),
ZA —IM2 =M1 —ZS

Geometric tolerances <3 um

Position stability of the lattice about 0.01 nm; vibration level below 10™* g
Angular stability of the Bragg axis: 8y < 1073 arc sec
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e Tilt of the lattice planes against each other: §p < 1073 arc sec
e Thermal gradients in the crystal of 107> K/cm cause a lattice inclination of
5 x 10™* arc sec/cm.

In an ideal interferometer, after superposition of two monochromatic states
with phase difference @ = ®; — &y, the mean count number at output O
reads:

No(@) = Ni|trr(e7'® + e 1) > = No(1 + cos ®). (16)

An auxiliary phase shifter creates discrete phase shifts A;, j = 1,...,m
(m > 2), which serve as reference for the measurement of the unknown
phase @. The neutron number oscillates between the two output ports O and
H as a function of A;. In practice, perfect interference cannot be realized;
thus, the model must be extended by an additional parameter, the visibility V:

Njo(®)=No[l+ Vocos(Aj + ®)], (17)
Nju(®)=Ny[l — Vhcos(A; + ®)], (18)
NoVo =NgVpg. (19)

The reference phases can continuously be tuned by the rotation angle ¢ of the
phase shifter. In the standard configuration, the phase plate is placed in both
beams, nearly parallel to the interferometer lamellas:
1 1
cos(fp —¢ej)  cos(Op +¢€;)

Aj(gj) = —ANbca’ps< ) Zconst x j, (20)

where d),; denotes the thickness of the phase shifter. Typical intensities

at the Vienna Atominstitute interferometer instrument are No ~ 1 n/s
and Ny ~ 2n/s. The typical “passage time” through the interferometer
is 0.05 ms, thus, in a mechanical picture, one would conclude that the
interferometer is 99.99% of the measurement time “empty.” But in the case
of a stationary source |¥|> > 0 is always fulfilled and the interferometer
is never empty. Vy is approximately half of Vo because ¥; g and ¥;; y
have different amplitudes. The visibility is affected by several factors, for
example: temperature gradients in the crystal lattice, geometric errors, crystal
strains, lattice vibrations, gradients in the lattice spacing caused by impurities,
dephasing due to thickness (§d) and density (§ N) fluctuations in the sample
and due to the spectral width (§k), or caused by an asymmetric intensity
(N; # Njj) of the interfering beams. When considering only the beam and
interferometer characteristics, and by assuming Gaussian approximations for
the different effects, the following expression is obtained for the visibility
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(Rauch and Werner, 2000a):

v S o [ AI0 T (3) 4 () ) ey
N+ Nyp 2 do No :

where A describes the translation of one partial wave relative to the other
(e.g., induced by a phase shifter with thickness d):
Nb.A2d

A=—"—. (22)

D. Interferometer Design

Since 1974 several types of silicon perfect-crystal interferometers have been
prepared at the Vienna Atominstitute, the first interferometers cut from 3-
inch ingots (effective diameter 79 mm), but now 4-inch (effective 102 mm)
dislocation-free ingots are available, which allowed for the preparation of
larger crystals (Figure 3). A new 45-degree design, fabricated from a [100]-
oriented 4-inch ingot, offers several advantages compared to conventional
geometries (Zawisky et al., 2002). Here the beams are traveling parallel to the
crystal axis, which enables the preparation of arbitrarily large interferometers.
The usable beam separation is larger than in previous designs, which offers
ample interferometer space and increases its sensitivity. The manufacturing
of perfect-crystal neutron interferometers requires several crucial preparatory
measures as below:

e Selecting the ingot. Dislocation-free float-zone ingots with high purity,
diameters between 10 and 20 cm, and lengths up to 100 cm, are actually
available in interferometer quality. Silicon crystallizes in the cubic diamond
lattice. Point-defects cannot be avoided during crystal growth, but they
cause only small intrinsic dislocation loops without far-reaching lattice
distortions.

e Lattice orientation with a Laue back-reflection camera (accuracy ~ 0.1
degree) or an X-ray diffractometer (&2 arc sec).

e Cutting the lamellas. The interferometer lamellas are cut with a bronze-
bonded diamond cutting wheel of a surface-grinding machine.

e Etching. The damaged crystal surface must be removed by etching in a
HF : HNOj3 acid bath. An originally flat surface will show a slight
convex shape after etching, which causes small phase variations across the
illuminated crystal areas.

e Geometric measuring. The overall geometry must be determined at a
coordinate measuring machine with a geometric resolution of about 0.1 pm
(Figure 4). If the geometry does not fulfill the quality standards, the
lamellas must be recut in a fine-grinding procedure.
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FIGURE 3. Set of perfect-crystal neutron interferometers prepared at the Vienna Atominstitute.
The interferometers in the last row are machined from a 3-inch ingot; the others from 4-inch ingots.
The two interferometers in front represent the new generation of large-scale 45-degree interferometers
with greatly increased space and sensitivity. Photograph by Erwin Seidel.

FIGURE 4. Geometric measuring on a large three-plate neutron interferometer.
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E. Fundamental Aspects of Neutron Interferometry

We want to emphasize certain aspects of perfect-crystal neutron interferome-
try, which are to some extent exceptional in matter-wave interferometry and/or
in light optics:

Neutrons possess well-defined elementary particle properties (quark struc-
ture with internal charge distribution and magnetic moment, mass, spin,
limited lifetime), but as long as interference is observed, they must be
described as “nonlocal” states (wave property).

The phase space density, the mean occupation number in the coherence
volume, is of the order of 10~!8 at the Vienna Atominstitute. The typical
coherence volume in neutron interferometry is 5 nm (vertical) x 10 nm
(longitudinal) x 5000 nm (transversal), where the large transverse coher-
ence length, parallel to the reciprocal lattice vector, is caused by strong
wavelength filtering in the crystal lamellas. Quantum statistical effects such
as anti-bunching are completely negligible at such low occupation numbers.
This supports the interpretation of our experiments as one-particle self-
interference.

The independent stochastic detection events have been proven to follow
Poissonian statistics.

The very low energy of thermal neutrons enables a completely nonrelativis-
tic description using Schrodinger’s equation.

Perfect-crystal beamsplitters create large angular beam separations. The
coherence is conserved over macroscopic distances in the monolithic
interferometer. The ratio of maximum beam separation (15 cm) and de
Broglie wavelength actually reaches 10°.

In the pure-silicon crystal and phase shifters, no essential absorption
exists. The neutron numbers are conserved because the neutron decay of
about 15 min is completely negligible compared to the “passage time”
of 50 ps. Thus, the neutron’s evolution through the interferometer is
determined by controlled unitary transformations until detection behind the
interferometer.

Single neutrons are detectable with probability better than 0.98 using gas
detectors. Because the typical count rates are of the order of a few neutrons
per second, and considering the detector’s time resolution of a few mi-
croseconds, the probability that two neutrons are detected simultaneously
is practically zero.

All phase shifts can smoothly and to arbitrary accuracy be varied by rotating
a phase-shifter plate. The phase shifter(s), when operating in the near-
parallel position in both beams, introduce no essential dephasing to the
experiments.
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e Neutrons can easily be shielded from parasitic environmental interactions.
e With a two-loop interferometer, the wave-particle duality can simultane-
ously be measured without disturbing the neutron state.

E. Further Instrumental Improvements and Future Topics in Perfect-Crystal
Neutron Interferometry

Since the prices for hyperpure distortion-free silicon ingots are quite rea-
sonable (=1 Eur/g), this allows considerable freedom to optimally adapt the
interferometer geometry to the experimental demands. Recently a thin-plate
interferometer optimized for neutron phase-contrast tomography has been
machined with only 0.5 mm thick lamellas, and even thinner interferometer
plates can be prepared if a tomographic resolution beyond 50 pm is desired.
Here not the crystal preparation but the weak intensity of coherent neutron
beams is the ultimate limiting factor for the full exploitation of interferometric
phase tomography (Zawisky et al., 2004a).

Another main topic of the Vienna institute is the preparation of large-scale
interferometers to extend the applications of thermal neutron interferometry.
With the new 45-degree design (Figure 5), we can use much larger samples
and more beam manipulators, and the dramatically increased interferometer
area makes the instrument extremely sensitive to gravitational effects on
single-quantum states. Due to the large beam separation the neutrons will be
the lightest quantum objects for fundamental studies on gravitation-induced
phases.

The recently developed large-scale two-loop interferometer offers com-
pletely new measurement techniques, for example, the simultaneous and

1 Loop

2 Beam
interference

2 Loop

3 Beam
interference

3 Loop

4 Beam
interference

FIGURE 5. Design of n-loop neutron interferometers using 45-degree beamsplitters.
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distortion-free measurement of duality (Zawisky, 2004), the complete mea-
surement of the coherence features of the neutron beam, and geometric phase
experiments (Rauch, 2004). Interestingly, the interference of nonlocal neutron
states can also be used in the two-loop interferometer for the measurement
of the neutron’s intrinsic charge radius, which certainly is a pure-particle
property (loffe and Vrana, 2002). In principle, the number of loops can further
be extended be inserting more beamsplitters (see Figure 5), thereby increasing
the interfering intensity and the phase sensitivity.

III. NEUTRON OPTICS: BASIC CONCEPTS
A. Wave Equations and Quantization

Let us briefly review some basic notions of quantum mechanics, which
provides the mathematical basis for neutron optics. The time evolution of the
wave function ¥ (x) for a free massive particle is governed by the Schrodinger
equation:

'ha 1) = th t 23
i (1) = =5 AP (x. D). 23)

The modulus of the wave function | (X, )|> represents the probability
density of finding a particle at a given position and time, and A is the
Laplace operator. Analogously, in scalar wave optics, the propagating wave
is described by the complex amplitude U (X, ¢) and the wave equation

1 9?
AU(X,t)—?ﬁU(X,t):O, (24)

where ¢ denotes the phase speed of the light. Resorting to the Fourier
components in the time domain, both equations will yield the same generic
form of Helmholtz wave equation:

AA(X) + K> A(x) = 0, (25)
where the signal A equals ¥ or U, respectively. In the former case of matter
waves, k> = 2’"7“’ whereas in the latter case of light field, k> = %2 This

establishes the full analogy between matter-wave and light optics. In the case
of propagation of a signal in a medium with refractive index n, the wave vector
k? should be replaced by k*n?.

Besides the Schrodinger picture based on the wave functions (quantum
states), quantum mechanics allows formulation of all laws in a fashion closely
related to classical mechanics. Such framework is known as the Heisenberg
picture. All the measurable quantities are associated with operators, namely,



ADVANCED NEUTRON IMAGING AND SENSING 67

the Hamiltonian H , which represents energy, and the position X and impulse
p operators. In the language of quantum mechanics, the wave equations can
be treated as an operator form of the nonrelativistic dispersion relation for

2
massive particles E = f—m and (relativistic) massless photons £ = pc, under

the correspondence £ — ih% and p - p = —ihV. The operators X and p
are well defined in nonrelativistic quantum mechanics describing the position
and impulse of the particle, whose state is described by the wave function.
Particularly, the case of free propagation is governed by the same law as
classical mechanics since

5 5 t
£(0) = e 3t = 0)e M = £(0) + — p(0). (26)
m

Notice, however, that such a formulation is merely formal for light, since due
to the special theory of relativity the particles moving with the speed of light
cannot be localized.

The formalism of quantum mechanics is very efficient for description of
interference experiments. The notion of wave is associated with complex
amplitude-carrying information about phase. For this purpose, the non-
Hermitian annihilation operator may be introduced as the combination of
position and impulse operators:

a=x+ip. 27
Indeed, the eigenvectors of this operator are known as coherent states, the
closest analogues of classical states with well-defined amplitude and phase.
Although the annihilation operator may always be defined according to the
formal relation in Eq. (27), the physical meaning differs for light and neutrons.
In the former case, operators X and p usually represent the quadrature
components of the electromagnetic field. The corresponding annihilation
operator a defines the operator of photon number 7 = a'a, whose eigenvalues
can be literally interpreted as the number of photons. This is, of course,
a conserved quantity in the free electromagnetic field. The situation is
diametrically different in the case of the neutron, where the operators x, p
represent the position and impulse of the neutron as a moving particle. In that
case, the operator a'a does not represent the number operator (there is always
one neutron interfering with itself), but rather an operator characterizing the
space distribution of neutron in the phase space. This description is analogous
to, for example, the mode index of Laguerre—Gauss beams in optics.

B. Phase Measurements

Phases associated with wave aspect of neutrons play an important role in
neutron optics. Phase measurements are among the most sensitive measure-
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ments available. Many other physical quantities, for example, the distance
of propagation, strength of magnetic fields, or density, alter phase and can
thus be accurately determined by measuring the phase. This can be done by
placing the sample in one arm of an interferometer whose other arm serves as
a reference. The difference of phases accumulated in the two arms can then
be inferred from the intensity changes at the interferometer outputs. Since
neutron interferometers are typically operated with low-intensity beams,
attention must be paid to the correct interpretation of the phase at a single-
particle level. Let us first recall the concept of quantum phase in optics.

1. Quantum Phase

The phase of optical fields plays a decisive role in many optical phenomena,
particularly in interference and diffraction of light. However, when the
intensity of light is decreased at a quantum level, the classical notion of
phase loses its meaning and complications occur in order to provide a sensible
definition at a quantum level.

The phase operator ¢ has been introduced by Dirac (see Heitler, 1954,
Akhiezer and Berestetsky, 1965) in analogy to the classical procedure of
introducing the phase by the polar decomposition of the annihilation operator,

a=exp(ig)i'/?, (28)
where 7 is the number operator a'a. Assuming that ¢ may be a Hermitian
operator (then exp(i¢@) is unitary) and using the commutation rules

[exp(i9), ii] = exp(i@),

and

~

[@v ﬁ] = _l 1 P}
it follows that
. . 1
((Aan)*)(A9)?) = e (29)

However, a difficulty arises from the fact that the operator U= exp(ip) is not
unitary, since UnU " = A + 1. To avoid this difficulty, Susskind and Glogower
defined, see example review (Carruthers and Nieto, 1968), two Hermitian
operators:

o~ 1 o~ -~ ~ A~

C=2(U+U") and §=_(U-U") (30)
fulfilling the commutation rules

[C,4i]l=iS and [S,4]=—iC, (31)
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and consequently

((Aa)H)(a0)?) = =,

4
((an)?)(a%5)%) = g (32)
It is more convenient to define
U=G+1)""%a, U'=afa+1n7"2 (33)
for which
uUt =1, Utu =1 -0)0], (34)

which means that the unitary properties can be satisfied by antinormal
ordering of the operators U and U™.

From Eq. (32), a more general uncertainty relation is obtained (see the
review in Luks and Pefinova, 1994 and references therein):

[((Aﬁ)z) + l}v > L (35)
4|1 — 4
where the phase dispersion equals V = D? = 1 — (6 — (:S:)2 =
1 — |(exp(i @))|2. It should be noted that the inequality in Eq. (35) is more
fundamental and replaces the inequality in Eq. (29), which is valid in most
practical cases, but not without exception. Inequality in Eq. (35) has important
physical consequences. The operator representation of physical quantities in
quantum theory necessary for the discussion of spontaneous effects leads
to the occurrence of (1) statistics and (2) inequalities leading to the com-
plementarity of the observation of ideal-wave or particle phenomena as
exhibitions of wave-particle duality, experimentally well verified for photons,
electrons, neutrons, atoms, and ions. Consider an interferometer with single
photons where one cannot distinguish to which arm of the interferometer a
photon belongs. Then there is uncertainty in the photon number n and ideal
interference fringes (with maximum visibility) may be observed if the phase
is quite certain (i.e., V = 0), which means that the phase has a certain value ¢
with the phase probability distribution P(¢) = 8(¢ — ¢). Therefore Eq. (35)
demands ((An)?) — oo. Next, we try to determine during the measurement
to which arm the photon belongs. If we are successful, we specify the Fock
state |1) and ((An)2) = 0. In this case, Eq. (35) leads to V > 1 and hence
V =1, P(p) = 1/2m, that is, the phase is quite uncertain over the interval
(0,27) and (exp(i¢)) = 0. Thus, at the level of ideal phenomena, either
particle or wave effects can be observed, as stated by the complementarity
principle. However, if one is not in the idealized situation, both particle
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and wave aspects appear simultaneously (Mizobuchi and Ohtaké, 1992;
Ghose et al., 1992).

The normalized minimum uncertainty states for the photon numbers and
phase were constructed by Jackiw (1968) as a solution of the eigenvalue
problem

(AR +iEAS)|Y) = 0, (36)

with £ being a complex parameter. Then the phase operator can be defined
with the help of the relation

&Plig) = exp(ig) Y _ In)(n + 1, (37)
n=0

where ¢ is obtained as a dominant phase arg(€xp(i¢)). The Jackiw states are
also called the crescent states as they have the uncertainty (noise) area in the
form of a crescent.

Pegg and Barnett (1989) succeeded in constructing a Hermitian phase
operator defined in a finite dimensional Hilbert space,

1 S
6, 8) = —— exp(in6,,)|n), 38
|m>m§)p< )l (38)
where
b =0+2r——=. m=01...s (39)

with 6 being a chosen value, which uses Loudon’s (1973) definition of phase
states. These states form an orthogonal system, and a phase operator is defined
as

A
Py =Y OnlOm.)(Om. 5. (40)
m=0
Any phase function can be represented by the operator
N
Mo ="y M©On)|On, 5)(On, s]. (41)
m=0

The values of the phase available by measurements are then obtained in the
limit s — oo.
A phase distribution P (¢) is obtained as

B | N
P(p) = lim ——— (O, 5|0|Om, )
s—o0 27
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With the help of P(¢) we can define the phase variance <(A<3@)2> = (592) -
(@g)2, (DF) = [J77 4" P(g) dg, fulfilling the uncertainty relation:

: (43)

Bl —

((AR)*)(A®g)?) =

The use of the definition in Eq. (33) makes it possible to represent any function
M (¢) by the operator

! 0421
M=o [ Mol (44)
T
6
where the phase states
o0
= Z exp(ing)|n) (45)
n=0

fulfill an approximate orthogonal relation

1
Y=nmdp—¢ . 46
{ple") = md(p ¢)+1_exp[_i(¢_(p/)] (46)

The cosine and sine phase operators in Eq. (30) can then be written as

! 0+2m
c= o / cos(@) o) (ol do.
JT
0
0+2m (47)
§=2 /sin(<p)|<p><<p|d¢,
JT
0

with the phase distribution being

P(p) = (plolp)/2m. (48)

It seems that different quantum phase concepts are related to different
experimental arrangements used for phase measurements. Recently Noh
et al. (1992a, 1992b) suggested an operational definition of quantum phase.
Superposing two beams at a beamsplitter (see Figure 6), the integrated
intensities measured by the photodetectors placed at the two outputs of a
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Input 1
| A/4 plate
=1

. Output 4 (6)

Input 2 N < D

D4 (De)
Output 3 (5)

[]

FIGURE 6. A scheme of measurements of the sine and cosine of the phase difference of two
beams.

beamsplitter in terms of input signals read
1 .
W34 = E[Wl + W2 F2Wizsin(@)], (49)

when ¢ = ¢ — ¢2 is the difference of the phases of the single beams if a
symmetric beam splitter is adopted. Performing a second measurement with
a A/4-plate, as indicated in Figure 6, we can similarly determine

1
Ws.6 = E[Wl + Wy £2Wpp COS(¢)]. (50)

Here
t+T t+T
Wi =1 / I;(ydt’ and Wi =1 /[Il(t/)lz(t/)]l/zdt/. (51)
t t

The mutual quantity W12 need not be directly measured. Squaring and adding
Egs. (49) and (50), we obtain for W7,

AWE, = (Wy — W3)* + (We — Ws)?, (52)

and so the sine and cosine of the phase difference of both beams can be
operationally defined and measured as follows:

sin(¢) = Wa = W
T [(Wa — W3)2 + (We — Ws)2]1/2” 53
Ws — We (53)
cos(¢) =

[(Ws — W3)2 + (W — Ws)2]1/2"

Merging the two setups of Figure 6 to an eight-port interferometer, S = sin(¢)
and C = cos(¢) can be measured simultaneously. Noh et al. (1992a, 1992b)
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also analyzed higher-order moments (S”) and (C") and demonstrated that the
S- and C-operators corresponding to the sine and cosine of the quantum-
phase difference between the two input beams in terms of the annihilation
and creation operators read

S= iKz[exp(i(p)&gle — exp(—igo)&;ffzz], 54)
C = Ki[explip)ala + exp(—ip)a ],

where K| and K, are constants and ¢ is the phase difference. It holds that
[C,S] = 2iK1K2(ia — A1) and [S, 71 + A2l = [C, A1 + Az = 0. If
one of the beams were strong enough to be described classically, then the
operators in Eq. (54) would have been reduced to a definition of quadratures.
Such quadrature measurement is called optical homodyne measurement.
Let us mention in passing that its generalization to neutron optics is not
straightforward due to the fermionic nature of neutrons (see also Section X.A)
and thus the lack of strong coherent local oscillators for neutrons. Formulas
in Eq. (54) are then operator generalizations of quadrature measurements.
The theoretical as well as experimental analysis of Noh et al. (1993) and
Fougeres et al. (1994a, 1994b) demonstrated that there is agreement with
the conclusion that the phase difference is well defined only when there is
a large uncertainty in photon numbers. Conversely, the moments of the sine
and cosine operators correspond to completely uncertain phase difference
when the photon numbers are certain. Furthermore, these authors found that
when the fluctuations of phases and amplitudes are correlated, it is difficult to
measure the phase difference of weak quantum as well as classical fields. It
seems that a phase operator should be introduced with a definite measurement
scheme in mind. This leads to different phase operators. As a universal
principle, the correspondence with classical phase concept in the limit of high
intensities should be followed since in classical optics the phase is uniquely
defined. Conversely, it is impossible to find a unique quantum phase operator
representing the phase or phase difference between two quantum fields.

2. Phase Estimation

As discussed previously, phase measurements differ from conventional mea-
surements such as the measurements of position and momentum in that a
Hermitian phase operator does not exist in the canonical sense (Nieto, 1993;
Royer, 1996; Lynch, 1995; Pefinova and Luks, 1998; Luis and Sdnchez-Soto,
2000). However, this does not mean that the phase of weak signals cannot be
described and measured.

From the point of view of estimation theory (Helstrom, 1976), the phase is
a c-number parameter appearing in the transformation describing the action
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of a phase shifter on the input state |¥)
@ @)= e"Tw), (55)

where 7 = a'a is the photon-number operator. Any phase measurement is
completely described by the statistics p(6|6) of its outcomes 6 conditioned
to the true value 6 of the phase shift. Basically, two strategies may arise. One
can either look for the ideal measurement (Yurke et al., 1986; Lane et al.,
1993; Holland and Burnett, 1993; Sanders and Milburn, 1995; Chizhov et al.,
1998), that is, a measurement that is optimal from some point of view, or, if
a measurement cannot be chosen at our will, one should choose the statistical
data analysis extracting as much information as possible about the parameter
of interest.

It is known from Helstrom (1976) that the statistics of the ideal phase
measurement are just the statistics of the Susskind—Glogower phase operator
(Susskind and Glogower, 1964):

p010) = %|(9|‘1’(9))|2, Uie) = "10) (56)
[see definitions in Egs. (33), (45), and (48)]. Although the eigenstates of these
operators are not orthogonal, [Eq. (46)], they are overcomplete, and thus
generate a probability operator valued measure (POVM), I1(0) = {|6)(6]},
f |0)(0|d6 = 1, that defines the ideal phase measurement in the sense of
generalized measurements.

Although there are ways to simulate the measurement in Eq. (56) by means
of post selection (Barnett and Pegg, 1996), this does not seem to be a practical
solution. What is usually measured in practice is energy, and interferometers
are used to transform phase shifts into variations of output energies. Due to
the statistical nature of quantum theory, the resulting relationship between the
measured quantities and the parameters of interest is not deterministic. Such
an indirect inference is usually called quantum estimation, and its scheme is
the following:

p | True phase | )Gy —~ D)
— [Estimation | (D).

An interferometer provides the input—output transformation of the known
initial state p. The subsequent measurement yields phase-sensitive data D
that are processed to yield a phase estimate 6. The true phase shift 6 inside
the interferometer, which is a nonfluctuating parameter controlled by the
experimentalist, should carefully be distinguished from the phase estimate 6,
which is generally a random quantity.




ADVANCED NEUTRON IMAGING AND SENSING 75

The performance of the estimation depends on the choice of the estimator.
The point estimators of phase corresponding to the maximum-likelihood
(ML) estimation are used here (Lane et al., 1993; Hradil, 1997). In accordance
with the ML approach (Kendall and Stuart, 1961), the sought-after phase shift
is given by the value that maximizes the likelihood function

L = p@D) x p(D|h). (57)

C. Transmission Tomography

Classical tomography is a nondestructive method of determining the dis-
tribution of the index of absorption (or scattering cross section) within an
object. From the theoretical point of view, tomography is a typical indirect
measurement. The absorption in a given point inside the object is not directly
accessible to measurement but can be estimated from the “shadows” cast by
the object when it is illuminated from many different angles. In contrast to
phase measurement, tomography represents a high-dimensional estimation
problem.

The basic notions and the geometry of typical tomographic experiments
are as follows. Let us assume that the sample is illuminated by parallel
monochromatic pencil beams (Figure 7). The data consist of the number
of particles counted behind the sample for M different scans—each scan is
characterized by its horizontal position / and rotation angle ¢. Alternatively,
a broad illuminating beam combined with a position-sensitive detector, for
instance; a charged coupled device (CCD) camera placed behind the sample
can be used. In that case, i labels the pixels of the camera. For the sake of
simplicity, a collective index j = {&, ¢} will be used hereafter to label the
scans.

FIGURE 7.  Geometry of the experimental setup and the definition of coefficients c;;.
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The mean number 7 of particles (intensity) registered in the j-th scan is
given by the exponential attenuation law

nj =ﬁoexp<—/u(x,y)dsj~>, (58)

where n¢ is the intensity of the incoming beam, w(x, y) is the absorption
index of the sample in position {x, y}, and the integration is the path
integration along the pencil beam. This exponential attenuation law is a good
approximation if multiple scattering can be neglected. The beam-hardening
artifacts would also modify Eq. (58), but this complication can be avoided
experimentally by the use of monochromatic beams (Dubus et al., 2002).

Using neutron beams instead of X-ray photons has several advantages.
Neutrons interact with the matter in a different way than photons do. Since
neutrons are subject to the strong interaction, they can “see” and distinguish
among different isotopes of the same element. Neutrons can also penetrate
deeper into some materials such as metal surfaces, and many other objects
such as those made from plastic materials often show considerably more detail
when illuminated with neutrons rather than photons.

The absorption index for thermal neutron beams can be expressed as

w(x, y) = Zp(x, YIA/ A, (39)

where X, is the macroscopic thermal cross section, A is the wavelength
of the illuminating beam, and A; =~ 0.18 nm is the thermal wavelength.
Equation (59) presumes a linear dependence of the involved cross sections
on A (Sears, 1989).

For practical purposes, it is convenient to discretize Eq. (58) as follows:

N
r_z.,- = r_l() exp(— Z [L,'C[j) . (60)
i=0

The sample is now represented by a two-dimensional (2D) mesh whose
cells are assumed to be homogeneous. The variables are now N numbers p;
specifying absorption in those elementary cells. The matrix {c;;} defines the
overlaps of beams and cells (see Figure 7).

Standard Filtered Back-Projection Method

For now let us ignore the statistics of the illuminating beam and assume that
the counted numbers of particles {n;} do not fluctuate, n; = n;, V. Taking
the logarithms of both sides of Eq. (60), one obtains a system of M linear
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algebraic equations for the N unknown absorption coefficients ;:

fi=pj, j=1....M, 61)
where we defined
0
fi=—In é, pi=Y_ Micij. (62)

Notice that the problem in Eq. (61) is a linear and positive (LinPos) problem.
Its linearity is obvious, and positivity follows from the fact that no new
particles are created in the sample. The importance of LinPos problems in
experimental physics stems from the fact that many physical quantities, for
instance mass, density, intensity, and so on, are intrinsically positive quantities
that very often depend on the parameters of interest in a linear way. Linearized
absorption tomography [Eq. (61)] is just one typical example taken from this
wide family of problems including, among others, the measurement of focal
intensity distribution for polarized input fields (Quabis et al., 2001), or the
characterization of the photon content of light pulses (Reha&ek er al., 2003)
as some examples.

The standard reconstruction method in present computed tomographic (CT)
imaging is the filtered back-projection (FBP) algorithm based on the inverse
Radon transformation (Kak and Slaney, 1987),

pocy frg, (63)
%

where x denotes a discrete convolution of data with the regularized singular
transformation kernel (Janicke and Wilkens, 1995). Technically, this trans-
formation is implemented using fast Fourier transformation routines, which
makes the reconstruction process fast and highly efficient. However, by the
linearity of Eq. (63), the positivity of the reconstructed absorption index is
not guaranteed when the data are noisy. A negative value of a reconstructed
w; would then suggest that particles were being created in the i-th cell in
the course of the experiment, which would obviously be a wrong conjecture.
Another problem arises when there are only a few projections available. In
such a case, the summation in Eq. (63) no longer approximates the original
integral and unwanted artifacts appear in the reconstructions. As will be
shown later in Section V, all of these problems can be addressed by estimation
theory.

D. Phase-Contrast Tomography

The absorption tomography discussed previously provides only partial infor-
mation about the object of interest. The optical properties of objects are more
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thoroughly described by the distribution of the complex index of refraction
n(x,y), whose real part is simply called index of refraction, and whose
imaginary part, called index of absorption, are responsible for the phase shift
and absorption of the illuminating beam, respectively. It is clear that some
kind of interferometric technique is needed for the 3D visualization of the
index of refraction. In a sense, phase tomography is a combination of both the
previously mentioned inverse problems—the phase estimation introduced in
Section III.B and tomographic imaging discussed in Section III.C.

As already mentioned, in neutron optics one is often confronted with low
count numbers because the phase space density of present neutron beams is
30 orders of magnitude below that of laser beams and many orders below
that of X-ray sources. This intensity problem has dramatically arisen in
the recently developed neutron phase-contrast tomography (nPCT) (Zawisky
et al., 2004a; Dubus et al., 2005). PCT was originally invented in X-ray
tomography with much higher coherent intensities available (Momose, 1995;
Momose et al., 1996; Beckmann et al., 1997). In order to use nPCT it is
necessary to develop an advanced reconstruction technique, which can be
applied to very low count numbers. For instance, the typical count number in
present nPCT setups is around 200 n/2 h in a 50 x 50 um? pixel. In principle,
focusing techniques (e.g., asymmetric Bragg reflections), can enhance the
density of quasi-monochromatic neutron beams, but such hypothetic gains are
used to reduce the measurement time rather than to raise the count numbers.
Therefore the low numbers of detected neutrons must be accepted as the
limiting factor of nPCT.

A strong motivation for developing nPCT is its extreme sensitivity, which is
at least three orders of magnitude higher than in the conventional absorption
tomography. The nPCT method proves its strength in extreme applications
where other methods fail: (1) 3D investigation of non- or weak-absorbing
substances, (2) analysis of isotope distributions with high sensitivity, (3) in-
vestigation of magnetic domains in bulk materials (Badurek et al., 2000a),
and (4) energy and momentum exchange free analysis of magnetic (axial) and
scalar potentials.

The experimental setup of nPCT is schematically shown in Figure 8. The
sample is inserted into one arm of a perfect-crystal interferometer while an
object of known characteristics placed in the other arm compensates the large
overall phase shift introduced by the thick sample. The output beam is then
registered by a CCD camera with the spatial resolution of 50 pm. As with
absorption tomography, the sample is rotated around the vertical axes and up
to several tens of scans are registered. The angle ¢ together with the position &
of a CCD pixel specify the path of the particles registered by that pixel through
the sample (see Figure 7). For the sake of brevity, they are represented by a
single collective index j.
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FIGURE 8. Scheme of an nPCT experiment.

To derive an unambiguous value of the reconstructed phase, a set of auxil-
iary phases §;, controlled by the experimenter, is needed for the estimation.
They are provided by an auxiliary phase shifter (see Figure 8), and the
resulting interferograms are simply called scans or phase projections (Rauch
and Werner, 2000a). In nPCT their number should be chosen as low as
possible to minimize the measurement time. As in transmission tomography,
a correct statistical treatment of an nPCT experiment is crucial for obtaining
good reconstructions. This is discussed in Section VI.

E. Wave Particle Duality

The concept of duality is an advancement of that of complementarity, first
introduced by Bohr (1983) in his famous series of Gedankenexperiments.
Bohrt’s original double-slit Gedankenexperiment was completely based on
the Heisenberg uncertainty relation. It demonstrates that the access to path
information requires the detection of momentum transfer, which necessarily
destroys the visibility of interference fringes. Since those early years, path
information has been interpreted as a “particle property,” whereas the visi-
bility is viewed as a “wave property.” In the previous sections, the visibility
was introduced as a quality parameter of the instrumental performance and
the purity of the quantum state, but visibility can additionally be affected
by which-way information. Duality goes beyond the Heisenberg uncertainty
relations because the access to path information does not necessarily require
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energy and/or momentum transfer. According to the duality principle, the
more information one gains about the neutron’s path, the less the visibility
of interference. Let us start with a simple one-loop interferometer. As soon
as some knowledge exists that the detected neutrons preferably stem either
from path I or II, the two quantum alternatives become partly distinguishable,
and interference is partly destroyed. Visibility (V') and Predictability (P) are
therefore dual features and obey a duality relation (Englert, 1996; Scully et
al., 1991):

I —1Ipy
P=|——=|=|w —wyl, (64)
Iy + 1y
2./
wy + wyy
P2+ Vvr<l. (66)

A strict duality (P = 0 if V = 1 and vice versa) is only fulfilled in the ideal
interferometer where V; = 1. From Eq. (65) it is obvious that not the which-
way knowledge itself, but the asymmetry of which-way probabilities, w; #
wyyp, is sufficient to affect visibility. An interesting extension of these ideas,
together with a proposal that leads to a saturation of the inequality in Eq. (66),
is detailed in Jakob and Bergou (2003), where other quantum features of the
interfering system are also considered.

A simple example of how to access path information is outlined in Figure 9.
The use of a partial absorber with transmission probability 0 < a < 1
allows a smooth manipulation of the neutrons’ which-way information and
their duality properties. This simple arrangement demonstrates that quantum
objects simultaneously assume both duality features, accessible in neutron in-
terferometry experiments (Summhammer et al., 1987; Rauch et al., 1990). But
here the duality is measured via energy-momentum exchange because some
neutrons will be absorbed. A more sophisticated example of “interaction-free”
duality measurements is presented in Section VII.

F. Interaction-Free Measurement

The idea of interaction-free measurement was proposed by Elitzur and
Vaidman (1993) several years ago. Previous work by Renninger (1960) and
Dicke (1981, 1986) is relevant. The former discussed a situation in which
a detector does not detect anything, yet there is a change in the state of
the measured system. Such a situation is now known as a “negative result
measurement.” The latter looked at a similar situation and focused on the
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(b)

Path I Path 11

Absorber

FIGURE 9. Accessing path information by inserting a partial absorber in path I (a). The
visibility can be smoothly tuned by changing the transmission probability a: V = % V;. In the ideal
case V; = 1, it follows P2 + V2 = 1 (b). Even in the case of large path information, a remarkable
visibility can be maintained.

peculiar fact that although no interaction seemingly takes place, the wave
function and the physical features of the system are different after a negative
result measurement. This has observable consequences.

Elitzur and Vaidman (1993) showed that the existence of an absorbing
object can be inferred without seemingly interacting with the probe particle.
We refer again to the Mach—Zehnder interferometer in Figure 9. Assume that
the transmission and reflection coefficients of the two beamsplitters are 1/2,
and no phase shifters or absorber are present, so that a neutron incident in state
Y; exits from the lower port (ordinary beam O) in state o, with probability 1.
However, if an absorber is placed in one of the two (say the left) paths,
there is a 25% probability that the neutron will exit from the right lower port
(extraordinary beam H). This reveals the presence of the absorbing object even
though the probe particle is not absorbed (hence, the idea of “interaction-free
measurement”). An interesting account of this phenomenon is provided by
Hafner and Summhammer (1997). We notice that an “interaction” does take
place (so the term “interaction-free” is somewhat misleading), as a quantum
system is indivisible and one of its branch waves is affected by the absorber.

The efficiency of the above-mentioned scheme is rather low, because there
is a 50% probability that the probe particle will be absorbed. However, the
performance can be dramatically increased by making use of the so-called
quantum Zeno effect, which is discussed in depth in the following subsection.
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In principle, by making use of the quantum Zeno effect, the efficiency of an
interaction-free measurement can be made arbitrarily close to unity (Peres,
1980; Pascazio et al., 1993). This was shown experimentally a few years later
(Kwiat er al., 1995). We will scrutinize this and related ideas in Section VIII.

G. Quantum Zeno Effect

Frequent measurements can slow the time evolution of a quantum system,
hindering transitions to states different from the measured one (Misra and
Sudarshan, 1977; Pascazio et al., 1993; Nakazato et al., 1996; Home and
Whitaker, 1997; Facchi and Pascazio, 2001). This is, in a few words, the
quantum Zeno effect (QZE), which has been experimentally tested both on
oscillating systems (Cook, 1988; Itano et al., 1990, 1991; Nagels et al., 1997;
Balzer et al., 2000; Toschek and Wunderlich, 2001; Wunderlich et al., 2001;
Petrosky et al., 1990, 1991; Peres and Ron, 1990; Inagaki et al., 1992;
Blanchard and Jadczyk, 1993; Altenmiiller and Schenzle, 1994; Pascazio and
Namiki, 1994; Berry, 1995; Luis and Pefina, 1996; Beige and Hegerfeldt,
1996; Schulman, 1998; Thun and Pefina, 1998; Facchi et al., 2001b; Rehacek
et al., 2000a) and unstable ones (Wilkinson et al., 1997; Fischer et al.,
2001). The same physical effects can be obtained by very strongly coupling
the system to an external apparatus, whose action can be viewed as a
“measurement” of some sort. However, here follow the usual approach to
QZE, which uses “pulsed” observations of the quantum state (Figure 10).
Let H be the total Hamiltonian of the quantum system and v its initial
state. The survival amplitude and probability of the system in state |1g) are

0 T 0.4 0.8 t

FIGURE 10. Quantum Zeno effect due to frequent measurements. The dashed line is the
survival probability without measurements; the solid line represents the survival probability with
measurements. (Time 7 in arbitrary units.)
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expressed as

A1) = (Yolth) = <wo|e*"ff|wo>, and (67)
P(0) = |[AD|” = [(Wole ™ 1y) |, (68)

respectively. An elementary expansion yields a quadratic behavior at short
times

Pty ~1 =12tk ~e 1%, 1% = (ol H2 o) — (ol HIvo)2. (69)

The quantity 7z is the so-called Zeno time and is the convexity of P(¢) in
the origin. For oscillating systems, 7z yields a good estimate of the short time
evolution. (Warning: For bona fide unstable systems the asymptotic expansion
in Eq. (69) can be valid only for extremely short times, which are generally
much shorter than 7z. In such a case, it is misleading to view the Zeno time as
yielding an accurate estimate of the short time behavior.)

It is often convenient to divide the total Hamiltonian into free and an
interaction parts, Hy and Hf, respectively:

H = Ho+ Hi. (70)
By requiring
Holo) = Eolyo), (Yol Hilyo) =0, (71)
the Zeno time is expressed as
= (ol H{ 1%o) (72)

and depends only on the interaction Hamiltonian. Notice that, even if the
conditions in Eq. (71) do not define a unique splitting [Eq. (70)], the
expression [Eq. (72)] is always valid and depends only on the block off-
diagonal part of the Hamiltonian with respect to the decomposition P+ Q =
1, with P = [y) (¥o.

To determine the QZE, we perform N measurements at short time inter-
vals 7, to check whether the system is still in its initial state. The survival
probability after the measurements is

PM@)y = PN = P@t/N)Y N larg exp( */Nt) N=goy (73

where t = Nt is the total duration of the experiment. The Zeno evolution is
pictorially represented in Figure 10.

The QZE is a direct consequence of the Schrodinger equation, which yields
quadratic behavior of the survival probability at short times: in a short time
8t ~ 1/N, the phase of the wave function evolves like O(67), while the
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FIGURE 11. Short-time evolution of phase and probability.

probability changes by O(872), so that

PM @y~ [1—o(1/N)]¥ =501, (74)
This is sketched in Figure 11 and is a very general feature of the Schrodinger
equation. In fact, many other fundamental physical equations share the same
property.

New phenomena occur when one considers unstable systems. In particu-
lar, other regimes become possible, in which measurement accelerates the
dynamic evolution, giving rise to an inverse QZE (Lane, 1983; Schieve et
al., 1989; Facchi and Pascazio, 2000; Elattari and Gurvitz, 2000; Kofman
and Kurizki, 2000; Luis and Sdnchez-Soto, 1998:; Rehacek et al., 2000b;
Facchi et al., 2001c; Koshino and Shimizu, 2003). This is not discussed in
detail here; we mention only a few important facts. Equation (73) can be
rewritten as

P™M(1) = exp(N log P (1)) = exp(—etr(1)1), (75)
by introducing the effective decay rate
1
Yeit(T) = =z log P (7). (76)

For instance, for times t such that the quadratic behavior in Eq. (69) is valid
with good approximation [but see the “warning” after Eq. (69)], one easily
checks that

Yeir(v) ~ t/t5 (T — 0) (77)

is a linear function of . If it is possible to find a finite time t* such that

Yert(TF) =y, (78)
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then, by performing measurements at time intervals 7*, the system decays
according to its “natural” lifetime, as if no measurements were performed.
However, in general, when measurements are performed at generic time inter-
vals 7, the effective decay rate yef(7) is derived. Under general hypotheses,
if T = 11 < ¥, one obtains QZE; conversely, if T = 7, > 7%, one obtains an
inverse Zeno effect.

The recent interest on the QZE and its inverse are due to the possibility
of controlling and eventually partially suppressing decoherence (Facchi et
al., 2005). These applications can be relevant, for example, in quantum
information and macroscopic quantum phenomena.

H. Wigner Function

The Wigner quasi-distribution (function) W(«) is defined in terms of the
coherent states as the complex Fourier transformation of the symmetrically
ordered quantum characteristic function C(8) = Tr{0D(B)}, where D(8) =
exp(Ba’ — B*a) is the displacement operator expressed in terms of boson
annihilation and creation operators @ and 4, respectively, and p is the density
matrix:

1
W = f C(B) exp(ap* — a*B) d*B. (79)

where the integration is taken over the whole complex plane §.
By defining the quadrature operators

aexp(—if) + a' exp(i0) 56) aexp(—if) — a' exp(i0)
p = 9

o — ’
*6) 2 2

(80)
where 6 represents an angle of the coherent local oscillator, we can write the
Wigner function in terms of the quadratures as

1
Wx, p) = - /(x +x'|plx — x") exp(—2ipx") dx’. (81)

If a quantum state is pure and described by the wave function i, we obtain
the following:

W(x, p) = % / Y (x + x )Y (x — x") exp(—2ipx)dx’'. (82)

The Wigner function is bounded, compared to, for example, the Glauber—
Sudarshan quasi-distribution; however, it may take on negative values, ex-
pressing the quantum behavior of physical systems.
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L. Nonclassical States of Neutrons

The Wigner function can be regarded as a quantum generalization of the
Louisville distribution function of a classical ensemble. As in classical
mechanics, the marginal integrals of the Wigner function yield the probability
densities of position and momentum:

/ W(x, p)dx = P(p). f W, p)dp = P().  (83)
Clearly,

/W(x, pdxdp=Tr p=1. (84)

Quantum states can be divided into two groups. Some states have nonnegative
Wigner functions. In this case, the state of the quantum system is fully
specified by the joint probability distribution W (x, p), which also provides
its realistic hidden variable model. Such states are said to be semi-classical.
The second group consists of states whose Wigner functions exhibit negative
regions. Here the probabilistic interpretation of Wigner function fails and
consequently a nonclassical behavior might be observed.
A simple example of a semi-classical state is a Gaussian wave packet,

1 (x —x0)* .
P(x) = Qns)/A exp[—T + lPOX:|, (85)

where § is proportional to the uncertainty in position. Its Wigner function is
positive and has a Gaussian expression

(x — x0)?
282

(see Figure 12(a)). Note that Gaussian states minimize the Heisenberg un-
certainty product Ax Ap. From this point of view, they represent the closest
quantum approximation of a classical center-of-mass motion.

Interesting examples of nonclassical states can be obtained by superposing
two spatially separated Gaussian states,

1
W p) =~ exp[— } exp[-28%(p — po)’]  (86)

¥ (x) e—(x—A)2/482 +e—(x+A)2/482. (87)

These states can be obtained by splitting and then recombining a neutron wave
packet in an interferometer or a polarized neutron wave packet in a magnetic
field (Badurek et al., 2000b). The corresponding Wigner function is readily
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FIGURE 12. Wigner representation of a Gaussian state (a) and superposition of two spatially
separated Gaussian states (b); xg = po = 0and § = 1/4, A = 2 in arbitrary units.

computed:
+ exp(—%)
+ 26XP<-%> cos(2kA):|. (88)

Notice that, for A # 0, it is not normalized to unity (some neutrons end up in
other output channels) and that for A = 0 one recovers Eq. (86).

States with large separations A >> § are often called Schrodinger cat states,
despite the complexity of the one-particle system here it is obviously far
below that of the systems Schrédinger had in mind. The Wigner function of
a cat state is shown in Figure 12(b). The strong oscillations in momentum,
which are a sign of the nonclassical interference of the spatially separated
wave packets, are clearly seen between the two Gaussian lobes representing
the individual components of Eq. (87). The significant negative parts of the
Wigner function also manifest the nonclassical nature of the cat state. The
preparation of cat states in neutron optics is provided by the possibility
of using large phase shifts in neutron interferometers. Wave packets taking
the longer path can be delayed with respect to the other component to
such an extent that, at the output, the two components no longer overlap.
The interference fringes observable for small shifts A disappear—they are
coherently replaced by a nonclassical interference in momentum distribution.
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J. Quantum State Tomography

Tomography is an advanced technique, which helps visualize the cross-
sectional images of 3D objects by measuring their projections. Today it is used
routinely in medicine in X-ray or nuclear magnetic resonance (NMR) imaging
methods. The mathematical background of this sophisticated technique is
given by the Radon theorem, showing the unique relationship between
the volume and its projections—shadows. This technique may be further
generalized and adopted for the reconstruction of more abstract objects such
as the Wigner function and so on.

Let us briefly explain the main features of standard Radon transformation in
the 2D case. Assume a generic distribution f(x, y) in the plane, which should
be reconstructed by using the projections along the parallel lines in the fixed
coordinate system. Using the parametrization of the lines

xcosf 4+ ysinf —t =0, (89)

they all have the normal vector (cos 9, sin#). The parameter ¢ determines the
distance between the line and origin of the coordinate system. The projection
along the line is simply given by

g(t,0)= / / dxdyf(x,y)d(xcosf + ysinfd —t). (90)

—00 —00

The integration over the Dirac delta function may be performed using a
suitable substitution yielding the explicit form of Radon transformation for
the projections

o
g(t,0)= / f(tcos® —usinf, tsinb + ucosb)du. 91)
—00

The image reconstruction from the projections may be formulated as the
inverse Radon transformation. This can be easily achieved by Fourier trans-
formation. Elementary calculations show the relationship between the 1D
Fourier transformation of the measured projection and 2D Fourier transfor-
mation of the object

Gy(&) = F(EcosO, Esind). (92)
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Here the Fourier images are defined as

o0

Gy(§) = / g(s, 0)exp[—2mi&s]ds,
—0o0
o oo (93)

F(fer fy) = / / dx dy exp[—2mi(fox + fy))]
—00 —00
The inverse Radon transformation then reads
oo T X
ree) = [ [ [ dsasisidoge. erricEieseneisnet oy
0 0 —o0

Notice that the reconstructed image is fully determined by the measured
projections for all angles 8 € (0, ). Although the reconstruction procedure
is simple, the kernel of the integral transformation is strongly singular. This
causes various artifacts if the reconstruction is applied to realistic data. This
problem will be treated from the statistical point of view in Section X.

Let us show how the Radon transformation manifests itself in the quantum
domain. The analogy between the classical and quantum Radon transforma-
tion may be easily established for the detection of quadrature operator rotated
by an angle 6 and Wigner function,

w(x, 0) = {(xg|plxg) = / W(xcosf —vsinf, xsinf + vcosf) dv. (95)

As follows from quantum mechanics, Wigner function W plays the role of a
2D object, whereas the detected probabilities w represent the corresponding
projections. Notice, however, that the Wigner function may attain negative
values as a signature of the nonclassical behavior of the object; this is to
be contrasted to the classical situation. The explicit form inverse Radon
transformation for Wigner quasi-distribution is

o0 0T

1 . .
W(oer,ai):m/ /fw(x,9)|n|e“7<x—“r°059—“iS‘"9>dxdnde. (96)

—00 —00 ()

IV. TESTING QUANTUM PHASE IN MATTER-WAVE OPTICS

This section shows that the operational phase concepts discussed in Sec-
tion III.LB can naturally be embedded in the general scheme of quantum
estimation theory (Helstrom, 1976; Jones, 1991) as was done by Hradil et al.
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(1996), Zawisky et al. (1998), and Rehdcek ef al. (1999, 2000c). Following
this link, a more general description of phase measurements will be given
yielding measurable improvements on the standard semi-classical theory.

Let us consider a neutron interferometer (or optical Mach—Zehnder in-
terferometer), where the measurement is performed without/with A /4 (v /2)
auxiliary phase shifters. The auxiliary shifter is needed to provide a unique
phase estimate. Such a two-step measurement is equivalent to the eight-port
homodyne detection scheme (Noh et al., 1991) shown in Figure 6 with the
four output channels numbered by indexes 3, 4, 5, and 6, where the numbers
of particles are registered in each run. Assume that these quantities fluctuate
in accordance with some statistics. According to Egs. (49) and (50), the mean
detected numbers of particles (mean intensities) are modulated by a phase
parameter 6

N _ N i}
faa=5(£Veosh).,  fise= (1% Vsinf), 97)

where N is the total intensity and V is the visibility of the interference fringes.
Provided that a particular combination of outputs {n3, na, ns, ne} has been
registered, the phase shift can be inferred.

Now, for a while, assume that the phase-sensitive device operates with a
Gaussian signal with phase-insensitive noise. This is only an approximation
of the real situation, since realistic signals are discrete. Under such an
approximation, the likelihood function corresponding to the detection of given
data is

6

1

,Cocexp{—ﬁ [n; —ﬁ,-]z}. (98)
i=3

Here the variance o2 represents the phase-insensitive noise of each channel.
The sampling of intensities may serve for the estimation of the phase shift and
visibility simultaneously. The likelihood function in Eq. (98) is maximized on
the physically allowed space of parameters V < 1 by the following phase and
visibility:

i0 n3 —ng4 +i(ns — ne)
ol — , 99)
V(3 — ng)? + (ns — ne)?
1% =min<2\/(n3 _n§2+(n5 _n6)2, 1). (100)
i=3Mi

Notice that the prediction of this semi-classical theory [Eq. (99)] coincides
with the operational quantum phase of Eq. (53) introduced by Noh, Fougeres,
and Mandel (NFM) (1993). This means that operational phase concepts can
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be thought of as special cases of ML phase estimation—ML estimation for
Gaussian signals. Such predictions are optimal only for signals represented by
a continuous Gaussian signal with phase-independent and symmetrical noises.
Note that a generalization of this concept to a larger number of detected
auxiliary phase shifts (Walkup and Goodman, 1973) is known as the phase
of the discrete Fourier transformation.

Since realistic signals are discrete, the theory can be refined by considering
the actual statistics of the experiment. This can be demonstrated on Poissonian
signals. These are frequently encountered in laboratories as ideal lasers, or
thermal sources of particles, such as neutron beams. ML estimation based on
the Poissonian likelihood function

L ]_[ ﬁe”” (101)

gives optimum values for the phase shift and visibility

B — -
et — ng —n3 4 in6 ns ’ (102)
V{ng+n3 ne + ns

2 2
V= (”4 ”3> +<”6 ”5) <1, (103)
ng + n3 ne + ns

provided that the estimated visibility in Eq. (103) is smaller than unity. If not,
it is necessary to maximize the likelihood function in Eq. (101) numerically
on the boundary (V = 1) of the physically allowed region of parameters.

Equations (102) and (103) provide a correction of the semi-classical
Gaussian theory with respect to the discrete Poissonian signals. The principle
of inference, together with the two different assumptions about the nature of
the signal, have given rise to two different phase estimates [Eqgs. (99) and
(102)]. One may wonder whether the improvement of phase inference gained
by taking the correct statistics of the experiment into account is worth giving
up the simple NFM formalism and resorting to numerical methods. Could
the optimization of the information yield from the measured data lead to a
significant increase of the accuracy of the phase fitting?

The difference between Egs. (99) and (102) can be tested in a controlled
phase measurement. The phase difference is adjusted to a certain value
and estimated independently using both methods in Egs. (99) and (102) in
repeated experiments. The efficiency of both methods can then be compared.

Of course, some measure of the estimation error is needed for this. The
dispersion defined by the relation

o2 =1—|")) (104)
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is one such reasonable measure. Here, the average is taken over the posterior
phase distribution of the corresponding phase estimator.

The evaluation of the average quadratic cost [Eq. (104)] is not the only
way to compare the efficiencies of different estimation procedures. Another
possibility is to use the rectangular cost function

—1, 16 —46] < A0,

Z 1
0, |0 — 6] > Af. (105)

C@O-0)= {
The averaged rectangular cost (C(6 — 0)) measures how many times the

estimate 6 falls within the chosen window A8 spanning around the true phase
6. The difference

AE =(C(0 = 0))5,, — (CO —0)) (106)

then measures how much the Poissonian prediction is better than the Gaussian
one. If this quantity is found to be positive, the ML estimation is better than
its NFM counterpart.

Although the dispersion [Eq. (104)], and A E cannot be calculated explicitly
for an arbitrary input intensity N, it is possible to analyze the limit cases
(Rehégek er al., 2000c). Obviously, both the predictions in Egs. (99) and (102)
will coincide provided that there is almost no information available in the low-
intensity limit, N — 0. Not so obvious is the fact that both predictions will
also coincide in the high-intensity limit, N >> 1, provided the visibility is low
V — 0. To determine this, let us compare the asymptotic dispersion of the
NFM estimator,

Gauss Poiss

2o Intio( L (107)
O—G ~ N2 3
with the asymptotic expression for the Cramér—Rao lower bound (CRLB) on
the dispersion of any estimator,

) V21— %V‘L sin® 20 V2Nl 0( 1 ) (108)
0, = 7l N2)
CRLB =™ o | _ %VZ sinZ 26 N2

If the visibility is low, both expressions will become identical. Therefore the
semi-classical theory is optimal in this limit case (Walkup and Goodman,
1973).

Asymptotic expressions for various phase estimators in the opposite limit
of high visibility V =~ 1 are given in Table 1. Estimator ML’ is the phase
prediction given by Eq. (102), that is, one accepts the possible unphysical
inferred visibilities V' > 1, and ML is the single-parameter estimation
obtained by setting V = 1 in the likelihood function as shown in Eq. (101)
and maximizing it only with respect to phase.
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TABLE 1
ASYMPTOTIC DISPERSIONS AND OVERALL QUADRATIC COSTS OF VARIOUS PHASE
ESTIMATORS

Estimator o2 c=/ o2db
NFM UN 2m/N
ML/ (1 + cos? 20)/2N %”/N
ML ~(1 +0.5cos? 29) /2N ~3m/N
ML, 1/2N /N
CRLB 1/2N /N

ML/, unconstrained ML estimation; ML, single-parameter ML estimation. For comparison, CRLB
is also shown.

Notice that the uncertainties of all estimators scale as 1/ \/N . This is to
be expected in accordance with the standard quantum limit. However, the
constant of proportionality depends on the estimator used. The accuracy of
phase fitting is improved by taking physical constraints into account.

The single-parameter ML estimator provide the best phase predictions. It
attains the CRLB and hence is optimum. It yields a phase prediction whose
uncertainty is reduced by the factor of +/2, that is, by approximately 30%,
compared with the semi-classical theory. However, estimating phase alone
implicitly presumes good a priori knowledge of the visibility. If the actual
value of the visibility is not known or fluctuates during the experiment, the
single-parameter estimator may lead to biased phase predictions. For large
intensities the bias might completely spoil the estimation (Rehacek er al.,
2000c).

The performance of the semi-classical NFM and ML phase estimators have
been determined in a series of experiments using two principal sources of
particles—beams of thermal neutrons (Rehacek er al., 1999) and laser light
(Rehacek er al., 2000c). The main goal of these experiments was to compare
the optimum phase prediction with the semi-classical theory in the regime
of only a few input particles. As a side result, the theoretical asymptotic
uncertainties given in Table 1 were tested experimentally.

The dispersions [Eq. (104)] of the NFM (or equivalently Gaussian) and
ML phase estimators found in experiments with light are shown in Figure 13.
The true phase was fixed at 6 = /3. The number of detected quadruples
{ns, ng, ns, neg} used for the calculation of the dispersions varied from 1000
samples for the input mean number of photons N = 60 to more than 100,000
samples for N = 0.1. The error bars corresponding to these finite numbers
of samples are the result of numerical simulation. The visibility during the
experiments was better than 99.6%.



94 REHACEK ET AL.
0,020 049
IE 0o ) 1
0.0154
=
~ [} s L]
s = 02
5 0.010 E s
Ny ¥ (\P u
& s g x
0.1+
0.005 ) 5
% =
0,000 ; . . . . . . . . . . ; .
0 10 20 30 40 50 60 0 10 20 30 40 50 60
N
(a) (b)

FIGURE 13. The experimentally observed absolute (a) and relative (b) difference between the
dispersions of the Noh et al. (1993) and ML estimators as a function of the input mean number of
photons N for fixed true phase § = /3. Error bars corresponding to 68% confidence intervals are
also shown.

The ML estimator was significantly more accurate (by many standard
deviations) than its NFM semi-classical counterpart. This was confirmed
by evaluating the difference of the rectangular costs [Eq. (106)] (see Fig-
ure 14(a)). Here, the chosen input total energy roughly fits the maximum,
N = 7.5, of the curve seen in Figure 13.

A significant difference between the effectiveness of semi-classical and
optimal treatments is apparent in Figure 14. The optimal treatment provides
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FIGURE 14. Experimentally obtained AE (squares) compared to theoretical values (circles).
(a) Experiment with photons, N = 10 photons. The visibility was better than 99.5%; error bars
correspond to 7500 measured samples. (b) Experiment with neutrons. The mean number of N = 8.54
incoming neutrons was asymmetrically split between the ordinary (N, = 2.21) and extraordinary
(Nj, = 6.33) channels. The average visibility was about 31%; error bars correspond to 690 registered
samples.
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FIGURE 15. Asymptotic dispersions of the semi-classical Noh er al. (1993) estimator; theory
(solid line) and experimentally obtained values (squares). Asymptotic dispersions of the unconstrained
ML estimator; theory (dashed line) and experimentally obtained values (triangles). Experimentally
obtained dispersions of the ML estimation on the physical space of parameters (circles). The
corresponding input mean number of photons and the estimated visibility were N = 160 and
V = 99.2%, respectively.

an improvement in estimation procedure, and the difference is more than 10
standard deviations beyond the statistical error. High stability and visibility of
interference fringes in the optical interferometer along with a high repetition
rate of pulsed lasers made the improvement of the semi-classical phase
prediction more evident than in a similar comparison that had been done with
thermal neutrons (Rehacek ez al., 1999) (see the Figure 14(b)).

An experimental comparison of three different phase estimations—NFM,
ML/, and ML estimators—in the asymptotic regime is shown in Figure 15.
The experiment was done with photons. For comparison, the theoretical val-
ues of dispersions given in Table 1 are also shown. Several important conclu-
sions can be drawn from Figure 15. (1) The uncertainty of the constrained ML
estimation is definitely below the uncertainty of the unconstrained estimation
in agreement with theory presented in Table 1. It means that insisting on the
physical constraints (here the nonnegativity of the intensity) is important not
only for the sake of interpretation, but it also makes the estimation more
efficient. Of course, both ML estimations beat the phase resolution of the
semi-classical NFM theory. (2) The observed values of dispersions exhibit
a systematic error. The additional noise above the theoretical uncertainty is
caused by inherent phase fluctuations in the experimental setup. Hence, our
statistically motivated evaluation of experimental data also can be used for
inferring the amount of fluctuations providing an independent and nontrivial
calibration of the interferometer.
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V. NEUTRON TRANSMISSION TOMOGRAPHY

Tomography is a very efficient imaging method with many applications.
This subsection demonstrates how the standard inversion based on Radon
transformation reviewed in Section III.J can be improved by means of ML
estimation.

FBP gives satisfactory results in applications where (1) the intensity of the
illuminating beam is so large that its statistics can safely be ignored, and (2)
the sample can be scanned over the entire 180-degree angular interval in small
steps. These two conditions are usually met in X-ray medical CT imaging.

Unfortunately, FBP fails in case of missing projections and/or if strong
statistical fluctuations of the counting numbers are present in the small
detector pixels. The latter situation occurs (e.g., in neutron tomography;
Schillinger et al., 1998, 2000; Koerner et al., 2001; McMahon et al., 2001), if
monochromatic neutron beams are applied in order to avoid beam artifacts
(Dubus et al., 2002) or at the investigation of strong absorbing materials
(Zawisky et al., 2004b). Because present neutron sources are thermal in
nature, they generate weak beams. Particles that have passed through the
studied object are counted one by one and their statistical fluctuations have
strong influence on the reconstructed images.

The case of missing projections or incomplete data sets is another important
issue. If technical problems arise during the tomographic scan, FBP algorithm
requires repeating the whole measurement. Partial or incomplete data cannot
be inverted using this method. Sometimes it may be necessary to keep the
sample in a cryostat during the measurement. The construction of such a
cryostat may not allow turning it upside down, so part of the measured angles
may be missing, or there may not be enough space to rotate the sample in the
full 180-degree interval. This was investigated in the past in detail by means of
algebraic reconstruction techniques (Treimer et al., 1991; MaaB et al., 1992;
Treimer and Feye-Treimer, 1998).

A. Advanced Statistical Inversion

The ML reconstruction method described in this section can improve several
tomographic applications in neutron optics that in many cases are limited by
the weak intensity and the poor detector resolution (Allman et al., 2000;
Bonse et al., 1991). Generally, it achieves better reconstruction results or
reduces the scanning time in neutron optics and in medical and biological
CT imaging.

The above-mentioned drawbacks of the FBP algorithm can be avoided if the
problem in Eq. (61) is solved in the sense of ML on the space of physically
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allowed absorption coefficients. In this approach, the data f and the prediction
of the theory p are considered as two probability distributions. One looks for
absorption coefficients {u;} minimizing the Kullback—Leibler “distance”

D, p) = Zf, 2L f (109)
J

between the data f and theory p. Here, more care is needed since p and f
are generally not normalized to unity. The minimum of the Kullback—Leibler
distance corresponds to the maximum of the likelihood functional (Kendall

and Stuart, 1961)
L= ( ) , (110)
l_[ Zk Pk

that quantifies the likelihood of the given distribution {u;} in view of the
registered data. We seek the maximum-likely distribution of the absorption
indexes. A convenient way to find it is the expectation—maximization (EM)
iterative algorithm (Dempster et al., 1977; Vardi and Lee, 1993):

ILn-H :R(ILn)'ILn, (111)
where
R = ficij ’ (112)
X cii 5 P
and p° is some initial strictly positive distribution [L >0,i=1,...,N.

A nice feature of EM algorithm is that its convergence is guaranteed for any
input data f; (Shepp and Vardi, 1982). For this reason, it became a valuable
tool in many inverse problems that can be reduced to the form of Eq. (61) (e.g.,
in positron emission tomography (Shepp and Vardi, 1982; Vardi et al., 1985;
Mair et al., 1996)). The original derivation of EM algorithm is based on
alternating projections on specially chosen convex sets of vectors. However,
one could directly use the calculus of variations to derive the necessary
condition for the extreme of the functional Eq. (110). Iterating these, one
eventually arrives at the EM algorithm again. An advantage of this alternative
derivation is that it can also be applied to more realistic physical models of
the actual absorption experiment. One such possible generalization is shown
in the next section.

B. Tomography with Poissonian Neutron Beams

Real signals are not composed of a sharp number of particles. For instance,
two kinds of signals often used in experiments—beams of thermal neu-
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trons and laser light—both exhibit Poissonian fluctuations of the number
of particles. Monochromatic neutron beams also are correctly described by
the Poissonian statistics if the detected count events occur in a mutually
independent manner (Rauch et al., 1990). The knowledge of the true character
of the signal illuminating the sample is a useful piece of prior information,
which can be use for improving the performance of the tomographic imaging.

Because the Poissonian character of the signal is preserved during the
attenuation, the counted numbers of particles behind the sample are random
Poissonian variables. The corresponding likelihood functional is

il

C:Hﬁe . (113)
This is the joint probability of counting {r ;} particles. Their mean values {7}
obey the exponential law [Eq. (58)] as before. They depend on the absorption
in the sample { ;} that is to be inferred from the data. The necessary condition
for the maximum of the likelihood in Eq. (113) can be derived using the
calculus of variations. The extremal equation can be shown to have the same
vector form as the extremal equation of the LinPos problem [Eq. (111)] with
the vector R replaced by

Poiss )
Rl( 01§§0n) = —— C[j exp(— I’Li/ci/j)' (114)
5 ey 2P~ 2

When the input intensity 7¢ is not known, it should be estimated, too:
I’_l() = Zn/‘ / Zexp(—ch;,-). (115)
J Jj i

As seen, the Poissonian tomography is intrinsically a nonlinear problem.
This has serious consequences for the convergence properties of the iterative
algorithm [Eqs. (111) and (114)]. Instead of converging to a stationary point,
it might end up in oscillations. Typically, such convergence problems arise in
the presence of very noisy data. When this happens, it is necessary to decrease
the size of the iteration step as follows: R; — R¥,i =1,...,M,0 <a < L.
Of course, any solution to the regularized problem is also a solution to the
original problem.

C. Comparison with Standard Methods

In real experiments, many factors could influence the quality of the measured
data and therefore also the result of the tomography. Misalignments present
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FIGURE 16. The object.

in the experimental setup, instability of the illuminating beam, white spots,
and damaged detector pixels can be such factors, to name a few. To avoid this
problem, let us first show a few simulations. The data were generated on a
computer from the artificial object shown in Figure 16. It is a circle composed
of a homogeneous material with many small round holes drilled through it.
One additional rectangular piece of material was removed from the circle to
make it less symmetric. The absorption index of the material was chosen in
such a way that the maximum attenuation along a beam was close to 50% of
the input intensity.

In the simulations, the object was subject to five different experiments.
Their parameters are summarized in Table 2. The first four experiments (a—d)
correspond to the ideal situation of a very high beam intensity where the
Poissonian detection noise can safely be ignored. The last reconstruction
simulates more realistic conditions with 2000 counts per pixel in the open
beam. Notice that a relatively small number of rotations is chosen for all
five experiments. In this regime the inverse Radon transformation is expected
to yield bad results, and the improvement of the ML tomography on the
standard technique should be most prominent. This regime is also important
from the practical point of view. Doing more rotations implies a longer
measurement time and more radiation absorbed by a sample. The latter may
be an important factor if the imaging of biological samples is considered.

TABLE 2
QUALITY OF THE INPUT DATA*

Reconstruction Angles Pixels Intensity
a 13 161 00

b 19 101 0

c 20 101 [

d 7 301 00

e 15 161 2000

* The last column shows the mean number of counted
particles per pixel in the incident beam.



FIGURE 17. Left panel: IDL reconstructions from the simulated data (for parameters see
Table 2). Right panel: ML reconstructions from the same data; the iterative algorithm Eqs. (111)
and (114) has been used for reconstruction.

Provided the improvement of the reconstruction technique gives comparable
resolution with less data, imaging costs and damage done to a sample due to
radiation might be reduced.

Reconstructions from the simulated data are shown in Figure 17 (Rehacek
et al., 2002). The simulated data were first processed using the IDL imaging
software (Research Systems Inc.), which implements the standard FBP algo-
rithm (inverse Radon transformation) (see the left panel in Figure 17). This
software is one of the industrial standards in computer-assisted tomography.
The same data were then processed using the iterative algorithm based on
the maximization of the Poissonian likelihood function (see the right panel
Figure 17). In the absence of noise (see cases [a]-[d]), the fidelity of a
reconstruction depends on two main factors—the spatial resolution of the
detector, and the number of rotations used. It is apparent from Figure 17 that
the latter factor is the more important of the two. Very small number of angles
cannot be compensated by an increased spatial resolution of the detector (for
example, compare cases (c¢) and (d)), and reconstruction (d) is by far the worst
one. However, ML tomography is much less sensitive to the number of angles
than the standard filtered back-projection. Even the large rectangular hole in
the object is barely perceptible in the IDL reconstruction (d) in Figure 17,
whereas it shows nicely in the ML reconstruction from the same data. ML
reconstructions also are superior to the standard ones in cases (a)—(c); notice
that the ML reconstruction (c) that is based on as few as 20 different angles is
nearly perfect.

Benefits of ML tomography are fully revealed when the detected data
are noisy (case (e) in Table 2). Standard filtered back-projection applied
to noisy data faces serious difficulties. This is due to ill-posedness of the
Radon transformation where data are integrated with a singular filter function.
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Obviously such deconvolution greatly amplifies any noise present in the data.
With little or no prior information available about the object, it is difficult
to tell true details of the object from artifacts. ML tomography provides
much better results. Since noises are incorporated into the algorithm in a
natural and statistically correct way, artificial smoothing is not needed. Notice
in simulation Figure 17(e) that the noisy data yield a slightly distorted but
otherwise clear image through the ML algorithm, unlike the corresponding
very noisy standard reconstruction. This is a nice feature of the intrinsically
nonlinear ML algorithm, which, in the course of reconstruction, self-adapts to
the registered data and always selects the most likely configuration.

D. Imaging of Strongly Absorbing Materials

One specific application of neutron CT imaging is the quantitative analysis
and 3D visualization of the '°B isotope distribution in boron alloyed steel.
Boron alloyed steel is used in nuclear engineering as neutron shielding for the
radioactive waste disposal equipment, such as components for the compact
fuel storage racks and transportation baskets. The main demand on the sheets
for these applications is, besides mechanical stability and corrosion resistance,
the largest possible thermal neutron attenuation, which must be uniform over
the whole volume. The attenuation in the steel depends mainly on the '°B
isotope, which has a large attenuation cross section for thermal neutrons
om(1B) = 3838.1(10) x 107>* cm? (Sears, 1992).

Imaging of strongly absorbing samples suffers from the beam hardening
effect. The wavelength dependence of scattering cross section [Eq. (59)]
causes a spectral change of the neutron flux in the sample, where preferably
low-energy neutrons are absorbed so that the remaining beam becomes richer
in high-energy neutrons. In addition to this effect, the following specific
difficulties occur with strong absorbing materials:

e The exposure time for one projection is several minutes and the total
measurement time for one tomographic data set lasts several hours. If
the data are analyzed with the FBP algorithm, one depends on a stable
operation of the neutron source and CCD detector.

e The low count numbers lead to increased statistical fluctuations, which
become amplified in the FBP reconstruction.

e The imaging quality depends strongly on low background conditions. The
contribution of scattered thermal neutrons, fast neutrons, gammas, and light
penetration in the detector box must be suppressed as must as possible.

e The stronger the attenuation in the sample, the more the result will interfere
with the choice of input parameters in the FBP routine.
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(a) (b) (©)

FIGURE 18. Measured steel sample. This is a two-component system, which consists of an
outer ring (¥ = 2 cm), partly filled with a second rod with 68% enlarged boron content (¥ = 1 cm).
Expected distribution of the absorption index in the upper hollow (b) and lower filled (c) regions are
also shown (Zawisky et al., 2004b).

All these reasons clearly favor ML statistical inversion over the determinis-
tic FBP algorithm.

Let us show some examples of the tomographic investigations of strong
absorbers that were performed at the 250 kW TRIGA reactor of the Vienna
Atominstitute, where at a well-thermalized beamline, a neutron-tomography
facility had been implemented (Koerner et al., 2001). Surprisingly, neutron
tomography of strong absorbers is still possible with weak beam intensities of
about 10° n/cm?s. High-resolution camera optics with the nominal resolution
of 80 um was used (Koerner ef al., 2001). During the experiment, only a few
neutrons per second per pixel were registered. Naturally, the discrete character
of the quantum signal plays an important role at such low intensities.

The measured sample (Figure 18) was a two-component system consisting
of a ring with an outer diameter of 2 cm and a hole of 1 cm diameter. The hole
was partially filled with a second rod of 1 cm diameter with somewhat larger
108 content.

First we will show some typical results obtained with the standard FBP
algorithm (Figure 19). Notice that despite a large number of projections
(angles) that were used for the inversion, the reconstructions are still rather
noisy. Also, the reconstructed absorption profiles are far from those expected.
This is caused partly by the previously mentioned beam-hardening effect that
was not taken into account here.

Figure 20 illustrates the usefulness of the ML technique in cases where only
a few projections are available. The reconstructions are based on the same
experimental data as the corresponding Figures 19(a) and 19(b). However,
the number of projections was reduced from 50 to just 10 (!) projections. In
this extreme case the filtered back-projection fails completely. It is interesting
to notice that although no correction of the beam-hardening effect was done
during the ML reconstruction, the reconstructed density profiles resemble
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FIGURE 19. FBP reconstructions of the sample shown in Fig. 18. Fifty different projections
were used. (a) A typical reconstructed cut through the upper region, where instead of the second rod
only an air hole is inside the ring. (b) A typical reconstructed cut through the middle region, where
the second steel rod with higher boron content is inside the ring. The noise in the profile plots was
suppressed by averaging over several tens of reconstructed slices.

the true density profiles more closely than the corresponding FBP profiles
shown in Figure 19. In addition, the quality of the ML reconstruction from 10
projections is not inferior to FBP results obtained from data sets that are five
times larger. A proper statistical treatment extracts more information from the
measured data than do the standard reconstruction methods. In this way, the
measurement time can be significantly reduced without loss of resolution. Still
better results can be expected provided the beam hardening is incorporated
into the physical model.

(b)

FIGURE 20. Reconstructions of the sample of Figure 18 from only 10 (!) projections; panels (a)
and (b) correspond to slices shown in Figures 18(b) and 18(c), respectively. Left: ML reconstructions;
middle: ML profiles; right: standard FBP interpretation of the same data is shown for comparison.
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FIGURE 21. ML reconstruction from only 10 projections and 3D rendering of the boron alloyed
steel composite shown in Figure 18. The result is even better than the FBP reconstruction from 50
projections (Figure 19), but without beam-hardening correction, the inner rod with higher 10B content
cannot be extracted from the surrounding steel.

VI. PHASE TOMOGRAPHY WITH LOW-INTENSITY NEUTRON
BEAMS

This section adapts the ML estimation to more sophisticated tomographic
schemes. The conceptual difference between the standard deterministic and
ML statistical inversions can be nicely illustrated on the example of nPCT.
Standard nPCT consist of two separate steps. First, each set of interferograms
is processed to obtain the distribution of the total phase accumulated in the
Jj-th scan; this total phase is an integral of the unknown index of refraction
along the j-th beam path. In this way, the original problem is reduced
to the conventional tomographic imaging, and hence the inverse Radon
transformation of the accumulated phase yields the distribution of the index
of refraction within the object.

This straightforward procedure suffers from all known shortcomings of the
standard FBP routine, which are further accentuated in nPCT by still smaller
measured intensities and thus increased fluctuations. Additional problems
arising in the standard nPCT are caused by using the accumulated phases
as the starting point for tomographic reconstruction. Due to the high phase
sensitivity it is very likely that some of the projected (accumulated) phases
will exceed 27 phase interval. The correction of these “phase jumps” becomes
virtually impossible if the data are very noisy.

Most of these problems can be avoided when the ML statistical inversion is
adopted. Here, the object is decomposed into many elementary cells, each of
which shifts the phase of the overlapping beam by only a fraction of the 27
phase window. Thus, the phase value of each cell is uniquely defined. Then
we look for such distribution of those elementary phases that is most likely
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from the point of view of registered data. In this way, phase estimation and
tomographic reconstruction are done simultaneously.

A. Phase Estimation

Let us first discuss phase estimation in the context of nPCT. Consider an
interferometric measurement with mean intensity N and amplitude V. The
interference pattern,

ng =N + Vcos(6 + 6,), (116)

will be scanned with L different settings of the auxiliary phase shifter
uniformly distributed over the 27 phase window,
2

80(:017, a=0,1,...,L—1. (117)

Interference pattern Eq. (97) is just a special case of Eq. (117) corresponding
to L = 4 phase shifts.

When the measurement is completed, all the accumulated information can
be expressed as an a posteriori likelihood function. It is essential that the
likelihood includes all measured data, and, together with the physical model
for the detection probabilities, all experimental evidence. Thus, the likelihood
is the optimum starting point for a complete tomographic analysis.

Ideally, the only fluctuating quantity in the tomographic measurement is the
counted number of particles. The fluctuations produced by thermal sources
such as nuclear reactors are well described by the Poissonian statistics, which
was confirmed in several experiments (Rauch et al., 1990; Zawisky et al.,
1994). Since the detections with different settings &, are independent, the joint
probability of registering data n is simply a product

L= ]_[ e /ng!). (118)

This is also the likelihood of the given value 0 of the unknown phase shift.

In accordance with the ML principle, we will take the maximum likely
phase as the inferred value of 6. Since the amplitude V and the total mean
number of particles N are not under the experimenter’s control and may vary
from one pixel to another, these parameters should be estimated together
with phase. Their values are found by maximizing function [Eq. (118)] or
its logarithm. The latter in the case of uniformly distributed auxiliary phase
shifts simplifies to

log £ Zna log[N + V cos(0 + 80,)] — NL + const. (119)

o
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Now it is convenient to introduce new variables x = V cosf and y = V sin6.
We are looking for the point where the likelihood has zero slope: 3L/dx =
9L/0y = dL/IN = 0. From Eq. (119) we determine the following extremal
equations:

neX .
> —— =0, X=(cosdy,sindy. ). (120)
N + x cosdy — ysindy

o

In general, these equations must be solved numerically. Closed-form solution
can be found only in some special cases such as « = 3 and o = 4.

A particularly simple solution exists for three auxiliary phases, when the
maximum of the Poissonian likelihood in (118) coincides with the maximum
of its Gaussian approximation,

1 = 2
L exp[—F Xa:(na — 7ig) ] (121)
yielding
= 23 1<
x = > g cos(—=8,), y=7 D g sin(—a), N=- > e
a=0 a=0 a=0
(122)

These, going back to the original variables, can be written in the following
compact form (Rehacek et al., 1999)

V=2[R|/L, ¢%=R/IR| (123)

where
2 .
R = Znae—l%. (124)
a=0

This quantity can be interpreted as the first coefficient of the discrete Fourier
transformation of the registered counts n,, (Walkup and Goodman, 1973).!

Therefore it is particularly useful to use three auxiliary phase shifts, for
in that case, the optimal phase estimation is easily handled by means of the
simple formula in Eq. (123).

B. Reconstruction Algorithm

In nPCT, phase-sensitive data 7, are registered. Subscripts j and o« label
scans (i.e., pixels of the CCD camera and rotations of the sample) and

1 In a sense, Eq. (123) is a generalization of the operational phase Eq. (53) of Noh, Fougeres, and
Mandel.
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auxiliary phases, respectively. As each scan contributes likelihood [Eq. (121)]
and different scans are independent observations, the total log-likelihood
reads

log £ oc Y Y (njo — ilja)” + const., (125)
] o

J

where the mean number of particles detected in the j-th projection is given by
jo = Nj+ Vjcos(0; + 8y 4 05). (126)

Here 6; is the total phase accumulated along the j-th projection, 6; =
Y i ¢jimi. Coefficients cj; are the overlaps between the j-th projection and
the i-th elementary cell of the reconstruction mesh, as before (see Figure 7),
and GJ’. are the reference phases describing the phase properties of the empty
interferometer. The latter can be estimated from the same set of projections
measured without the sample. Likelihood [Eq. (125)] is to be maximized over
the distribution w; of the optical density of the sample.

In neutron phase imaging, u is composed of the sum of all scattering length
densities (N b) of the isotopes contained in the sample:

Napiby
w= _,\ZN,b, = —)\ZA—I (127)
I l

(see also Section III). Here N; represents the number of isotopes [ per unit
volume, p; the isotope density, N4 the Avogadro constant (6.02214199(47) x
102 mol™!), and A; the atomic weight. Note that most isotopes have positive
coherent scattering lengths b; but some are known with b; < 0. The existence
of positive and negative phase shifts (in the latter case, the index of refraction
is less than one) is a specialty of neutron optics and can be used for fading out
unwanted phase contributions.
A necessary condition for the maximum of log L,

dlog L
9B% _0, W, (128)
I

yields on using Eqgs. (125) and (126) the following set of extremal equations,

Zj Vicjisinf; Im{R;}
Zj Vicjicos0; Re{Rj}'

Wi = Wi (129)

These can be solved numerically by repeated iterations.
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1. Reference Phase Measurement

No interferometers are perfect. Already an empty interferometer shows a
nonuniform transversal distribution of phase difference between its two arms.
To remove this background phase the measurement is done in two steps: with
and without the sample. The simplest way to subtract the background phase is
to perform two separate phase reconstructions, then subtract the reconstructed
background phase from the reconstructed phase of the sample. This procedure
is simple, but not optimal. It is not difficult to see why. An inspection of
Eq. (129) shows that the reconstructed indexes of refraction u; depend on
the amplitudes V; of the registered interference fringes. This is natural since
the reconstruction is a synthesis of many phase measurements and phases
measured under higher visibilities and neutron numbers are less affected by
the noise and hence more credible. For the same reason the phase introduced
by an empty interferometer is measured more accurately than the phase
introduced by interferometer and sample. This additional knowledge should
be incorporated into the reconstruction routine. Denoting 6 = 6, 4 6, the total
phase measured with the sample, which is the sum of the reference phase
and the phase introduced by the sample 6y, and using Eqgs. (123) and (124) in
Eq. (121) we can rewrite the posterior distributions of # and 6, in the following
compact form:

P(0) o " c0sO—0nmm) (130)
P(6)) oc "r o =brnm), (131)

NFM denotes Gaussian (semi-classical) phase estimates that maximize pos-
terior distributions [Eqgs. (130) and (131)], which are also known as von
Mises normal distributions defined on the unit circle. As mentioned above,
their widths are determined by the corresponding amplitudes. Since we are
interested only in phase 6, introduced by the sample alone, let us calculate its
posterior distribution,

P(O) = //P(Q)P(G,)S(Q — 6, —6,)do, do. (132)

The double integrations can be easily carried out, and the result expressed in
terms of the Bessel function /,

P(6y) 10(\/ V2 4+ V2 4 V'V, cosds — 60— nrm)), (133)

where 6_ NM = OnEM — 0-.NEM. Optical density of the sample can now be
estimated by maximizing the posterior distribution Eq. (133) with respect to
indexes ;. Such procedure accounts for the reference phases in an optimal
way.
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FIGURE 22. Simulated phase tomography with a weak neutron signal. The maximal accumu-
lated 6; in the three cylinders making up the object (a) are 150 degrees, 50 degrees and 30 degrees for
white, light gray, and dark gray, respectively. The mean count numbers per pixel and visibilities are
(b) N =450, V/N =33%; (c) N =150, V/N = 33%; and (d) N = 30, V/N = 33%.

C. Simulations

Figure 22 shows a simulation of a nPCT experiment with various intensities
and visibilities of the illuminating beam. The artificial object was scanned
from 31 different angles with a resolution of 81 pixels.

Case (d) is the most interesting one. Here the incident beam has such a
low intensity that its Poissonian fluctuations are comparable to the intensity
changes caused by the maximal phase shifts in the light gray and dark gray
cylinders. The useful phase information is thus almost lost in the background
noise, yet all three cylinders nicely show in the reconstruction.

Another example of the ML phase tomography is shown in Figure 23. The
parameters of the simulated experimental setup are comparable to that of
Figure 22, but now the maximal phase shift in the sample is well in excess of
47 radians. A priori knowledge about the shape and high index of refraction

(a) (b) (©)

FIGURE 23. Simulated phase tomography with a weak neutron signal, N = 150 and
V/N = 33%. The maximal accumulated 6; in the object is 4.27r rad. (a) The artificial object; the ratio
of the index of refraction in the white, light gray, dark gray, and black cylinderis 1 : 0.8 : 0.5 : 0.2. (b)
ML reconstruction from 31 angles and 81 pixels. (c) ML reconstruction from 21 angles and 41 pixels.



110

ol
es]
as
>
[@X

EK ET AL.

0.960 H,0+4-0.04 D,O

2mm | 5mp

o |

0.956/H,0+-0.044 D,O

(a) (b)

FIGURE 24. Side view of the measured sample: (a) schematic picture; (b) conventional
transmission image.

of the white container could be easily incorporated into the reconstruction,
and as a result the internal structure of the object was nicely resolved.

D. Applications of Neutron Phase Tomography in Isotope Analysis

A similar isotope gauge, a mixture of S33 4 S34 and H,O+ D;O isotopes, has
recently been investigated at the nPCT setup in the Institute Laue-Langevin
in Grenoble (Zawisky et al., 2004a) in order to test the method and verify its
sensitivity and spatial resolution under realistic conditions.

The test object was an aluminum rod of 7 mm diameter with three cylinders
drilled in, filled with different isotope mixtures (Figure 24(a)). The central
cylinder was filled with the mixture of 78% of elemental sulphur and 22%
of aluminum oxide. The two smaller side holes were filled with two different
water mixtures: 96% H,O+4% D,0O and 95.6% H,O—+4.4% D,0. Notice that
both the sulfur isotopes and the aluminum are nearly transparent to thermal
neutrons and therefore invisible in conventional transmission tomography
shown in Figure 24(b).

In contrast to this, a sensitivity in detecting nuclear density differences at a
1% level has been confirmed in the phase analysis, with a spatial resolution of
50 um in the phase projections.

Tomographic reconstructions from the measured phase sensitive data are
summarized in Figure 25. Panel (a) is a picture of the top of the sample
showing its true geometry. For the reconstruction, 30 different projections
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FIGURE 25. Experimental maximum-likelihood nPCT: (a) top view of the sample; (b) typical
reconstruction of a single 50 um thick slice; (c) the same as (b) but data from 10 adjacent slices were
collected prior to reconstruction; (d) line profile of the reconstructed scattering density (in arbitrary
units) along the direction indicated in (c).

were measured with the transversal resolution of about 150 pixels per the
width of the aluminum rod. Intensity in the region of interest was extremely
low, typically below 30 counts per pixel. Small number of projections together
with low intensity and small visibility (caused by scattering effects) make the
data inversion a challenge for any reconstruction technique.

Panel (b) in Figure 25 shows a typical ML reconstruction of a single 50 pm
thick sample slice. Although the noise in the image is rather large, one can
easily distinguish the geometry of the object. Still better results were obtained
by using data averaged over 10 adjacent slices for the reconstruction (with
the corresponding vertical resolution of 0.5 mm). In this way, the signal-to-
noise ratio was somewhat increased. The resulting reconstruction is shown
in Figure 25(c). The last panel (Figure 25[d]) shows the line profile of the
reconstructed scattering density along the direction indicated by the vertical
line in Figure 25(c). The average scattering density in the two water isotope
mixtures differs only by 10%, well in accordance with the expected values
from the sample preparation. This relates to a sensitivity of 4 x 1073 in the
detection of D, O differences in the mass fraction.

Finally, let us stress that we applied our algorithm to raw measured
data without any prior filtering. The appearance of some artifacts in the
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reconstructed images (white specks inside the water cylinders) is probably
caused by not considering scattering effects. However, on the whole, given the
extreme experimental conditions and small number of measured projections,
the reconstructions can be considered successful. Further enhancements can
be expected after developing more accurate physical model of the experiment
and applying appropriate filters prior to reconstruction.

E. Tomography of the Complex Refractive Index

Tomography of absorption index and phase shift may be accomplished
simultaneously provided that the detected signal is sensitive to these values.
For the purpose of numerical simulations, let us insert the sample in the arm
of an ideal interferometer. Its presence will be manifested by the phase shift of
interference fringes and the loss of the visibility. The position of interference
fringes yields information about the real part of the index of refraction while
the loss of visibility indicates the absorption.
Denoting the signal induced along the k-th path in the sample as

1
ij=1[1+0;07+0;+ 0], (134)

where the complex parameters are introduced as ¢; = exp(—ui2 +i qﬁiz), Q=
[1;(gi)¢7i. Here the absorption ij_ and phase shift ¢]2. are explicitly constrained
to positive values. The corresponding log-likelihood is

log£L=> njlogii;— Y i, (135)
j j

where n; are the corresponding detected values. Extremal equation 0£/9g; =
0 then in complex notation reads

n;j * ). N —
E - - Q,’QJ+QJ CJl_O (136)
j ‘

for each i. This equation may be solved by iterating the variables u;, ¢; in

accordance with the equations

0
w Y =" - Z[_—’ - 1}[2Q§Q,- + 0, + Ofe;in”  (137)

nj

oD — 6@ Lo Z[”_/ _ 1}[Qj — 0%]ejip”. (138)

—| n
; J

Numerical simulations demonstrate the feasibility of such a reconstruction.
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FIGURE 26. Simulated tomography of the complex index of refraction.

The proposed method for the reconstruction of the complex index of
refraction can be illustrated by means of computer simulations. Figure 26
shows reconstructions from noiseless data in the limit of very large input
intensities. The only source of reconstruction error in this case is the rather
small discretized set of measurements. For our reconstruction we simulated
measurement of 30 different scans (angles) with the spatial resolution of
100 pixels. Two different samples, Figures 26(a) and 26(b), were simulated.
The upper row of Figure 26 shows the true distributions of the absorption
index (on the left) and index of refraction (on the right). The bottom row
shows the corresponding reconstructions. Sample (a) consists of material with
either nonzero real refraction index or nonzero imaginary refraction index,
but not both. Both distributions are piecewise constant. Sample (b) shows
periodic (o cos?) variations of absorption and refraction with perpendicularly
oriented wave vectors. The maximal values of refraction and absorption in
both samples were set in such a way that the maximal absorption was about
50% of the input intensity and the maximal phase shift induced by the sample
was about 7 rad. Despite the rather small number of used projections and
pixels, the reconstructed profiles are very close to the true ones. This shows
the robustness of our method with respect to binning and sampling.

Reconstruction of Figure 26(b) from noisy data is shown in Figure 27.
Here, the calculated theoretical signal in Eq. (134) was used as a mean
for a Poissonian random number generator. The intensity was set to 100

FIGURE 27. Simulated tomography of the complex index of refraction.
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particles. The typical counts per pixel were in the range of 10-50 particles
due to absorption and destructive interference. Such extremely weak signal
exhibits strong fluctuations, which makes it a good test for any reconstruction
method. The conditions during a real experiment would certainly be more
favorable. From the result (Figure 27) it is apparent that the reconstruction
of the absorption index is more sensitive to noise that the reconstruction of
refraction index. This is not surprising as absorption enters our data only
through the visibility, which is more difficult to estimate than a phase shift
(Rehdcek et al., 1999).

FE. Beyond Phase Tomography

Phase tomography discussed in the previous section is a simple example of
quantum-process tomography. In this case, the process is a unitary operation
that can be represented by a 2D rotation. The rotations vary in space, and the
detected particles probe their spatial distribution via quantum interference.

Obviously, more complex probes are needed to “see” more complicated
transformations. It would be logical to proceed the exposition with the case of
spin 1/2 systems whose Hilbert space could be associated with the 3D Bloch
sphere. The synthesis of measurements—projections—is able to determine
an unknown quantum state, and such procedure possesses all the features
of quantum tomography of the internal spin state. The ML approach can be
straightforwardly applied here. This was worked out explicitly by Hradil et al.
(2000) for the representation of the spin using the polarization vector.

Because the magnetic momentum of particles is coupled to the magnetic
field, spin state tomography can be used as a means (e.g., for nondestructive
investigations of the magnetic domains of bulk materials). Here the beam of
polarized neutrons goes through the specimen, interacting with its magnetic
domains. Due to this interaction, the spin state of the neutrons changes, and
this depolarization can be used for the visualization of the magnetic domains
in the specimen, just as in the case of phase tomography. However, the probed
operations are now represented by rotations in 3D space, which unlike 2D
rotations in phase tomography, form a non-Abelian group of transformations.
Consequently, the tensorial character of the corresponding depolarization
observable together with the noncommutativity of rotation matrices makes
the analysis rather involved. Although this is a challenging question with
potential interesting applications, at present no analytical solution of this
inverse scattering problem is known. To date, there are several approaches
based on deterministic techniques, but the ML solution has not been devised
yet.
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VII. THREE-BEAM INTERFERENCE AND WHICH-WAY
INFORMATION IN NEUTRON INTERFEROMETRY

The next three sections are devoted to exploiting the genuine quantum
properties of neutrons for imaging purposes. For example, the concept of
wave particle duality reviewed in Section IIL.E tells us that the principal
availability of information about the path a neutron takes in a Mach—Zehnder
interferometer will destroy the interference. In principle, objects or fields
placed inside the interferometer can act as (imperfect) which-way detectors.
Thus, from the registered interference patterns one can learn something about
the measured objects through their which-way detection capabilities.

Duality measurements are discussed in detail in this section. A more
sophisticated scheme using the QZE is presented in Section VIII. Aside from
duality effects, the loss of coherence can also be due to the interaction of
particles with a noisy environment. The analysis of statistical fluctuations by
means of neutron interferometry is considered in Section IX.

A. Duality Measurement in the Two-Loop Interferometer

The two-loop interferometer offers an elegant method of manipulating and
simultaneously measuring the neutron’s duality. Here the first interferometer
loop can be used to manipulate the which-way information while the second
loop serves for visibility measurements (Figure 28). The which-way tuning is
achieved by the unitary transformations e ~/%1, e~/%2 in the first interferometer
loop, which modulates the intensity in path II,

In(Aa) o [1+ V; cos(Aa)]. (139)

Then, according to Eqs. (64) and (65), predictability and visibility are solely
modulated by A«. The intensity in path I is not affected by the phase shifts
and remains always constant. Therefore I;y and P can be derived from the
total count numbers in O+ H simultaneously with the visibility measurements
without disturbing the interference experiment.

It should be emphasized that no net momentum is transfered to the neutrons
detected in output O, and no essential dephasing occurs in this specific
arrangement of phase shifters. This demonstrates that the access to path
information does not exclusively rely on the position-momentum uncertainty
relation or on dephasing.

B. Three Beam Interference

In the two-loop interferometer three interfering beams are generated with
different phases a1 2, y1,2. In the ideal two-loop interferometer again only the
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FIGURE 28. Simultaneous “interaction-free” measurement of duality. The first interferometer
loop serves for intensity tuning in path II, which solely depends on the phase difference Ao = o1 —anp
induced by the phase shifter «. The intensity in path I is not affected by such coherent phase
manipulations. In the second interferometer loop, the visibility is affected by an intensity asymmetry
| Iy — I11|. Thus, predictability and visibility both depend solely on phase differences in the first loop. If
Aa reaches 180 degrees, then I1; becomes zero, or reaches its minimum in the real experiment, and all
neutrons detected in output O, H, must have taken path I. This path information reduces the visibility
as shown in the right plot. P(A«) and V (A«) can be measured simultaneously at the output ports O,
H without disturbing the quantum state inside the interferometer. The visibility is measured with the
second phase shifter y in loop 2 (Zawisky et al., 2002).

O-beam can reveal full visibility (Vo max = 1) because the three interfering
beams have the same amplitudes,

Io = |rret?|e /@17 4 pmiterty) +e—i(a1+y2)|2
= |rrtt|*(3 + 2(cos(Aa + Ay) + cos(Ay) + cos(Aa)))
= |rrtt|2(3 + 2 cos(Aa) + 4 cos(Aa/2) cos(Aa/2 + Ay)). (140)
It,0 and consequently Vo are then modulated by phase differences Ac,

4cos(Aa/2)

Vo(Aa) = ————.
o(Aa) 3+ 2cos(Aw)

(141)
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FIGURE 29. Coherent duality manipulations in the ideal two-loop interferometer by using three
interfering beams. Pcz) + V(% = 1 is fulfilled for all Ax (Zawisky, 2004).

The predictability that the intensity detected in O comes either from path I or
IIis

ho—1 1-2(1 A
po = |0~ 1o z‘ (1 + cos Aa) ' (142)
Io 14 2(1 + cos Ax)
Figure 29 shows the strict duality of visibility and predictability in the
ideal two-loop interferometer where P(2) + V(2) = 1 holds for all Aa. At

Ao = 180 degrees, the predictability reaches its maximum and Vo becomes
zero. Then Ip 1 becomes zero and all intensity in O stems from path 1. At
Aa = 120 and 240 degrees, the visibility reaches its maximum and all path
information vanishes.

The duality experiments have been performed at the interferometer instru-
ment S18 at ILL-Grenoble. The variation of A« was achieved by an aluminum
phase shifter whose beam attenuation is negligible. Furthermore, the small
remaining absorption probability is equal in both beams and cannot influence
the path information. The second nonabsorbing phase shifter Ay (silicon,
thickness 5 mm, transmission 99.4%) allows the derivation of the visibility
in the second interferometer loop, which directly enters the duality relation.
It was found that the three path intensities are slightly differing, therefore the
ideal model has to be modified:

Io =1, + |Aje 7 4 ppemil@atr) 4 Aze_i(“1+y2)|2,
Io =1, + AT + A3 + A + 24, A cos(Aa + Ay) (143)
+ 2A1A3c0os(Ay) + 2A2A3 cos(Aw),
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FIGURE 30. Coherent duality manipulations under realistic experimental conditions. (a)
Reduced intrinsic visibilities V; revoke the strong duality relation shown in Figure 29. However,
the visibility is regained after a 27 phase cycle; this confirms that dephasing has no influence in
this duality measurement. (b) The reduced predictability around Ax = 180 degrees is caused by the
presence of noninterfering intensity (Zawisky, 2004).

with empirical parameters for the noninterfering intensity 7, = 1.786(35) and
the amplitudes A; [A] = Ay = 0.94(2), Az = 1.12(2)]. This more realistic
model yields the following predictability (Figure 30):

I,/3 — A} + A3 + A3 +2AsA3 cos Aa)
I, + A2 + A3 + A3 + 2A2A3cos Aa) |

Po = (144)

The reappearance of P and V after a full cycle of 360 degrees proves that
dephasing plays no essential role in our duality measurements. The neutrons
leave no imprints on the apparatus that can be used for which-way sorting.
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C. Applications

It can be expected that the new possibilities of coherent beam manipulation
will find useful applications (e.g., in experiments where an optimal intensity
tuning is required in one interference loop, or in the context of interaction
weak measurements where the interaction with a sample placed in beam II can
notably be reduced by maintaining still reasonable visibilities). A remarkable
feature of the two-loop interferometer is that the whole duality information
becomes accessible simultaneously without any irreversible changes of the
interferometer setup. In the two-loop interferometer beam II is in a su-
perposition of two coherent beams; therefore path information should not
superficially be misused as particle property. In fact, the particle aspect of the
neutron did not show up in our duality experiments because no intensity mea-
surements were performed inside the interferometer. The measured duality
relation demonstrates that all neutron states contain which-way and visibility
information because the extreme situations P =1 < V =0and P = 0 &
V = 1 is never realized in real experiments. A strict duality, P? + V2 = 1,
only appears in the ideal two-loop interferometer; experimentally we could
achieve a maximum of 0.7 in the duality relation. The which-way tuning can
be achieved by controlled coherent beam manipulations without changing the
neutron’s momentum and without essential dephasing.

The neutron’s duality relates to all experiments where a sample is placed in
one interfering beam. In phase tomography the attenuation of an interfering
beam yields valuable information about the sample, for example, small-angle
scattering caused by inhomogeneities yields information about the grain size
and the sample structure. Interactions in the sample modify the transmission
probability but also affect the visibility due to phase fluctuations in the sample.
In the spirit of duality, all processes, which in principle can deliver which-way
information, will necessarily reduce the visibility. Unfortunately, the opposite
is not true, the simple existence of small visibility does not allow any which-
way speculation, with the unrealistic exception that all other instrumental
effects can be excluded.

VIII. APPLICATIONS OF FUNDAMENTAL QUANTUM EFFECTS
IN IMAGING: ZENO TOMOGRAPHY

Let us discuss how the application of the principles at the basis of the QZE
introduced in Section III.G can be of great assistance in tomography, when
one is interested in minimizing the amount of radiation absorbed by the
sample.

Under otherwise ideal conditions the shot noise associated with the discrete
character of the illuminating beam sets an upper limit to the resolution
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of absorption tomography; for instance, the shadow cast by a brain tumor
might become totally lost in the noisy data. One possibility to overcome
the fluctuations is to increase the intensity of the beam. However, in many
situations, as in medicine for example, the intensity of the illuminating beam
cannot be made arbitrarily high due to the damage provoked by the absorbed
radiation.

A significant step toward an “absorption-free tomography” came from
quantum theory. It was demonstrated, both theoretically (Elitzur and Vaidman,
1993; Hafner and Summhammer, 1997) and experimentally (Kwiat et al.,
1995), that totally transmitting and absorbing bodies can be distinguished
without absorbing any particles, by using an interferometric setup. This idea
is, in fact a clever implementation of the QZE, discussed in Section III.G,
and hinges on the notion of interaction-free measurement, introduced in
Section IIL.F. A classical measuring apparatus (here the black sample), placed
in one arm of the interferometer, projects the illuminating particle into the
other arm, destroying interference, freezing the evolution, and forcing the
particle to exit through a different channel from what it would have chosen
had both arms been transparent (white sample).

In practical applications, however, samples are normally neither black nor
white: they are gray. It is important to understand whether application of
the QZE, which turns out to be ideal for discriminating black and white,
might also be advantageous for the more practical task of discriminating two
gray bodies with different transmission coefficients. More specifically, we
ask: is it possible to reduce the number of absorbed particles by QZE while
preserving the resolution? We show that this is indeed possible, provided that
the frequency of occurrences of the different levels of “gray” in the sample
is not uniform (Facchi et al., 2002). Closely related questions have been
recently investigated by other authors (Krenn et al., 2000; Mitchinson and
Massar, 2001; Massar et al., 2002). The Zeno setup, unlike the standard one, is
endowed with two detection channels. As will be seen, this feature, if properly
exploited, leads to even better performances in the Zeno case.

A. Quantum Zeno Effect in a Mach—Zehnder Interferometer

Consider the Mach—Zehnder interferometric (MZI) scheme with feedback
displayed in Figure 31(a). A semitransparent object, whose transmission
amplitude is 7 (assumed real for simplicity) is placed in the lower arm of
the interferometer. The particle is initially injected from the left, crosses the
interferometer L times, and is finally detected by one of two detectors. The
two semitransparent mirrors M are identical and their amplitude transmission
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FIGURE 31. (a) Scheme of the Zeno interferometric setup. (b) Standard transmission experi-
ment. S, Source; M, semi-transparent mirror; o, orthogonal channel; z, Zeno channel; D, detector.

and reflection coefficients are
c=cosfy, s =sinf; (0 =n/4L), (145)

respectively. Notice that both coefficients depend on L, the number of “loops”
in the MZI.
The incoming state of the particle (coming from the source at initial time)

lin) = (é) (146)

and we call “Zeno” and “orthogonal” channels the extraordinary ((1)) and

ordinary ((1)) channels of the MZI, respectively. The total effect of the
interferometer is

V, = BA,B, B:(:f _(:S),A,:((l) S) (147)

B = exp(—if02), BB'=B'B =1, (148)

where o7 is the second Pauli matrix, while A is not unitary (if T < 1 there is
a probability loss). The final state, after the particle has gone through L loops,
reads

is

In general,

lout) = VX |in) = (BA,B)L|in). (149)

1. White Sample

The choice of the angle 6;, in Eq. (145) is motivated by our requirement that if
7 = 1 (“white” sample, i.e., no semitransparent object in the MZI) the particle
ends up in the “orthogonal” channel:

V.L-Lzl — BZL — e—i2L9L02 — e—iﬂ0'2/2 — _10,2’ (150)
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so that
L 0
lout) =V, _,|in) = NE (151)
This is easy to understand: each loop “rotates” the particle’s state by 20; =
/2L and after L loops the final state is “orthogonal” to the initial one

[Eq. (146)].

2. Black Sample

Let us now look at the case T = 0, corresponding to a completely opaque
(“black”) object in the MZI. We obtain

VrLzo = (A()BZ)LB_1 = Bcost 20, (1 —tanZQL) 51

0 0
Lo ((1) 8) —Viso. (152)

This yields QZE:
lout) = V,_oin) = [in) = ((1)) . (153)

In the infinite L limit, the initial state is “frozen” and the particle ends up in
the Zeno channel.

3. Gray Sample

What happens if 0 < 7 < 1?7 The computation is straightforward but lengthy
and yields a final expression that is elementary but complicated. However, we
are mainly interested in the large L limit, where VX' can be approximated as
follows:

_nll4r -1
vE= ( 8L T—1 O(L™) > LoD, (154)
oL i +owhi
This is an interesting result: indeed
Vo= limvi=(1 9 0<t<l1 (155)
T L>00 T 0 O k) iy

analogously to Eq. (152). This shows that even for a semitransparent object,
with transmission coefficient T # 1, a bona fide QZE takes place and the
particle ends up in the Zeno channel with probability 1:

lout) = V,[in) = [in), 7 # 1. (156)
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B. Distinguishing Different Shades of Gray

A question arises (Mitchinson and Massar, 2001; Massar et al., 2002): is it
possible to distinguish different values of 7 (different “shades” or “levels” of
gray) by the technique outlined above? This is not a simple task, for after a
large number of loops L, the particle ends up in the orthogonal channel only
if t = 1 [see Eq. (151)]. By contrast, for any value of T # 1, the particle ends
up in the Zeno channel [see Eq. (156)] irrespective of the particular value of 7.
However, the asymptotic correction in the (1, 1) element of VrL in Eq. (154) is
7 dependent: the details of the convergence to the limit as defined in Egs. (155)
and (156) depend on the grayness of the sample. By exploiting this feature,
we shall now show that it is indeed possible to resolve different gray levels by
QZE, within a given statistical accuracy.

We start by observing that if one performs a standard transmission exper-
iment, by shining a particle beam on a semitransparent object in order to
measure the transmission coefficient 7 (see Figure 31[b]), the detection and
absorption probabilities read

P =73 plm)=1-1% (157)

The statistic is binomial.
On the other hand, if the Zeno configuration sketched in Figure 31(a) is
used, the final state of the particle after L loops in the MZI is, from Eq. (154),

7 1+t -2
' (0 o oL~ (%

where u, and u, are the amplitudes in the Zeno and orthogonal channels,
respectively. Both these quantities are real. Let (0 < t < 1)

2
2 e l+T 2
pZ(T)ZuZZI_E]_f-i_O(L ),
Po(t) =u2=0(L™?), and (159)

21+
Pa(t) = 1= pa(0) = po(0) = 21— +0(L7)

be the probabilities that the particle is detected in the Zeno, orthogonal
channel, or is absorbed by the semitransparent object, respectively. We
assume that a fixed number of particles N is sent in the MZI during
an experimental run. In this situation, the distribution of particles in the
Zeno, orthogonal, or absorption channels follows a trinomial statistics with
probabilities [Eq. (159)].
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C. Reconstruction

Now we will construct a protocol and show that using QZE can achieve a
resolution that is superior to the “ordinary” resolution obtained in a standard
transmission experiment. Notice that p,(t) in Eq. (159), unlike p/(7) in
Eq. (157), is an increasing function of 7. Therefore, with respect to absorbed
particles, the Zeno tomographic image (for sufficiently large L) yields a kind
of negative of the standard absorption tomographic image. This can be given
a rather intuitive explanation: indeed, the absorption probability in Eq. (159)
reduces to the same form as the standard one of Eq. (157), that is,

pa(®) = 1 - (z%)%, (160)

by introducing an “effective” transmission coefficient

t% = /1 - pq. (161)

For example, if we take 71 = 0.98, 75 = 0.99 and choose L = 12000,
then, according to Eq. (159), we get teszl ~ 0.99 and tezf§2 ~ (0.98. The two
gray levels are interchanged by the Zeno apparatus. If most of the sample has
transmission coefficient 15, the absorbed energy is reduced by using the Zeno
setup.

A more precise comparison of the performances of the Zeno and standard
techniques can be given in the framework of decision theory. For simplicity
let us focus on distinguishing only two gray levels t; and 7 (11 < 12)
corresponding to hypotheses H; and H, that occur in the sample with
frequencies

Po(H)) = «, Py(Hy) =1 —a. (162)

The probability of making an error in identifying the gray level of a given
pixel is

P, = aP(Hy|Hy) + (1 — ) P(Hi|H>), (163)

where P(H;|H;) is the probability of choosing H; when H; is true. This
probability depends on the total number of particles N, as well as on the
decision strategy adopted. The corresponding mean number of absorbed
particles is

Ng = N[apa(t1) + (1 — @) pa(m2)]. (164)

The error P, of any reasonable strategy decreases with N, while the total
number of absorbed particles N, increases linearly with N. The objective is
to find the strategy minimizing P, given N,.
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FIGURE 32. Ratio of the number of absorbed particles in the Zeno (No(lze)) and standard (N,ES[))
setup. The smaller the ratio in the graph, the less irradiation in the Zeno apparatus (for the same
resolution). P, = 0.5%; 71 = {0.8, 0.9, 0.95,0.97}; tp = 71 + 0.02; L = 2000.

For the Zeno setup, two decision strategies can be formulated. When the
number of loops L is very large, there are almost no particles exiting via the
ordinary channel n, &~ 0 and hence our decision will be based on the number
of absorbed particles n,. If n, is smaller than or equal to a decision level ng ,
then Hj is chosen; otherwise H is chosen. Details of finding optimal ng can
be found in Facchi et al. (2002).

The performances of this binomial protocol and standard absorption setup
are compared in Figure 32, where the ratio of their number of absorbed
particles is shown as a function of « for a few different gray levels. Notice that
the exposition of the sample can be significantly reduced if the distribution of
gray levels in the sample is not uniform. For instance, a reduction factor of
2.5 is obtained when the sample consists of 97% of dense material and only
3% of the less absorbing one, « = 0.97. Such parameters would be typical
for structural analyses. A small structural defect (crack) inside a thin sample
would typically show small contrast (o —7; < 1) with the surrounding almost
transparent (r; & 1) material, while its area would be small compared to the
area of the sample (o ~ 1).

The above simple binomial decision strategy is, however, not the optimum
one. Unavoidable losses and other imperfections of real experimental devices
set a strict limit on the maximum number of loops that can be achieved in a
laboratory. In such cases the ordinary channel can no longer be ignored. The
statistics of the experiment are then trinomial, and the data consist of the two
component vector (n,, n,) of the numbers of particles counted in the Zeno and
ordinary output channels, respectively. The optimal decision will be based on
both these numbers.
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FIGURE 33. Typical decision levels of the binomial (dashed lines) and trinomial (solid lines)
decision strategies when a & 1. This figure corresponds to the simulation shown in the last row of
Figure 35(c), where M = 3, the triangle is divided into M = 3 regions, and the three gray shades are
labeled as white, gray, and black, respectively.

As was shown in Facchi et al. (2002), there is a one-parametric family of
optimal decision vectors (n? , n‘oi),

n? —a(r, )nd = b(r1, 12, ), (165)

where a and b are coefficients. In a 2D representation, each possible exper-
imental outcome (7., n,) is represented by a point lying inside the triangle
{0 < n, +n; < N} shown in Figure 33. Equation (165) divides this triangle
into two regions. All experimental outcomes that fall within the same region
issue the same decision. In the general case of M different gray levels, there
are M — 1 Eqgs. (165) defining M — 1 in general nonparallel lines dividing the
square into M strip-like regions. This is shown in Figure 33 for M = 3.

An interesting situation arises when the coefficient a in Eq. (165) becomes
close to unity. In that case, the decision level is the line n‘zi —n? = const. Let
us recall that the decision levels of the binomial strategy based on the number
of absorbed particles only, read ng = const., or, equivalently, n? +n§ = const.
Hence, if L, 71, and 1, are such that a ~ 1, the decision levels of the binomial
and trinomial decision strategies will become orthogonal to each other. This is
shown in Figure 33. Under such conditions further gain in the precision of the
Zeno apparatus can be expected compared to standard absorption tomography.
This regime was chosen for our computer simulations of the following section.
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FIGURE 34. The object to be reconstructed: a cell of Giardia lamblia, one of the most primitive
eukaryotes. The original picture has been reduced for simplicity to three levels of gray: white, gray
and black, occurring with frequencies ay, = 0.02, ag = 0.07, and o, = 0.93 respectively.

D. Simulations

We have seen that the Zeno technique can reduce the level of absorption
without losing resolution (compared to the standard technique. Alternatively,
the Zeno setup can yield an improved resolution, while keeping the absorption
at the same level of the standard setup.) The object in Figure 34 is a cell
of Giardia lamblia, a protist, one of the most primitive eukaryotes. Giardia
has been called a “missing link” in the evolution of eukaryotic cells from
prokaryotic cells. The number of gray levels in the figure has been reduced

to three to make the analysis simpler: white, gray, and black, 7, = 0.99,
g = 0.96, 1, = 0.8, occurring with frequencies o, = 0.02, ag, = 0.07,
and ap = 0.93, respectively. Figure 35 shows the results of a numerical

simulation, performed with the standard and Zeno methods, the latter for
L = 10 and L = 165, for different numbers of absorbed particles N,. In
each frame the standard and the two Zeno reconstructions are compared,
together with the pixels that have been misinterpreted. Figure 35 confirms
the expectation based on the asymptotic formulas in Eq. (159): in general,
provided that the object contains a small fraction of more transparent pixels
and a larger fraction of more absorbing material, the Zeno setup yields a better
resolution for a given irradiation. Clearly, a significant improvement with
respect to standard absorption tomography is achieved for as few as L = 10
loops. The improvement is very large for L = 165.

The number of absorbed particles increases from (a) to (d) in Figure 35.
Observe that in (a) the standard reconstruction fails completely, while the
outline and basic shape of the object can be recognized already in the Zeno
reconstruction with L = 10. In (c) the Zeno reconstructions are quite good,
while standard tomography does not detect white pixels in the object. When
the intensity of the illuminating beam is increased further, in frame (d), all the
reconstructed images become visually hard to tell from the sample, but the
error rates of the Zeno apparatuses are still much better (by a factor of 3 or
more), as shown by the number of misinterpreted pixels.
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(a) (b) : (d)

FIGURE 35. Comparison of standard and Zeno tomographic techniques. In each frame: top
left = reconstruction by standard technique; top right = misinterpreted pixels by the standard
technique; center left = reconstruction by Zeno technique with L = 10; center right = misinterpreted
pixels by the Zeno technique with L = 10; bottom left = reconstruction by Zeno technique with
L = 165; bottom right = misinterpreted pixels by the Zeno technique with L = 165. The mean
number of absorbed particles per pixel (irradiation) is N, = 1.7, 2.3, 4, and 13 for frames (a), (b), (c),
and (d) respectively. We used 1y = 0.99, 7o = 0.96, and 7;, = 0.8. The sample consists of 10,000
(= 100 x 100) pixels, where white, gray, and black occur with frequencies o, = 0.02, ag = 0.07,
and «p, = 0.93, respectively.

The distribution of misinterpreted pixels merits comment. Clearly, in all
the cases analyzed, this distribution is not uniform. In general, when the
distribution of gray levels in the sample is not uniform, any reconstruction
technique tends to perform better in the “background,” while making more
mistakes in the region where the “structure” is present. The improvement due
to the Zeno method becomes apparent particularly in Figures 35(b) and (c). In
these cases, interestingly, the standard method yields more mistakes in the
background; this is an unpleasant feature, if one is interested in detecting
small irregular structures in a more or less uniform background. The features
of the distribution of misinterpreted pixels require more careful study and their
comprehension might lead to additional ideas.

Any increase in the number of loops L in the interferometer makes the
difference between standard and Zeno tomography even greater. Clearly, this
is more demanding in terms of experimental realization.

E. Discussion

We have shown that a quantum Zeno tomography is possible and performs
better than standard tomography if a given prior knowledge about the dis-
tribution of grays in the sample is available. This is a common situation in
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radiography, where one is often interested in detecting a small structure in a
uniform background, for instance, in the analysis of small structural defects.

In our numerical simulations we have illustrated some situations in which
the resolution is improved by the Zeno method, for a given number of
absorbed particles. Alternatively, for a given resolution, the Zeno method per-
forms better, absorbing fewer particles. This can be interesting in applications,
for instance, if one wants to limit the damage provoked by the absorption of
radiation without losing in resolution.

It is obvious from Figure 32 that an even larger improvement is possible for
almost transparent samples, provided that « is close to unity. This means that
there is no fundamental limit on the improvement that can be achieved over
the standard setup; in other words, there is no “optimal” configuration.

Additional issues deserve careful study: for instance, the effects due to
a Poissonian beam (total number of incoming particles N not fixed) and a
complex transmission coefficient 7.

Let us also comment on experimental feasibility. Figure 35 shows that an
experimental test of the Zeno tomographic technique should not be as difficult
as one might think: simulations have been performed for as few as L = 10
loops in the interferometer, giving better results than the standard method. It
is reasonable to believe that a Zeno setup with a much larger number of loops
can be built for ultraviolet (UV) light (highly absorbed by some biological
samples). Also, by changing the light wavelength, one could efficiently
“observe” different regions of the sample (or slightly different samples).
Moreover, the experimental configuration we have proposed (photons in a
MZI, as in Figure 31) is certainly not the only conceivable one. Phase imaging
and tomography have been demonstrated for both X-rays and neutrons (Dubus
et al., 2002). More specific to this, Rauch and collaborators, with the VESTA
apparatus (Jericha et al., 2000; Rauch, 2001), have been able to keep neutrons
in a 1-meter long perfect-crystal storage system (“resonator”) for a few
seconds, so that the neutrons bounce back and forth between two mirrors
several thousand times. This would lead us to the full asymptotic (L > 1)
regime considered in Figure 32 and the last row of Figure 35, where the Zeno
method can perform much better.

IX. INTERFEROMETRY AND DECOHERENCE: SENSITIVITY TO
FLUCTUATIONS

Decoherence is an interesting phenomenon, related to the long-standing
issue of irreversibility. Currently, it discloses challenging perspectives in
the light of new technologies and related physical applications. There is
a widespread consensus (Giulini et al., 1996; Namiki et al., 1997; Zurek,



130 REHACEK ET AL.

Yin
” A

FIGURE 36. Scheme of a Mach—Zehnder interferometer.

1991) about the meaning of decoherence, viewed as the loss of quantum
mechanical coherence of a physical system in interaction with other systems
(“environment”). However, a quantitative definition of decoherence is subtle
and involves conceptual pitfalls (Facchi et al., 2001a; Mariano et al., 2001). In
addition, it always depends on the experimental configuration. An interesting
quantity in this context is the square of the density matrix (Watanabe, 1939).
Apart from lacking idempotency for mixed states, this quantity enjoys other
interesting features (Manfredi and Feix, 2000), but also yields results that are
at variance with naive expectations based on entropy (Facchi et al., 2001a;
Mariano et al., 2001).

We consider here two different definitions of decoherence: the first is
operational and stems from an analysis of the visibility in quantum (as well
as classical, as we will see) interference experiments (Facchi et al., 2003). We
stress that these experiments are routinely performed in neutron optics (Bonse
and Rauch, 1979; Badurek et al., 1988, 2000b; Rauch and Werner, 2000b;
Rauch et al., 1996). The second definition is based on the idempotency defect
of the density matrix and is, in this sense, less operational.

In both cases, decoherence displays an “anomalous” behavior, both as a
function of the features of the fluctuations and the incoming state. Some
concrete examples will be considered and discussed. Our analysis will focus
on neutron optics and hinge on an approach based on the analysis of
statistical fluctuations (Namiki and Pascazio, 1990, 1991; Kono et al., 1996;
Rauch and Suda, 1995, 1997; Rauch et al., 1999).

A. Fluctuations in Neutron Optics

Let us start our analysis by considering a neutron beam that crosses an MZI,
as schematically shown in Figure 36. A phase shifter A is placed in the lower
arm of the interferometer, and |v,) is the initial wave packet.
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We neglect wave-packet dispersion effects, so that the outgoing states in the
ordinary and extraordinary channels are

1 i A
o) =5[1 + e P2 |yin),
1 L5 (166)
) = 5[1 = e 1Y),

respectively. We focus on the ordinary channel, the analysis for the extraordi-
nary one being identical. Define the operator

0(4) = %[1 + P4, (167)

that accounts for the state evolution in the ordinary channel, and consider the
output density matrix

po = Vo) (Yol = O(M)|¥in) (¥in|0(A) = 0(A)5in0(A), (168)

where pi, is the density matrix of the incoming state. The trace of oo yields
the relative frequency of neutrons in the ordinary channel.

Suppose now that the phase shift A fluctuates according to a probability law
w(A— Ap), where Ay is the average phase (operationally defined as the phase
that is measured—or inferred (Rehacek er al., 1999)—in an interferometric
experiment). Therefore

/dAw(A) =1, /dAw(A)A — 0. (169)
The trace of the average density matrix is
Trpo = Tr/ dAw(A — A0)0(A)pin0(A) = Tr(51n0(4)T0(4)), (170)

where the bar denotes the average over the distribution w(A — Ap). One
obtains, after some algebra,

0(A)T0(A) = %(1 + cos ’%). (171)

Consider now the Fourier transformation of the probability density of the
fluctuations

Q2(p) = /dAw(A)ef%PA

= /dAw(A)cos% —|—i/dAw(A) sin%
=C(p) +iS(p), (172)



132 REHACEK ET AL.

where C and S are, respectively, the real and the imaginary part of £2:

C(p) =ReL2(p), (173)
S(p) =Im 2(p). (174)

In Eq. (171) we can write

pA pA pA pA
cos % = /dAw(A — Ag) cos p7 = cos %C(ﬁ) — sin uS(ﬁ).
(175)

For simplicity, we consider symmetric distribution functions, that is w(A) =
w(—A). Therefore

S(p) =0, C(p) = 2(p) (176)
and Eq. (171) becomes

0(A)T0(A) = ;[1 + 2(p) cos ”TAO} 177)

We notice, incidentally, that the same results are obtained with a different
setup (Badurek et al., 2000b): consider a polarized neutron that interacts with
a magnetic field perpendicular to its spin. Due to the longitudinal Stern—
Gerlach effect (Mezei, 1988; Golub et al., 1994), its wave packet is split into
two components that travel with different speeds and are therefore separated
in space. After a projection onto the initial spin state, the resulting final state
is slightly different from that considered in the preceding equations; we need
to replace | o) (and analogously ¥ g)) in Eq. (166) with

Vo) — 1Y) = O'(M)|¥in), (178)

where
0'(A) = [e WA 4 P4, (179)

and A is in this case the spatial separation between the two wave packets
corresponding to the two spin components. By averaging over A it is easy to
show that one obtains again Eq. (177).

By inserting the average operator in Eq. (177) into Eq. (170) one finally
determines

Tt po = 2[1 +<sz( ) cos pTAOH, (180)

where (---) = Tr[pin - - -] denotes the expectation value over the initial state
Oin- On the other hand, the momentum distribution is easily shown to be
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~ ~ 1 PAO
Po(p) = (plpolp) = Tr(Ip)(plpo) = EPin(p)[l + 2(p) cos T}
where (181)

Pin(p) = (plpinlp)- (182)

We now introduce the visibility of the interference pattern (in the ordinary
channel)

Po(p)max — Po(p)min
Po(p)max + Po(p)min
where Po (p)max [Po(P)min] is the maximum [minimum] value assumed by
Po (p) when Ag varies. By the very definition [Eq. (172)], one can verify that
0 < V(p) < 1. Notice that, according to this definition, the visibility is a func-
tion of momentum p and yields a measure of the fringe visibility of a post-
selected beam of momentum p as a function of the phase shift Ag (Badurek
et al., 2000b; Kaiser et al., 1992; Jacobson et al., 1994). Equivalently, it is
a measure of the “local” spectral visibility, under the assumption of a slowly
varying wave envelope, and so it corresponds to (the absolute value of) the
amplitude of the cosine function in Eq. (181). By using Egs. (172) and (183), it
can be inferred that the visibility is the modulus of the Fourier transformation
of the distribution of the shifts A and is therefore a quantity that is closely
related to the physical features of the phase shifter. In this way we can easily
relate the visibility of the interference pattern (and, as we will see below,
the decoherence) to the “environmental” fluctuations. Note that a completely
equivalent definition of the spectral visibility [Eq. (183)], which is neverthe-
less more symmetric and makes use also of the extraordinary channel, reads

_ |Po(p) — PE(D)|
V(p) = max = max
40 Po(p) + Pe(p) Ao
where the momentum distribution of the extraordinary channel is given by

V(p) = =[2(p)

; (183)

,  (184)

A
rz(p)cos%‘ = |2(p)

1 A
Pp(p) = EPin(m[l — 2(p) cos %] (185)

whence Po(p) + Pe(p) = Pin(p). The spectral visibility in the form of
Eq. (184) leads to a straightforward generalization that is at the basis of an
operational definition of decoherence.

B. An Operational Definition of Decoherence

Let us endeavor to provide a quantitative definition of decoherence based on
the definition of visibility given in the previous subsection. We start from
the relative frequency of particles detected in the ordinary and extraordinary
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channels:
— 1 . DA
A&on)=1Ypo==§[1+<9<nnmsfgﬁ>}
o ) 540 (186)
Ni(Ag) =Trpg = 2 1—(2(p) COST .
Their difference is
. p Ao
be(Ao)-fVé(Ao)==<S2(p)COS£%;->, (187)
and one can define a generalized visibility (Facchi et al., 2003)
. pA
V = max|No(Ag) — Ng(Ag)| = max <.Q(p) cos u>’
Ao Ao h
pAo
= niax dp Pin(p)S2(p) cos = | (188)
0

It is apparent that Eq. (188) is the straightforward generalization of the
spectral visibility [Eq. (184)], because obviously Ng +Ng = 1. It represents
a global feature of the outgoing state, in contrast with the local character
of Eq. (184). Notice, however, that when Py, (p’) = 8(p’ — p) (incoming
monochromatic beam of momentum p), the generalized visibility [Eq. (188)]
reduces to the standard “local” visibility [Eq. (183)]:

"A
fdﬂ&ﬁ—pxﬂﬂNmp 0

V = max
Ao

A
— max .Q(p)cosu‘ = V(p). (189)
Ao h
This is a consistency check, because a spectral postselection is equivalent to
injecting an incoming monochromatic beam.
In general, one obtains

A
cos %‘ = / dpPin(p)V(p) = (V(p)).
(190)
The generalized visibility yields the maximum “distance” between the inten-
sities N9 and Ng and is bounded by the “local” visibility averaged over the
momentum distribution of the incoming state.

Notice that Py, (p) is a nonnegative quantity, while £2(p), because it is a
Fourier transformation, is not. For this reason, in general, the max 5, does not
enter into the integral sign in Eq. (188), so that Eq. (190) is a strict inequality.
However, in the particular case £2(p) > 0, V saturates its upper bound, the

Y < HZaX/dPPin(P)|Q(p)|
0
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equality sign holds in Eq. (190), and Eq. (188) simplifies into

V= /dPPin(p)Q(P) (£2(p) = 0). 191)

As is often expected, the most interesting cases are those situations in which
£2(p) is not always positive, giving rise to “anomalous” situations.

In order to understand the physical meaning of the generalized visibility, it
is useful to look at the example of a fluctuation-free phase shifter, w(A) =
8(A), for which Eq. (172) yields £2(p) = 1, so that the generalized visibility
[Eq. (188)] becomes

A
Y = max /dpPin(p) cos 220
Ag h

= / dpPun(p) =1,  (192)

for any incoming distribution Pj,. This result follows also directly from
Eq. (191). For instance, for an incoming Gaussian wave packet

252 282 5
Pin(p) = P eXP(‘ﬁ(P — po) )» (193)

the interference patterns Ny and N are derived as shown in Figure 37, where
it is apparent that VV = 1.

If, on the other hand, the phase shifter fluctuates, the amplitude of the
envelope function decreases and )V < 1. We therefore give an operational
definition of decoherence, by defining a decoherence parameter:

e=1—-V=1—max
Ao

<Q(ﬁ) cos H»

A
PAo
=1 —max| [ dpPin(p)§2(p)cos —|. (194)
Ao h

N()7 NL’
1
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0.2
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FIGURE 37. Relative frequencies of neutrons detected in the ordinary Ao and extraordinary
NE channel versus kgAg (kg = po/h), for an incoming Gaussian wave packet [Eq. (193)] with
kod = 12 and a fluctuation-free phase shifter. The two intensities differ in phase by 7 and their sum
is 1. The generalized visibility [Eq. (188)] is 1.
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Notice that, by Eq. (192), ¢ = 0 for a fluctuation-free phase shifter (quantum
coherence perfectly preserved), whereas ¢ — 1 when the magnitude of the
fluctuations increases, £2(p) — 0 and the envelope function in Figure 37
squeezes away all oscillations, eventually yielding N (Ag) = Ng(Ap), in-
dependent of Ag. Observe also that )V and ¢ are independent of the coherence
of the initial state (namely, they do not depend on the off-diagonal terms
of the density matrix). Conversely, they strongly depend on the momentum
distribution of the initial state [Eq. (182)]. In this sense, they measure the loss
of quantum coherence caused by a given physical setup, independent of the
coherence of the incoming state.

It is important to stress that the above definition of decoherence is oper-
ational. First the relative frequencies of neutrons detected in the ordinary
and extraordinary channels are measured as a function of Ag, both being
measurable quantities. Then Eq. (188) is evaluated and ¢ is computed.

1. Some Examples

The decoherence parameter [Eq. (194)] depends on the product of the mo-
mentum distribution of the incoming beam times the spectrum of the phase-
shifter fluctuations, Pi,(p) x §2(p). These two ingredients affect ¢ at the same
level. Therefore their role can be interchanged: by maintaining their product
unaltered, there exist “dual” situations that give exactly the same decoherence
parameter with very different kinds of statistical fluctuations and incoming
states.

Noting the above remark, it is interesting to study some particular cases
that can be treated analytically. Let the phases be distributed according to a
Gaussian law with standard deviation o

PRY)
: ex%u), (195)

w(A — Ag) = 752

o

so that £2(p) = exp(—p202/2h?) and the decoherence parameter reads

252 A
/a’pPin(p) GXP(——pzhz )COS<—ph 0)

2.2
—1- / dp Pin(p) exp(—%) (196)

For the Gaussian wave packet [Eq. (193)], one determines

82 82 o’k
11— exp-— T 0, 197
¢ 52+o2/4eXp< 521 02/4 2 > (157)

& =1—max
Ao
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FIGURE 38. Decoherence parameter ¢ [Eq. (197)] versus width § of the Gaussian wave packet
and standard deviation o of the fluctuating shifts (kg = po/h).

with kg = po/h. This is exact and is shown in Figure 38. At fixed § the
decoherence parameter [Eq. (197)] increases with o, although the details of
its behavior are strongly dependent on the spatial width of the packet §. This
behavior agrees with expectation: decoherence ¢ increases with the magnitude
o of the fluctuations.
For a monochromatic beam [Py, (p') = 8(p — p)]
Ko

eg=1—e 12, (198)

with k = p/h. This is shown in Figure 39(a) and can be obtained from
Eq. (197) in the § — oo limit. Notice that high momenta are more fragile
against fluctuations (Rauch and Suda, 1995, 1997; Rauch et al., 1999).
Moreover, when the distribution of the shifts is Gaussian, & and equivalently
V(p) are monotonic functions; they both depend “smoothly” on o.

Let now the phase shifts be distributed according to the law (Facchi et al.,
2001a; Mariano et al., 2001)

1 1
w(A —Ap) = — ,
T /262 — (A — Ag)?

(199)

for |[A — A9l < +/20 and 0 otherwise, with standard deviation
( f A2w(A)dA)'/? = o. From an experimental perspective this is more
convenient and easier to reproduce than the Gaussian distribution in Eq. (195).
Indeed, Eq. (199) follows from a phase A(r) = Ag + V20 sint, where ¢
(“time”) is a parameter, uniformly distributed between 0 and 27, namely,
w(A) = 0277 dt8(A — /20 sin t)/2m. (One can require V20 < Ag, in
order that A(¢) be positive—and the term V20 sint be regarded as a “small”
fluctuation around the average value. However, strictly speaking, this is not
necessary from a mathematical point of view.) From Egs. (199) and (172) the
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following is derived:

V2o pA
o _ dA e'n
(p) = 7 02 — A2
—+/20
/2 f
dt 2
- / —exp(i ? sint) - Jo< p"), (200)
b4 h
-/

where Jy is the Bessel function of order zero. The decoherence parameter in

Eq. (194) reads
/ dpPin(mJo(ﬁp ") cos(p—AO)‘ 201)

h h

and for a monochromatic beam one obtains (k = p/h)

S e

This function is shown in Figure 39(b): observe that decoherence is not a
monotonic function of the noise o in Eq. (199).

A comparison between Figures 39(a) and 39(b) is interesting. In both cases,
fragility at high momenta p = #k is observed. However, the behavior of
decoherence in Figure 39(b) is somewhat anomalous and against naive expec-
tation. For a given k, there are situations where decoherence ¢ decreases by
increasing the strength of the fluctuations o. Note also that we are considering
incoming monochromatic beams, whence, according to Eqgs. (189) and (194),

& =1—max
Ao

&r = 1 — max
A

€k €k
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
1 2 3 4 SkO' 1 2 3 4 Sko.
(a) (b)

FIGURE 39. (a) Decoherence parameter & (198) versus ko, for a monochromatic beam
interacting with a shifter fluctuating according to Eq. (195). (b) Decoherence parameter g (202)
versus ko, for a monochromatic beam interacting with a shifter fluctuating according to Eq. (199).
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ex = 1 — V(hik) and the decoherence parameter is strictly related to the
standard visibility of the interference pattern. Therefore, in the anomalous
regions, an increase in visibility is observed by increasing the fluctuations of
the phase shifter, a phenomenon somewhat similar to stochastic resonance
(Benzi et al., 1981, 1983). This is true not only for monochromatic beams,
but also for narrow distributions (packets) in momentum space.

These anomalous results are not entirely surprising compared with other
known results in classical optics. The visibility of a classical interference
experiment can be expressed as the Fourier transformation of the spectral
distribution of a quasi-monochromatic light source, and it displays some
“anomalies” even in cases that are different from our “Gaussian” example
in Eq. (193). See Born and Wolf’s (1999) book and Facchi et al. (2003).

C. Wigner Function in the Ordinary Channel

In the previous subsections we proposed a definition of decoherence based on
the visibility of the quantum interference pattern. As seen, this definition has
some unexpected features, somewhat at variance with expectation. However,
alternative definitions of decoherence are possible, based on the density
matrix and on the Wigner function, whose definition and properties were
reviewed in Section III.H. For a squeezed or a Gaussian state, one obtains
essentially Eq. (86)

(x — x0)?
2682

where x and p = hk are the position and momentum of the particle and &
is the squeezing parameter. Consider now a neutron wave packet that is split
and then recombined in an interferometer, with a phase shifter A placed in one
of the two routes. The Wigner function in the ordinary channel (transmitted
component) is readily computed:

Wo(x, k, A)
1 — x0 + A)?
= o exp[ 26k — ko)] [exp<—%)

_ 2 _ AN2
+ exp(—%) + zexp<—%> cos(kA)]. (204)

This result is slightly different from Eq. (88) because the phase shifter is now
placed in only one of the two routes (see Figure 36). Again, for A # 0, the
above expression is not normalized to unity (some neutrons end up in the

extraordinary channel—reflected component). For A = 0 (no phase shifter),
Eq. (203) is recovered.

W(x, k) = % exp[— ] exp[—28%(k —ko)*],  (203)
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D. Alternative Definition of Decoherence

We look at a particular case and assume that the shifts A fluctuate around their
average Ag according to the Gaussian law [Eq. (195)]. The average Wigner
function is stated as

W(x, k)= /dAw(A)W(x, k, A) (205)

and represents a partially mixed state. Essentially, this Wigner function
represents the whole ensemble of neutrons in an experimental run. For the
double Gaussian state [Eq. (204)], obtained when a neutron beam crosses an
interferometer, the average Wigner function in the ordinary channel is stated
as

exp[—282(k — ko)?]
47

Pl7202 ] TV o2+ 02 TP 207+ 00

Wo(x, k) =

52 (x + 52 + k28%02
+2 o exp| — o
82+ 2 282+ %)
282 A0 — xo2
x cos( k————— )1, (206)
2082+ %)

where we set xg = 0 for simplicity. Its momentum marginal (the momentum
distribution function) can be computed analytically and is of interest, because
it displays fragility at high momenta (Badurek et al., 2000b; Rauch and Suda,
1995, 1997; Rauch et al., 1999):

82 k*o?
P(k) = Zexp[—%z(k—ko)z][l +exp| ——— cos(kAo)]. (207)

The average Wigner function in Eq. (206) is shown in Figure 40. A strong
(exponential) suppression of interference is observed at high values of k.
Notice that the oscillating part of the Wigner function is bent toward the
negative x-axis. This is due to the x-dependence of the cosine term in
Eq. (206) that entails different frequencies for different values of x.

The loss of quantum coherence is clearly visible in Figure 40 as the level
of noise o increases. An attempt can be made to corroborate this qualitative
conclusion by introducing a quantitative notion of decoherence based on the
Wigner function; however, as we shall see later, the same kind of difficulties
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FIGURE 40. Wigner function in the ordinary channel Eq. (206) for different values of the

standard deviation o in Eq. (195). From left to right, 0 = 0, 0.9, 1.8 A. We set x0=0,kg=1.7 A_] s

8§ = 1.1A, Ag = 16.1 A. Position x and momentum k are measured in A and AL respectively.
Notice the strong suppression of interference at large values of momentum, both in (b) and (c). The
interference term in Eq. (206) depends on x and the oscillating part of the Wigner function is bent
toward the negative x-axis.

are encountered as in Section IX.B. First recall that there is an interesting
relation between the square of the Wigner function and the square of the
density matrix:

Tr p2
2

It is therefore possible to define an alternative decoherence parameter (Facchi
et al., 2001a; Mariano et al., 2001), that takes into account the coherence
properties of the neutron ensemble

/ dx dkW (x, k)> = (208)

Tr p2 27 [ dx dkW (x, k)?

S (Trp)? ([ dx dkW (x, k))?

This quantity measures the degree of “purity” of a quantum state: it is
maximum when the state is maximally mixed (Tr 5> < Trp) and vanishes
when the state is pure (Tr p% = Trp). In the former case, the fluctuations
of A are large and the quantum mechanical coherence is completely lost,
whereas in the latter case, A does not fluctuate and the quantum mechanical
coherence is perfectly preserved. The parameter in Eq. (209) was introduced
within the framework of the so-called many Hilbert space theory of quantum
measurements (Namiki et al., 1997) and yields a quantitative estimate of
decoherence. The related quantity Tr 5 — Tr > was first considered by
Watanabe in 1939. A quantity related to ¢ was also introduced to derive
a quantitative estimate of information for a quantum system (Brukner and
Zeilinger, 1999).

It is also noteworthy that the notion of decoherence just introduced is based
on the square of the density matrix (or Wigner function) and therefore is

(209)
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FIGURE 41. Decoherence parameter versus coherence length of the wave packet § and standard
deviation of the fluctuation o for a double Gaussian wave packet [Eq. (204)] in the ordinary channel of
an MZI. We set ko Ag = 27.4. The decoherence parameter is not a monotonic function of o for every
value of 8. Notice that & never reaches unity (¢ < 3/4); this is due to the fact that only one Gaussian
(in one branch of the interferometer) undergoes statistical fluctuations (see [Eq. (206)] and Figure 40).

not accessible to a direct measurement procedure. In this sense, it is less
“operational” than that discussed in Section IX.B.

The decoherence parameter in Eq. (209) is shown in Figure 41 as a function
of the coherence length of the wave packet 6 in Eq. (204) and the standard
deviation of the fluctuations o. It is not a monotonic function of ¢ for all
values of §. Again, as in Section IX.B, there are situations in which a larger
noise yields a more coherent wave packet (according to a given definition).
The behavior of & has a nontrivial dependence both on the fluctuations (o)
and on the wave packet properties (kg and 4).

E. Entropy

The conclusions of the previous subsections can be corroborated and put on
a somewhat sounder basis by computing the entropy of the distribution of the
shifts according to the formula

S = —/dAw(A)log w(A). (210)

This quantity yields an estimate of the collective “degree of disorder” of the
distribution of the shifts w(A). General conclusions can be drawn about the
behavior of § as a function of a parameter o characterizing the width of the
distribution. For instance, let w(A; o) be the symmetric distribution with the
properties in Eq. (169), with o as its standard deviation. By assuming that the
distribution function w depends only on the single dimensional parameter o,
then it must scale according to

1 A
w(A; o) = gw<;; 1). 211)
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Therefore

S(o) = —/dAw(A; o)logw(A; o)

()l (2

= —/dA’w(A’; Dlogw(A’; 1) +/dA’w(A’; 1)logo
— 5(1) + logo, 212)

where S(1) is independent of o and depends only on the form of the
distribution function. S(o) is clearly an increasing function of o.

For example, the Gaussian distribution in Eq. (195) yields the following
(Suda, 1995):

1
S(o) =logo + 2 log(2me), (213)

whereas the “sine” distribution in Eq. (199) yields
1
S(o) =logo — 3 log 2. 214)

Therefore the behavior of the decoherence parameter ¢ as a function of the
entropy S of the shifts is qualitatively equivalent to its behavior as a function
of the standard deviation o. Indeed, Figures 38, 39, and 41 would differ
only for a logarithmic scale on the abscissas. As shown above, in general,
the two quantities S and ¢ do not necessarily agree; in other words, the loss
of quantum mechanical coherence is not necessarily larger when the neutron
beam interacts with fluctuating shifts of larger entropy.

X. QUANTUM TOMOGRAPHY OF NEUTRON WAVE PACKETS

The previous sections were devoted to the different aspects of neutrons that
can be used for imaging and sensing. As has been shown, various objects or
fields can be characterized via their actions on particular degrees of freedom
of the particles used. We have considered the influence of the environment on
the neutron number, phase, and interference and the ability of the environment
to act as a which-way detector. Most generally, the process of imaging can be
described as follows. The particles used for imaging are prepared in an initial
quantum state. The objects or fields we want to characterize then interact
with the particles, which results in an overall transformation of the input
state. Finally, the output particles are measured and the transformation we are
interested in is inferred from the result of this measurement. This problem
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ol

is usually underdetermined and only certain aspects of the transformation
are accessible based on the collected data. Obviously, in order to completely
specify the general transformation of a quantum state, repeated measurements
must be used with different known input states. But even in neutron optics,
where the input state of neutrons cannot be easily controlled an improvement
of imaging can be expected, provided simple final measurements are replaced
by the complete tomography of the output neutrons. The following text
describes a setup for tomography of spatial degrees of freedom neutrons.

A. Experimental Setup for the Complete Tomography of Neutrons

The set of measurements that can be done on neutrons to determine their
quantum state is severely limited by the very low time resolution of the
available detectors. In quantum optics, this obstacle can be overcome by
mixing the weak input field with a strong local oscillator. By changing the
phase ¢ of the oscillator, the spectral decompositions of all quadratures can
be measured as

5(\(/, = Xcos¢ + psing, (215)

where X and p are the canonically conjugated operators of position and
momentum. Of course, no such local oscillators exist for neutrons. However,
massive particles experience a transformation of the type in Eq. (215) in the
course of free evolution: %(¢) = X + (p/m)t, where m is the mass. Thus, free
evolution of the wave packet followed by a position-sensitive measurement
yields information about a subset of quadratures X4, ¢ € [0, /2]. For
example, Kurtsiefer et al. (1997) used free evolution for the reconstruction
of transversal motional states of helium atoms. Here we are interested in the
longitudinal degrees of freedom. Since neutron detectors have very bad time
resolution, free evolution alone cannot be used to generate a tomographically
complete set of measurements.

Feasible measurements on thermal neutrons consist of (1) measurements
of the contrast and phase of interference fringes in an interferometric setup
(see Figure 42, without momentum kick), and (2) spectral analysis of the
neutron beam using an adjustable Bragg-reflecting crystal plate together with
a position-sensitive detector. This set of observables is not tomographically
complete because the measurable (complex) contrast of the interference
pattern (Rauch and Werner, 2000a) (A = 1),

F(Ax) = ([P |y = / ()P Pdp, 216)

where a(p) = (p|y) is not sensitive to the phase of a(p) and no information
about quadratures other than p is available.



ADVANCED NEUTRON IMAGING AND SENSING 145

0]

Incoming
beam

11 X

P

FIGURE 42. Scheme of a perfect-crystal neutron interferometer. The incoming beam is split at
the first crystal plate, reflected at the middle plate, and recombined again at the third plate. The detector
is placed in beam O where the visibility is higher due to the same number of reflections/transmissions.
In addition to a position shift Ax routinely used in neutron experiments, a momentum kick Ap has
been added in path II to make the interferometric measurement tomographically complete; see text for
details.

Obviously, the situation would be different if both the position (phase)
and the momentum of the incoming wave packet could be shifted inside the
interferometer. Such a thought experiment is shown in Figure 42. In that case,
the Wigner function describing the ensemble of measured neutrons would be
related to the measured contrast

[(Ap, Ax) = Tr|pel4r¥ei 4P} = /ei(Ap)x<x|,5|x + Ax)dx (217)
by a simple integral transformation

W(x,p)://e—"%““*ivl’r(—u,v)dudv, (218)

where u = Ap, v = Ax and p is the density matrix.

Although this thought experiment appears simple, its experimental real-
ization, according to Figure 42, would be rather difficult. Large momentum
kicks acquired by the neutron in the lower arm would change its de Broglie
wavelength and spoil the Bragg reflection at the last crystal plate. Therefore
we now propose a modified scheme that can substitute the interferometric
setup of Figure 42.

B. Setup

In the scheme shown in Figure 43, the incoming neutrons polarized in the +z
direction, |¥) = |{)|z4), where i denotes the spatial degrees of freedom,
first propagate freely through a distance L, undergoing a unitary operation
U, = exp[—iﬁzL/(Zpo)]. In the following, we assume that the input wave
packets are quasi-monochromatic, 6, < po, with a central momentum py.
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FIGURE 43. Setup for the tomography of motional states of neutrons. M|, My, Magnetic
mirrors; L, region of free propagation; B, static magnetic field controlling the momentum kick
Ap; F, box containing a static magnetic field (aligned along +y) and an radiofrequency (RF) coil;
D, detector. The arrows denote the polarization of neutrons after reflections from magnetic mirrors.

This condition guarantees that the action of the radiofrequency (RF) coil
is practically equivalent to a momentum “kick.” After the region of free
propagation, the neutrons are let through an RF coil placed in a static magnetic
field polarized along the —y direction (see Figure 43). As a result of the
interaction between the neutron and the coil, the y, (y—) component of the
input state will be accelerated (decelerated). Assuming that the region of
interaction is short, so that the dispersion of the wave packet of the neutron
can be neglected in the coil, in the quasi-monochromatic approximation, the
net momentum transfer can be described by the effective unitary operator,

Uy = e 252y ) (y4 | 4 e 14P 2 1y ) (y_|, (219)
where
2uB
Ap =221 (220)
Po

Prior to detection, the particles are polarized along the +z direction again to
erase the which-way information stored in the polarization degree of freedom.
The probability of a neutron being detected is given by the norm of the
transmitted component,

P =Tr{M(Ap, Ax)p}, (221)
where p refers only to the spatial degrees of freedom and
[T(Ap, Ax) = (24U U] |24 )24 102U |24) (222)
F L o2 . . s L a2
=1/2+ €207 & 4P% e 20 4 4 pc.
= 1/2 4 &/ APEFLD/PO) /4 4 e, (223)
= 1/2 4 &/ APl APT = IAXAP/2 14 4 (224)
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where we denoted

ApL  2uBmL

Ax = =
Po I

(225)

C. Radon Inversion

Notice, that the positive operator-valued measure elements in Eq. (223) can
also be restated in terms of quadrature operators,

[(Ap. Ax) = (1/4)(1 + %) + he., (226)
where (in fixed units)
= A A Ax L
Xg = cosOx + sin6p, tanf = — = —, (227)
Ap  po

and w = /Ax? + Ap?. Thus, for a fixed 6, the data contain information
about the characteristic function of the quadrature Xy,

P(Ap, Ax) = 1/2 4+ Re{Cx, (w)}/2, (228)
(Cxy (@) = / Px, (x)e'* dx. (229)

By changing L one changes the quadrature measured, while w, which depends
on both L and B, determines the observed spatial frequency of the probability
distribution of this quadrature. The observed quadratures range from X (for
L =0)to p (for L — 00). From the measurement of Cyx, (w), the “shadows”
Px, (x) of the Wigner function can be obtained by the Fourier transformation,
which in turn yield the Wigner function by an inverse Radon transformation
described in Section II1.J.

Since the contrast I"(Ap, Ax) is essentially the Fourier transformation of
the Wigner function W (x, p) [see Eq. (218)], the largest values of Ap and Ax
are related to the smallest resolved details in x and p, respectively. Namely,
(reinserting #),

(Ap)max = 1/ (8X)min, (Ax)max = A/(8P)min, (230)

where (6§x)min and (6p)min denote the x and p resolutions. Egs. (220) and
(225) yield
o po
(6% ) min 25m Byiax ,
For a neutron of wavelength A9 = 0.37 nm (Badurek ef al., 2000b), assuming
the reasonable values Lyjax = 1 m and Byax = 0.1 T, one gets (§x)min =
60 um and (6p)min = A X 10° m~1.

(3P)min = %(&e)mm. (231)
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D. Statistical Inversion

The procedure outlined above, based on the direct inversion formula in
Eq. (218), has several drawbacks. (1) Realistic data are always noisy. In
that case, formula (218) can yield unphysical results, such as the Wigner
representation of a nonpositive definite operator. (2) The Wigner function
in Eq. (218) depends on the measured data indirectly through the complex
degree of coherence I", which itself has to be estimated with the help of an
auxiliary position shifter. This intermediate step is, certainly, not necessary as
all available information about the Wigner function of the incoming neutrons
is contained in the raw data measured without any auxiliary position shift. To
avoid these problems, we propose use of the ML quantum state reconstruction
(Hradil, 1997; Rehédgek et al., 2001; Paris and Rehdgek, 2004). The main
advantages of this method compared with the above direct inversion are
as follows. (1) Asymptotically, for large data samples it provides the best
performance available. (2) Any prior information about the measured neutrons
and the known statistics of the experiment can be used to increase the accuracy
of the reconstruction. (3) The existing physical constraints can be easily
incorporated into the reconstruction. Most notably, this technique guarantees
the positivity of the reconstructed density operator. (4) It can be applied
directly to raw counted data.

Assuming that the statistics of the experiment are Poissonian, the ML
reconstruction consists in minimizing the Kullback-Leibler distance (relative
entropy) between the measured data f(Ax, Ap) and the renormalized theoret-
ical probabilities P(Ax, Ap)/ > P, of Eq. (228). This problem is a quantum
generalization of the ML transmission tomography discussed in Section V.
As shown by Hradil (1997) and Rehacek et al. (2001), the ML density matrix
can be obtained as a fixed point of the iterations of a nonlinear operator map.
In this point the likelihood functional must be stationary. Decomposing the
density matrix as follows: p = ATA, this condition reads,

a A A 8 p A~ A ~ A
_log L(ATA) = — —  —RAT-GAT=0, (232
94 ° (474) Zf’Z‘
where
~ P~ -~ '/f" ~
R=> "1, G:LZ@, (233)
j

and the parameters Ax and Ap have been discretized and replaced by a
collective index j = {Ax;, Ap;}. Multiplying the last equality of Eq. (232)
by A and rearranging we get the expression for the i-th iteration of the ML
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state:
o =G 'Rp\-'RG . (234)

A good starting point is the maximally mixed state 50 = 1 /d. This algorithm
was applied to computer-generated data to test the realistic performance of
the proposed setup in Figure 43.

E. Simulation

As follows from the parameter estimates given after Eq. (231), the proposed
tomography scheme using thermal neutrons will likely have sufficient res-
olution in momentum. On the other hand, even for well-monochromatized
thermal beams, the resolution in position is expected to be several orders of
magnitude worse than typical coherence lengths. The simulations in Figure 44
illustrate the effect of the restricted range of Ap on the reconstruction.
Consider first a measurement of a minimum uncertainty Gaussian wave
packet that is in the moving frame parameterized by its coherence length,
W) f exp(—kzlczoh)|k) dk. Provided the apparatus has a sufficient spatial
resolution, dxmin < leon, @ faithful reconstruction is readily obtained (upper
left panel of Figure 44). More realistic measurement with §xpin > lcon Would
obviously yield the Wigner function smoothed out substantially along the x
axis. However, the states measured in a real experiment will not be minimum
uncertainty states. Instead, the experimenter deals with time-evolved states

'
-

FIGURE 44. Reconstructed Wigner functions of Gaussian states (upper row) and superpositions
of Gaussian states (“cats;” lower row) from simulated data. A 50 x 50 matrix of Ax and Ap
shifts was used for the ML inversion. Left column: reconstructed original states; middle column:
reconstructed time-evolved states; right column: reconstructed time-evolved states with reduced
resolution, 8xmin/lcoh =~ 10. In each frame, the regions lighter than the edges represent positive
values. The regions darker than the edges represent negative values.
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@ (T)) =U(T)|¥g) x f exp(isz — kzlczoh)|k> dk that are strongly affected
by dispersion. As a consequence, the wave packet spread 67 very soon

becomes larger than the resolution limit, 67 = ,/ lczOh + T2/ lczOh > 8Xmin, and

good reconstruction can be achieved with a realistic apparatus. Compare the
upper middle and upper right panels in Figure 44, which show reconstructions
with sufficient and reduced but more realistic resolutions of §xmin & Ilcon/2
and 8xpmin & 10l.0n, respectively.

Imaging of nonclassical states is a much more delicate problem. Let us
consider superpositions of spatially separated Gaussian states (Schrodinger
cats), |Weat) X [1 + U (A)]|¥g) = f[l + exp(ik A)]|Wg). Such states can be
prepared, for example, by means of a double-loop perfect-crystal interferom-
eter (Baron et al., 2003). As shown by Badurek et al. (2000b), the preparation
of thermal neutron cat states with separations exceeding the corresponding
coherence lengths of the individual components, A > I, is possible.
Provided the apparatus has sufficient resolution, the nonclassical character of
this state is manifested by the negative regions of the reconstructed Wigner
function (lower left panel of Figure 44). Taking into account the vacuum
dispersion, | (T)) = U(T)|¥cat), the ordering of the relevant parameters
will likely proceed as follows: lcop < A K Sxmin < §T. As simulations
show, a realistic measurement whose position resolution is much worse than
the coherence lengths of the individual cat state components tends to wipe
out the negative regions of the reconstructed Wigner function (compare the
lower middle and lower right panels of Figure 44). On the other hand, the
primary features of such exotic states, such as their non-Gaussian character
and the global spatial properties (of which little is known today), should
still be accessible to a realistic wave packet tomography. To resolve more
subtle quantum interference effects of the order of the coherence length, more
refined experimental techniques may be needed. An idea could be to replace
thermal neutrons by ultracold neutrons, for which much larger momentum
shifts Ap (and thus much smaller §xni,) can be obtained.

XI. CONCLUSIONS

The purpose of this chapter was to provide an overview of recent important
improvements in imaging techniques for thermal neutron beams. On one
hand, we have shown that a statistically correct data handling can significantly
enhance well-known imaging methods, such as transmission tomography.
Sometimes, especially in imaging, where coherent effects play a major role,
this enhancement becomes crucial. Due to the extremely low coherent in-
tensities of present thermal neutron sources, phase-contrast tomography with
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thermal neutrons would hardly be possible without extracting all available
information on the object and the neutron beam itself.

On the other hand, we introduced some novel imaging methods that are
based on the genuinely quantum properties of neutrons. We have shown how
quantum interference and repeated measurements, hinging on the QZE, can
be used for the purpose of a safer neutron radiography. In a similar spirit, the
fast decoherence of nonclassical neutron states in an interferometer, together
with a complete quantum-state tomography, can be used to achieve a highly
sensitive quantum imaging of fields and noise. These last techniques are still
an experimental challenge today, but one can realistically hope that in the near
future they will significantly push forward the limits of imaging with thermal
neutron beams.
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