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We discuss three different control strategies, all aimed at countering the effects of decoherence.
The first strategy hinges upon the quantum Zeno effect, the second makes use of frequent unitary
interruptions (“bang-bang” pulses), and the third of a strong, continuous coupling. Decoherence
is suppressed if the frequency N of the measurements/pulses is large enough or if the coupling
K is sufficiently strong. However, if N or K are large, but not extremely large, all these control
procedures accelerate decoherence.

PACS numbers: 03.67.Pp; 03.65.Xp, 03.65.Yz; 03.67.Lx

I. INTRODUCTION

The deterioration of the coherence features of quantum systems, due to their interaction with the environment, is
known as decoherence [1] and represents the most serious obstacle against the preservation of quantum superpositions
and entanglement over long periods of time. The possibility of controlling (and eventually halting) decoherence is
a key problem with important applications, e.g. in quantum computation [2]. We focus here on three schemes that
have been recently proposed in order to counter the effects of decoherence. The first is based on the quantum Zeno
effect (QZE) [3-5]), the second on “bang-bang” (BB) pulses and their generalization, quantum dynamical decoupling
[6] and the third on a strong, continuous coupling (when this can be viewed as a measurement of some sort [7]).
These apparently different methods are in fact related to each other [8] and a sistematic study of their analogies and
differencies helps understanding under which circumstances and physical conditions all these controls may accelerate,
rather than hinder decoherence.

In this paper we will outline the main results of a comparison among these control strategies (the complete proofs
can be found in [9]). We stress that the notion of “bang-bang” control is well known in engineering and in connection
with spin-echo techniques [10], so that the control can be considered “classical,” its revival in quantum-information-
related problems being very recent. Moreover, the idea that a strong continuous interaction with an external field or
“apparatus” may be viewed as a measurement on the system and can slow its dynamics is not new [7]. (In fact, this
turns out to be one of the most efficient control procedures.) For the above-mentioned reasons, the similarities among
the three control methods are not surprising and their comparison interesting.

Our main objective is to endeavor to understand in which sense one can control decoherence [11] and to outline the
key role played by the form factors of the interaction. The method we propose is general and can be applied to diverse
situations of practical interest, such as atoms and ions in cavities, organic molecules, quantum dots and Josephson
junctions [12].

II. GENERALITIES AND NOTATION

Let the total system consist of a target system S and a reservoir B and its Hilbert space be expressed as the tensor
product Hiot = Hs ® Hp. The total Hamiltonian

Hiow = Hy+ Hgp = Hg+ Hp + Hsp (1)

is the sum of the system Hamiltonian Hg, the reservoir Hamiltonian Hg and their interaction Hg g, which is responsible
for decoherence; the operators Hg and Hp act on Hg and Hp, respectively. Hj is the free total Hamiltonian.
The dynamics of the total system is conveniently reexpressed in terms of the Liouvillian

Liotp = —i[Hiot, p] = —i (Hiotp — pHiot) (2)
where p is the density matrix. If the Hamiltonian is given by (1), the Liouvillian is accordingly decomposed into
Liot = Lo+ Lsp=Ls+Lp+ Lsg, (3)

where the meaning of the symbols is obvious.



We assume that the interaction Hamiltonian Hgp in (1) can be written as [13]

Hop =) (Xm® Al + X}, © 4,,), (4)
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where the X, are the eigenoperators of the system Liouvillian, satisfying
Ls X, = iwmXm (Wi # wp, for m#n) (5)

and A,, are the destruction operators of the bath
A = Alg) = [ k35,00 ) (6)

expressed in terms of bosonic operators a(k), with form factors g, (k).
The bare spectral density functions (form factors) read

(@) = [ @K lgm (0P8 ) g
with k,,(w) = 0, for w < 0, and the thermal spectral density functions [N(w) = 1/(ef* — 1), where [3 is the inverse

temperature]

W) = () (V@) + 1)+ ()N () = 1 [ () = o (~)] 5)

extend along the whole real axis, due to the counter-rotating terms, and satisfy the KMS symmetry [14]

K () = ) s

N@) +1 m(w) = exp(—=fw) K7 (W) 9)

We focus on two particular (Ohmic) cases: an exponential form factor

R (@) = gPw exp(—w/A)0(w) (10)
and a polynomial form factor
(P) () = g2 v____ 11

where g is a coupling constant, A a cutoff and 6 the unit step function. In order to properly compare these two cases,
we require that the bandwidth be the same

[e%s} E o) P
W f_oo dw |w|/<;,(n)(w) B f_oo dw |w\/<;£n)(w) (12)
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We focus on a proper subspace Heomp C Hs, in which quantum computation is to be performed. For this reason
we look in detail at the case

HS = Hcomp o Horth (13)

and consider for simplicity a single qubit, Heomp = C2.
The initial state of the total system p(0) is taken to be the tensor product of the system and reservoir initial states

p(0) =0 (0) ® p5 , (14)
where the reservoir equilibrium state has an inverse temperature (3

1

PB= - exp(—8Hp), (Lpps =0) (15)

and Z = trge PHB is the normalization constant.



The system state o(t) at time ¢ is given by the partial trace

o(t) = trpp(t). (16)

There is decoherence when () is not unitarily equivalent to o(0) for a given class of initial states. In the Markov
approximation the state of the system (16) satisfies the master equation

o(t) = (Ls+L)a(t), (17)

where, up to a renormalization of the free Liouvillian £g by Lamb and Stark shift terms, £ engenders the dissipation
due to the interaction with the bath,

1
Lo = v (XOGXO -3 {XOXOaU}>

1 1
= T T _ - T
+m§217m (XmaXm - {Xme,a}) n m%ly_m (XmoXm - {Xme,a}) , (18)
where
Vm = 27‘(/-’127’6” (W) (19)

are the decay rates.
A particular case of the above is the qubit Hamiltonian

Q
Hsp =0.® [A(g0) + AT (g0)] + 02 ® [A(g1) + AT(q1)] Hy = 20 - (20)
This is of the form (4), when one identifies
Oz Fioy
Xo=o0,, X4 =0F=——0 w1 =0, wo =0, (21)
hence
1 1
Lp = q0(02p0: = p) + 741 | 0-pos — {040, p} | +7-1{ 04p0— — 5{o-04,p} ) (22)
with
Yo =2mkD(0), a1 = 27kD (£Q) . (23)

III. CONTROL PROCEDURES
A. Quantum Zeno control

In general, the purpose of the control is to suppress decoherence, as expressed by the “unitarity defect” of the
evolution (16). We first look at the Zeno control, by adapting the argument of Ref. [15]. The control is obtained by
performing frequent measurements of the system:

pﬁﬁpzZPinm (24)

where P is a projection superoperator and {P,} a complete ()" P, = 1g) set of orthogonal projection operators
acting on Hg. We restrict our analysis to a measuring apparatus that does not “select” the different outcomes
(nonselective measurement) [16]. The measurement is designed so that

PHsp =Y P.HspP,=0 & PLspP=0. (25)
n

We will see that a similar requirement is necessary for the other control procedures, to be analyzed in the next
subsections. The Zeno control consists in performing repeated nonselective measurements at times ¢t = k7 (k =



4

0,1,2,...) (we include an initial “state preparation” at ¢ = 0). Between successive measurements, the system evolves
via Hiot. The density matrix after N + 1 measurements, with an initial state p(0), in the limit 7 — 0 while keeping
t = N7 constant, reads

RIGY

R N R . 0~ e
p(t) = p(NT) = [peﬁmrfp] p(0) =P |1+ PLitPr+ 0 (72)} p(0) T=9 PePLult (0 (26)
where the controlled Liouvillian is

Lioy = PLiwP = PLsP + LpP . (27)

Hence, as a result of infinitely frequent measurements, the system-reservoir coupling is eliminated and, thus, deco-
herence is halted. Also, transitions among different sectors of the system Hilbert space, defined by the measurement
superoperator P, become forbidden, yielding a superselection rule and the formation of invariant “Zeno” subspaces
[15]. The “decoherence-free” subspace [17] is one of these Zeno subspaces.

We assume for simplicity that P commutes with the system Liouvillian

PLg = LgP, (28)
so that
L. =(Ls+Lp)P . (29)

The crucial issue is to understand what happens when the interval 7 = t/N between measurements is finite. The
evolution of the reduced state operator is governed by

o(t) = [Ls + Lz(7)] o) (30)

where the dissipative part is found to have the explicit form [analogous to Eq. (18)]
. . 1 .
Lyz(T)o = ’yg(T)P <X0PO’X0 ~3 {XoXo,PCT})
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(31)

with the controlled decay rates

VA () =7 / " o 50 (@) sine? (“’ _2‘*’”’ T) : (32)

— 00

where sinc(x) = sin(z)/x. Let us focus on the exponential (10) and polynomial form factors (11). We work in the
high-temperature case, which is rather critical from an experimental point of view, because of temperature-induced
transitions in two-level systems, and set Q = 0.01W, 3 = 50/W 1, so that temperature = 37! = 202. Observe that

V) ~ G (70 (33)
Z

TZ2:/_O:Odw/iﬁ(w):/Ooodw/{(w)coth(ﬂ;> ,

77 being the thermal Zeno time. (We dropped the suffix m for simplicity.) Notice also that
V) =, T 00, (34)
where
v = 27K (Q) (35)

is the natural decay rate (19). The ratio v%(7)/v is the key quantity: decoherence is suppressed (controlled) if
v%(T) < 7, and it is enhanced otherwise. The latter phenomenon is known in the literature as inverse Zeno effect
[18-20]. The key issue is to understand how small T should be in order to get suppression (control) of decoherence



(QZE), rather than its enhancement. This ratio v%4(7)/v is shown in Figs. 1 and 2 as a function of 7 [in units W-the
bandwidth defined in Eq. (12)]. The transition between the two regimes takes place at 7 = 7*, where 7* is defined
by the equation [20]

() =7 (36)

It is useful to spend a few words on the physical meaning of the expressions 7 — 0, § — oo in the above
(and following) formulas. Times and temperatures are to be compared with the bandwidth W (or frequency cutoff
A). Times (temperatures) are “small” when 7 < W~ (87! < W). For example, when one considers short-time
expansions in a Zeno context, the relevant timescale is 7* [20, 21]: the expansion (33) is valid for 7 < W~! (and not
7 < 77, as it is sometimes erroneously assumed).

B. Control via Quantum Dynamical Decoupling and “Bang-Bang” Pulses

We now turn our attention to the so-called quantum dynamical decoupling [6], and in particular to a kicked control
(“bang-bang” pulses). In this case, one applies after each time interval 7 an instantaneous unitary operators Uy and
gets the following convenient explicit expression of the effective Hamiltonian [8]

Ht/ot = PHtot = Z PpHot Py, (37)

where the projections P, arise from the spectral decomposition

Uy = Z e p,. (An # A mod 27,  forn #m) . (38)

By assuming again, as in (25) and (28), that [P, Ls] = 0 and that PLgpP = 0 we get the controlled evolution
p(t) = [eﬁkeﬁmn] v Pp(0) — eﬁlﬁottﬁ’p(O), T—0, (39)
where Ly is the Liouvillian corresponding to the evolution (38) and
Ll =PLiwP = (Ls+Lp)P, (40)

exactly as in (29). As in the case discussed in the previous subsection, one observes the formation of invariant Zeno
subspaces: transitions among different subspaces vanish in the 7 — 0 limit, yielding a superselection rule. In this case,
the subspaces are defined by (37)-(38) and are nothing but the ergodic sectors of Ux. Note also that the controlled
Liouvillians for bang bang pulses, (40), and for the Zeno control, (29), coincide when the set of orthogonal projections
(24) is chosen equal to the set (38) of eigenprojections of Uy, namely

L P =0, (P1) = 1. (41)

Therefore, the two controls are equivalent in the ideal (limiting) case [8]. However, throughout this article, by
dynamical decoupling we will refer to a situation where the evolution is coherent (unitary), while by Zeno control to
a situation where the evolution involves incoherent (nonunitary) processes, such as quantum measurements.

As in the Zeno control, let us look at the 7-finite situation. Let us consider the two level system (20) with
go = 0 (spin-flip decoherence). We include an additional third level—that performs the control—and add to (20) the
Hamiltonian (acting on Hg @ span{|M)})

Hay = 3 [M)(M], (42)

so that |M) is degenerate with [|). The control consists of a sequence of 27w pulses [22] between ||) and | M), given
by

Uk = exp [—im (|| )(M] + [M){I])] = P, — P-1, (43)
where

Pr= [0 Pa=P+Pu=[1[+[M)M], (44)



are the eigenprojections of Uy, (belonging respectively to e=*1 = 1 and e~**-1 = —1) that define two Zeno subspaces.
One gets for the decay rate out of state |T)

S(r) = iil)z [Hﬁ <Q+ 27”(j+ 1/2)> + kP <Q - 27”(3‘ + 1/2))]

iz (i +3

7—0 2 > 1 ™ -

~ — —— k(=(2j+1)), (45)
T (Fes)

where in the expansion we assumed that § is not too small (as compared to 7). The key issue, once again, is to
understand how small 7 should be in order to get suppression of decoherence (control), rather than its enhancement.
Notice that

(oo}

k(r —>é/{BQ _ =7, T — 00 . 46
M= 2 @3 = (46)

The ratio v¥(7)/7 is shown in Figs. 1 and 2 as a function of 7. Once again, the transition between the two regimes
takes place at 7 = 7*, where 7* is defined by the equation

() = . (47)

Observe that the mechanism of decoherence suppression (45) is not fully determined by Lo and ]5, in contrast to
the Zeno case, and depends also on the details of the Liouvillian Ly.

C. Control via a strong continuous coupling

The formulation in the preceding subsections hinges upon instantaneous processes, that can be unitary or nonuni-
tary. However, the basic features of the QZE can be obtained by making use of a continuous coupling, when the
external system takes a sort of steady “gaze” at the system of interest. The mathematical formulation of this idea is
contained in a theorem [15] on the (large-K) dynamical evolution governed by a generic Liouvillian of the type

Lx = Lot + K L. (48)

L. can be viewed as an “additional” interaction Hamiltonian performing the “measurement” and K is a coupling
constant. The evolution reads

plt) = Kt Ll Pp(0) — eFiat Pp(0), K — o0, (49)
[see (39)] where the notation is obvious and
L.P=0, (P1)=1 (50)

[see (41)].

The above statements can be proved by making use of the adiabatic theorem [23]. Once again, like in the two
previous subsections, one observes the formation of invariant Zeno subspaces, that are in this case the eigenspaces
of the interaction (50). The links between the quantum Zeno effect and the notion of “continuous coupling” to an
external apparatus or environment has often been proposed in the literature of the last 25 years [7]. The novelty here
lies in the gradual formation of the Zeno subspaces as K becomes increasingly large. In such a case, they are nothing
but the adiabatic subspaces.

In general, as in the BB control but in contrast to the Zeno case, the mechanism of decoherence suppression is not
fully determined by Hg and depends on the details of the Hamiltonians Hg and H.. Once again, this can be clarified
by looking at a specific example: consider the two level system (20) with go = 0 (spin flip decoherence). We add to
(20) the Hamiltonian (acting on Hg @ span{|M)})

Hy = —SIM){M| + KH.,
He = [)M[+ [M)(l| = Py — P, (51)



where

D M)+ (M
The third state |M) is now “continuously” coupled to state |]), K € R being the strength of the coupling. As K is
increased, state |M) performs a better “continuous observation” of |]), yielding the Zeno subspaces [5]. In terms of
its eigenprojections, H. reads

HCZUTPT—F??_P_—F??_A,_P_A,_, (53)

with P = |1)(7| and ; = 0,72 = 1. In the Zeno limit (K — oo) the subspaces H;, H4+ and H_ decouple due to
wildly oscillating phases O(K). We get

pHSB:PTHSBPT+P—HSBP—+P+HSBP+:0~ (54)

Therefore in the limit K — oo, 741 = 0 and decoherence is halted.
By diagonalizing the new system Hamiltonian one obtains for the decay rate out of state |T)

Ve (K) = M = (@ K)+ 50+ K))
~ 7h(K) (1+ e PK) ~ 1r(K), (55)
for K — oo. On the other hand,
(K)—~v, K—0. (56)

Notice that the role of K in this subsection and the role of 1/7 in the previous ones are equivalent. This yields a
natural comparison [8] between different timescales (7 for measurements and kicks, 1/K for continuous coupling).

The ratio v¢(K) /v is shown in Figs. 1 and 2 as a function of 27/ K. The transition between these two regimes takes
now place at K = K* where K* is defined by the equation

V(KT) =7 (57)

D. Comparison among the three control strategies

There is a clear difference between bona fide projective measurements and the other two cases, BB kicks and
continuous coupling. In the former case 7* depends on the global features of the form factor (i.e., its integral). By
contrast, in the other two cases 7* “pick” some particular (“on-shell”) value(s). This important difference is due
to the different features of the evolution (non-unitary in the first case, unitary in the latter cases). The different
features discussed above yield very different outputs, clearly apparent in Fig. 2, that can be important in practical
applications: decoherence can be more easily halted by applying BB and/or continuous coupling strategies. These
two methods yield values of 7% (or K*) that are easier to attain. However, this advantage has a price, because BB
and continuous coupling yield a larger enhancement of decoherence for 7 > 7, K < K*. The two dynamical methods
perform better only when 7 < 7%, K 2 K*. This is apparent in Fig. 1. We notice that a strict comparison between
continuous coupling and the other two methods is difficult, as it would involve an analysis of numerical factors of
order one in the definition of the relevant conversion factors between the frequency of interruptions 7 and the coupling
K (this factor has been sensibly—but arbitrarily—set equal to 27 in Figs. 1-2).

IV. THE ZENO SUBSPACES

The three different procedures described in the previous section yield, by different physical mechanisms, the forma-
tion of invariant Zeno subspaces. This is shown in Fig. 3. If one of these invariant subspaces is the “computational”
subspace Heomp introduced in Eq. (13), the possibility arises of inhibiting decoherence in this subspace.

Of course, in principle (in the 7, K~! — 0 limit), decoherence can be completely halted; however, the main objective
of our study was to understand how the limit is attained and analyze the deviations from the ideal situation. This
was done by studying the transition rates -, between different subspaces and in particular their 7 and K dependence
(see Fig. 3). In general, this dependence can be complicated, leading to enhancement of decoherence in some cases
and suppression in other cases. For this reason, the key issue is to understand the physical meaning of the expressions
7, K~ — 0. This point is often sloppily analyzed in the literature.
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FIG. 1: Comparison among the three control methods. The full and dashed lines refer to the exponential and polynomial
form factors, respectively. BB kicks and continuous coupling are more effective than bona fide measurements for combatting
decoherence, as the regime of “suppression” is reached for larger values of 7 and K 1.
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FIG. 2: Comparison among the three control methods: small times/strong coupling regions. 7% and K* are indicated.

V. SUMMARY AND CONCLUDING REMARKS

We compared three control methods for combatting decoherence. The first is based on repeated quantum mea-
surements (projection operators) and involves a description in terms of nonunitary processes. The second and third
methods are both dynamical, as they can be described in terms of unitary evolutions. In all cases, decoherence can be
halted by very rapidly /strongly driving or very frequently measuring the system state. However, if the frequency is not

Hs

FIG. 3: The Zeno subspaces are formed when the frequency 7! of measurements or BB pulses or the strength K of the
continuous coupling tend to co. The shaded region represents the “computational” subspace Heomp C Hs defined in Eq. (13).
The transition rates 7, depend on 7 or K.



high enough or the coupling not strong enough, the controls may accelerate the decoherence process and deteriorate
the performance of the quantum state manipulation. The acceleration of decoherence is analogous to the inverse Zeno
effect, namely the acceleration of the decay of an unstable state due to frequent measurements [18-20].

It is convenient to summarize the main results obtained in this article in the particular case of a two-level system
(qubit) with energy difference 2. If the frequency 7! of measurements or BB kicks, or the strength K of the coupling
tend to oo, the two-dimensional (Zeno) subspace defining the qubit becomes isolated and decoherence is completely
suppressed. However, if 771 and K are large, but not extremely large, the transition (decay) rates between the
qubit subspace and the remaining sector of the Hilbert space display a complicated dependence on 7! and K, and
decoherence can be suppressed or enhanced, depending on the situation.

At low temperatures 37! < Q < W, where W is the bandwidth of the form factor of the interaction, the decay
rates read

)~ T, T—0,
zZ
V(1) ~ Bk (3), T—0, (58)

V(K) ~mR(K), K —o0,

where Z, k and ¢ denote (Zeno) measurements, (BB) kicks and continuous coupling, respectively, « is the form factor
and 1/7% ~ [ dwk(w) the Zeno time. As we have shown, there is a characteristic transition time 7* [coupling K*],
such that one obtains:

for 7<7" [K>K*]= decoherence suppression: ~(7)<~vy [y(K)<~],
for 7>7" [K < K*]= decoherence enhancement : ~(7) >~ [y(K) >~].
(59)
Therefore, in order to obtain a suppression of decoherence, the interruptions/coupling must be very frequent/strong.

Notice, in this context, that both 7* and 27 /K* are not simply related to the inverse bandwidth 27W ~!: they can
be in general (much) shorter. For instance, in the Ohmic polynomial case (11), one gets

5 = 20W 1 (2(n—1)a2 ) < 27rW T

2

T
T~ 27rW*1% (a’f %) < oWt , (60)

1
K*~Wa;! (%%) > w ;

where a,, = (/7/2)T'(n — 3/2)/T'(n — 1) < w/2 is a coeflicient of order 1 and n characterizes the polynomial fall off
of the form factor (11). The above times/coupling may be (very) difficult to achieve in practice. In fact, we see here
that the relevant timescale is not simply the inverse bandwidth 27W !, but can be much shorter if Q <« W, as is
typically the case. These conclusions, summarized here for the simple case of a qubit, are valid in general, when one
alms at protecting from decoherence an N-dimensional subspace.
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