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Abstract. We discuss three control strategies, whose objective is to counter the
effects of decoherence: the first strategy hinges upon the quantum Zeno effect, the
second makes use of frequent unitary interruptions (“bang-bang” pulses), and the third
of a strong, continuous coupling. Decoherence can be suppressed only if the frequency
τ−1 of the measurements/pulses is large enough or if the coupling K is sufficiently
strong. Otherwise, if τ−1 or K are large, but not sufficiently large, all these control
procedures accelerate decoherence.
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1. Introduction

The control of decoherence [1] is an important problem with many practical applications.

Decoherence hinders the preservation of quantum superpositions and entanglement over

long periods of time, and this is clearly very detrimental for many physical applications,

e.g. when one is interested in quantum computation [2]. In this article we will briefly

analyze three schemes whose objective is to counter the effects of decoherence. The first

is based on the quantum Zeno effect [3], the second on “bang-bang” (BB) pulses and their

generalization, quantum dynamical decoupling [4] and the third on a strong, continuous

coupling [5]. These methods are seemingly different, but a systematic study shows that

they are in fact related to each other, within the unifying framework of the quantum

Zeno subspaces [6, 7], and it is interesting to understand under which circumstances

and physical conditions these controls may accelerate, rather than hinder decoherence

[8]. The method we propose is general and can be applied to diverse situations of

practical interest, such as atoms and ions in cavities, organic molecules, quantum dots

and Josephson junctions.

2. Generalities and notation

We introduce notation and set up a general framework. Let the total system consist of

a target system and a reservoir and its Hilbert space Htot = HS ⊗HB be expressed as
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the tensor product of the system Hilbert space HS and the reservoir Hilbert space HB.

The total Hamiltonian

Htot = H0 + HSB = HS ⊗ 1B + 1S ⊗HB + HSB (1)

is the sum of the system Hamiltonian HS ⊗ 1B, the reservoir Hamiltonian 1S ⊗HB and

their interaction HSB, which is responsible for decoherence; the operators 1S and 1B are

the identity operators in the Hilbert spaces HS and HB, respectively, and the operators

HS and HB act on HS and HB, respectively.

The dynamics of the total system is conveniently expressed in terms of the

Liouvillian

Ltotρ ≡ −i[Htot, ρ] = −i (Htotρ− ρHtot) , (2)

where ρ is the density matrix of the total system. Starting from the Hamiltonian (1),

the Liouvillian is decomposed into

Ltot = L0 + LSB = LS + LB + LSB, (3)

where the meaning of the symbols is obvious.

We assume that the interaction Hamiltonian HSB in (1) can be written as [9]

HSB =
∑
m

(
Xm ⊗ A†

m + X†
m ⊗ Am

)
, (4)

where Xm are the eigenoperators of the system Liouvillian, satisfying

LSXm = iωmXm (ωm 6= ωn, for m 6= n), (5)

and Am are the destruction operators of the bath

Am = A(gm) =

∫
d3k g∗m(k) a(k) , (6)

expressed in terms of bosonic operators a(k), with form factors gm(k). A particular

case of the above is the qubit Hamiltonian

HS =
Ω

2
σz, HB =

∫
d3k ω(k) a†(k)a(k), (7)

HSB = σz ⊗
[
A(g0) + A†(g0)

]
+ σx ⊗

[
A(g1) + A†(g1)

]
, (8)

where the states of the qubit, |↓〉 and |↑〉, are the eigenstates of HS, and ω(k) ≥ 0 the

energy of the boson with wavenumber k. Let us introduce the bare spectral density

functions (form factors)

κm(ω) =

∫
d3k |gm(k)|2δ(ω(k)− ω) (κm(ω) = 0 for ω < 0) (9)

and the thermal spectral density functions at the inverse temperature β

κβ
m(ω) =

1

1− e−βω
[κm(ω)− κm(−ω)] , (10)

which extend along the whole real axis due to the counter-rotating terms and satisfy

the KMS symmetry [10]

κβ
m(−ω) =

N(ω)

N(ω) + 1
κβ

m(ω) = exp(−βω) κβ
m(ω), N(ω) =

1

eβω − 1
. (11)
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Let us focus, for the sake of clarity, on two particular Ohmic cases: exponential and

polynomial form factors

κ(E)
m (ω) = g2ω exp(−ω/ΛE)θ(ω), (12)

κ(P )
m (ω) = g2 ω

[1 + (ω/ΛP )2]n
θ(ω), (13)

respectively, where g is a coupling constant, Λ a cutoff and θ the unit step function. In

order to properly compare these two cases, we will require that the bandwidth be the

same:

W ≡
∫

dω ω κ
(E)
m (ω)∫

dω κ
(E)
m (ω)

=

∫
dω ω κ

(P )
m (ω)∫

dω κ
(P )
m (ω)

. (14)

We focus on a proper subspace Hcomp ⊂ HS, in which quantum computation is to

be performed

HS = Hcomp ⊕Horth. (15)

The initial state of the total system ρ(0) is set to be the tensor product of the system

and reservoir initial states

ρ(0) = σ(0)⊗ ρB , (16)

where the reservoir equilibrium state has an inverse temperature β

ρB =
1

Z
exp(−βHB), Z = trBe−βHB (LBρB = 0). (17)

The system state σ(t) at time t is given by the partial trace of the state ρ(t) of the

whole system with respect to the reservoir degrees of freedom:

σ(t) ≡ trBρ(t). (18)

There is decoherence when σ(t) is not unitarily equivalent to σ(0) for a given class of

initial states: the purpose of the control is to suppress such decoherence.

Under the assumption that the bath is in a thermal state (17), and in the Markov

approximation, the reduced state of the system (18) satisfies the master equation

σ̇(t) = (LS + L) σ(t) , (19)

where, up to a renormalization of the free Liouvillian LS by Lamb and Stark shift terms,

L engenders the dissipation due to the interaction with the bath,

Lσ =
∑

n

γn

(
XnσX†

n −
1

2

{
X†

nXn, σ
})

, (20)

where X−n = X†
n and

γn = 2πκβ
n(ωn) (21)

are the dissipation rates.
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Figure 1. The Zeno subspaces are formed when the frequency τ−1 of interruptions
(measurements or BB pulses, see later) or the strength K of the coupling tend to ∞.
The shaded region represents the computational subspace Hcomp ⊂ HS defined in Eq.
(15). The decay rates γn depend on τ or K.

3. Control and quantum Zeno subspaces

Before analyzing in some detail the different control procedures, it is useful to sketch the

main ideas that motivate this article. If the interaction between the system and some

external agent (that performs the “control”) is described in terms of some relevant

parameters (such as a frequency of interruptions τ−1 or the strength K of a relevant

coupling), the (effective) decay rates (21) will be in general functions of these parameters.

Decoherence and/or dissipation can be controlled if

γn = γn(τ or K)
1/τ or K→∞−→ 0. (22)

In such a case, the Hilbert space of the system splits into invariant sectors, that we will

call quantum Zeno subspaces [6]: see Fig. 1. If one of these invariant subspaces is the

“computational” subspace Hcomp introduced in Eq. (15), one can inhibit decoherence

and/or dissipation within this subspace.

There is, however, a very important issue, relevant for applications: the limit (22)

is mathematical, and the physical meaning of the expressions τ−1, K → ∞ must be

scrutinized with great care. The principal objective of our study is to understand how

the limit is attained and analyze the deviations from the ideal situation. We will see

that in general the functional dependence of the decay rates in (22) can be complicated,

and yields an enhancement of decoherence in some cases and a suppression in other

cases.

4. Control procedures

We can now compare the three control methods both with exponential (12) and

polynomial form factors (13). We will focus on the transition between a regime in

which decoherence is reduced (“controlled”) and a regime in which it is enhanced. We

will work in a high-temperature case, which is rather critical from an experimental point
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of view, because of temperature-induced transitions. In the two-level system (7) we set

Ω = 0.01W and β = 50W−1, so that the temperature β−1 = 2Ω.

4.1. Quantum Zeno control

The Zeno control is obtained by performing frequent measurements on the system. The

measurement is described by a projection superoperator P̂ acting on the density matrix

ρ → P̂ ρ ≡
∑

n

PnρPn, (23)

where {Pn} is a set of orthogonal projection operators acting on HS. In the following,

we restrict our analysis to a measuring apparatus that does not “select” the different

outcomes (nonselective measurement) [11], with a complete set of projection operators∑
n Pn = 1S. The measurement is designed so that

P̂HSB =
∑

n

PnHSBPn = 0. (24)

In terms of the Liouvillian, this condition reads

P̂LSBP̂ = 0. (25)

(In the next subsection a similar condition will be required for the BB control and for

the control via a continuous coupling.) The Zeno control consists in performing repeated

nonselective measurements at times tk = kτ (k = 0, 1, 2, . . .) (we include an initial “state

preparation” at t = 0). Between successive measurements, the system evolves via Htot.

The density matrix after N +1 measurements, in the limit τ → 0 while keeping t = Nτ

constant, with an initial state ρ(0), is given by

ρ(t) = ρ(Nτ) =
(
P̂ eLtotτ P̂

)N

ρ(0)

= P̂
[
1 + P̂LtotP̂ τ + O

(
τ 2

)] t
τ
ρ(0)

τ→0−→ P̂ eL
′
tottρ(0) , (26)

where the controlled Liouvillian L′tot reads

L′tot = P̂LtotP̂ = P̂LSP̂ + LBP̂ = L′S + LBP̂ . (27)

Hence, as a result of infinitely frequent measurements, the system-reservoir coupling is

eliminated and, thus, decoherence is halted. We notice the formation of the invariant

Zeno subspaces [6]: in the limit of very frequent measurements, the evolution is given

by (27) and transitions among different sectors of the Hilbert space become forbidden,

yielding a superselection rule. The subspaces are defined by the superoperator P̂ defining

the measurement and, owing to the condition (25), they are all “decoherence-free”. The

computational subspace can be any one of these Zeno subspaces.

We will assume for simplicity that P̂ commutes with the system Liouvillian

P̂LS = LSP̂ , (28)

so that

L′tot = (LS + LB)P̂ . (29)
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Let us now look at the quantum Zeno dynamics with a finite time interval τ = t/N

between measurements,

ρ(t) =
[
P̂ eLtotτ P̂

] t
τ
ρ(0) , (30)

where Ltot and P̂ are given by (3) and (23), respectively. We will consider the subtle

effects on the decay rate arising from the presence of the short-time quadratic (Zeno)

region. Therefore the standard method [12] is not applicable to the present situation

and the limit must be evaluated by a different technique. We only sketch the main

results, more details can be found in [8].

The evolution of the density matrix is governed by

σ̇(t) = [LS + LZ(τ)] σ(t) , (31)

where the dissipative part is found to have the explicit form [analogous to Eq. (20)]

LZ(τ)σ =
∑
m

γZ
m(τ)P̂

(
XmP̂ σX†

m −
1

2

{
X†

mXm, P̂ σ
})

(32)

and the controlled decay rates read

γZ
m(τ) = τ

∫ ∞

−∞
dω κβ

m(ω) sinc2

(
ω − ωm

2
τ

)
, (33)

with sinc(x) = sin(x)/x. We focus for simplicity on the two-level case (7) (with energy

gap Ω) and drop the suffix m. Notice that, in the τ → 0 limit, the dissipative part

disappears, γZ(τ) → 0, and decoherence is suppressed, as expected. On the other hand,

γZ(τ) → γ = 2πκβ(Ω), when τ → ∞ [uncontrolled evolution, see (21)]. The ratio

γZ(τ)/γ is shown in Fig. 2 as a function of τ [in units of W–the bandwidth defined

in Eq. (14)]. In general, (33) yields both Zeno (suppression/control of decoherence)

and inverse Zeno effects [13, 14] (enhancement of decoherence) as τ is changed. The

transition between the two regimes takes place at τ = τ ∗, where τ ∗ is defined by the

equation [14]

γZ(τ ∗) = γ. (34)

4.2. Control via “Bang-Bang” Pulses

We now turn our attention to the so-called quantum dynamical decoupling [4], and in

particular to a kicked control. In this case, one applies after each time interval τ an

instantaneous unitary operators Uk with spectral decomposition

Uk =
∑

n

e−iλnPn, (λn 6= λm mod 2π, for n 6= m) (35)

and considers the τ → 0 limit [7]. As in the case discussed in the previous subsection,

one observes the formation of invariant Zeno subspaces: transitions among different

subspaces vanish in the τ → 0 limit, yielding a superselection rule. In this case, the

subspaces are defined by the eigenprojections in (35) and are nothing but the ergodic
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Figure 2. Comparison among the three control methods. Full lines: exponential form
factor (12). Dashed lines: polynomial form factor (13) with n = 2.

sectors of Uk. Indeed, by assuming again, as in (25) and (28), that [P̂ ,LS] = 0 and that

P̂LSBP̂ = 0 we get the controlled evolution

ρ(t) =
[
eLkeLtotτ

] t
τ P̂ ρ(0)

τ→0−→ eL
′
tottP̂ ρ(0), (36)

where Lk is the Liouvillian corresponding to the kick (35): eLkρ ≡ UkρU †
k , and

L′tot = P̂LtotP̂ = (LS + LB)P̂ , (37)

exactly as in (29). Note that the controlled Liouvillians for bang bang pulses, (37), and

for the Zeno control, (29), coincide when the set of orthogonal projections (23) is equal

to the set (35) of eigenprojections of Uk, namely

LkP̂ = 0, (P̂1) = 1. (38)

Therefore, the two controls are equivalent in the ideal (limiting) case [7].

We now investigate the nonideal bang-bang control of decoherence (for finite τ), so

that the effects on the decay rate arising from the presence of a short-time quadratic

(Zeno) region play a fundamental role. Once again, we only give the main results.

We focus for simplicity on the two level system (8) with g0 = 0 (spin-flip

decoherence). We include an additional third level—that performs the control—and

add the following Hamiltonian (acting on HS ⊕ span{|M〉}) to (7)-(8)

HM = −Ω

2
|M〉〈M |, (39)

so that |M〉 is degenerate with |↓〉. The control consists of a sequence of 2π pulses

between |↓〉 and |M〉, given by

Uk = exp [−iπ (|↓〉〈M |+ |M〉〈↓|)] = P↑ − P−1 , (40)

where

P↑ = | ↑〉〈↑ |, P−1 = P↓ + PM = | ↓〉〈↓ |+ |M〉〈M |, (41)
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are the eigenprojections of Uk (belonging respectively to e−iλ↑ = 1 and e−iλ−1 = −1)

which define two Zeno subspaces. One gets for the decay rate out of state |↑〉

γk(τ) =
2

π

∞∑
j=0

1(
j + 1

2

)2

[
κβ

(
Ω +

π

τ
(2j + 1)

)
+ κβ

(
Ω− π

τ
(2j + 1)

)]

τ→0∼
2

π

∞∑
j=0

1(
j + 1

2

)2 κβ
(π

τ
(2j + 1)

)
, (42)

where we assumed that β is not too small (as compared to τ). In contrast to the Zeno

case, the mechanism of decoherence suppression is not fully determined by Ltot and P̂ ,

but depends also on the details of the Liouvillian Lk. Again, in the τ → 0 limit, the

dissipative part disappears (with a law that depends on the form factor), γk(τ) → 0,

and decoherence is suppressed, as expected. On the other hand, γk(τ) → γ = 2πκβ(Ω),

when τ → ∞ [uncontrolled evolution, see (21)]. The ratio γk(τ)/γ is shown in Fig. 2

as a function of τ . Once again, the transition between the two regimes takes place at

τ = τ ∗, where τ ∗ is defined by the equation

γk(τ ∗) = γ. (43)

4.3. Control via a strong continuous coupling

The formulation in the preceding sections hinges upon instantaneous processes, that can

be unitary or nonunitary. However, the main results can also be obtained by making

use of a continuous coupling, when the external system takes a sort of steady “gaze”

at the system of interest. The mathematical formulation of this idea is contained in a

theorem [6] on the (large-K) dynamical evolution governed by a generic Liouvillian of

the type

LK = Ltot + KLc, (44)

where Lc can be viewed as an “additional” interaction Hamiltonian performing the

“measurement” and K is a coupling constant. The evolution reads [see (36)]

ρ(t) = e(KLc+Ltot)tP̂ ρ(0)
K→∞−→ eL

′
tottP̂ ρ(0), (45)

where L′tot is again given by (27) under the assumption (25) and [see (38)]

LcP̂ = 0, (P̂1) = 1. (46)

The above statements can be proved by making use of the adiabatic theorem [15]. One

observes again the formation of invariant Zeno subspaces, that are in this case the

eigenspaces of the interaction (46). The links between the quantum Zeno effect and

the notion of “continuous coupling” to an external apparatus or environment has often

been proposed in the literature of the last 25 years [5]. The novelty here lies in its

generalization to any interaction and in the gradual formation of the Zeno subspaces as

K becomes increasingly large. In this case, they are nothing but the adiabatic subspaces

of the interaction.
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In general, as in the BB control but in contrast to the Zeno case, the mechanism of

decoherence suppression is not fully determined by HS and depends on the details of the

Hamiltonians HS and Hc. We clarify this point by considering again a specific example:

consider the two-level system (8) with g0 = 0 (spin flip decoherence). We again add

to (8) the Hamiltonian (39), acting on HS ⊕ span{|M〉}. However, the control consists

now in the Hamiltonian

KHc = K(|↓〉〈M |+ |M〉〈↓|), (47)

which “continuously” couples the third state |M〉 to state |↓〉, K ∈ R being the strength

of the coupling. As K is increased, state |M〉 performs a better “continuous observation”

of |↓〉, yielding the Zeno subspaces. In terms of its eigenprojections

P↑ = |↑〉〈↑|, P± =
(|↓〉 ± |M〉)(〈↓| ± 〈M |)

2
, (48)

Hc reads

Hc = η↑P↑ + η−P− + η+P+, (49)

with η↑ = 0 and η± = ±1. In the Zeno limit (K → ∞) the subspaces H↑, H+ and H−
decouple due to wildly oscillating phases O(K) and

P̂HSB = P↑HSBP↑ + P−HSBP− + P+HSBP+ = 0. (50)

The decay rate out of state |↑〉 reads

γc(K) = π
(
κβ(Ω−K) + κβ(Ω + K)

) K large∼ πκβ(K). (51)

Hence, in the K → ∞ limit, the dissipative part disappears γc(K) → 0 (with a law

that depends on the form factor), and decoherence is suppressed, as expected. On the

other hand, γc(K) → γ, when K → 0 [uncontrolled evolution, see (21)]. Notice that

the role of K in this subsection and the role of 1/τ in the previous ones are equivalent.

This yields a natural comparison [7] between different timescales (τ for measurements

and kicks, 1/K for continuous coupling).

The ratio γc(K)/γ is shown in Fig. 2 as a function of 2π/K. The transition between

these two regimes takes now place at K = K∗ where K∗ is defined by the equation

γc(K∗) = γ. (52)

5. SUMMARY AND CONCLUDING REMARKS

We have analyzed and compared three control methods for combating decoherence. The

first is based on repeated quantum measurements (projection operators) and involves

a description in terms of nonunitary processes. The second and third methods are

both dynamical, as they can be described in terms of unitary evolutions. In all cases,

decoherence can be halted by very rapidly/strongly driving or very frequently measuring

the system state. However, if the frequency is not high enough or the coupling not

strong enough, the controls may accelerate the decoherence process and deteriorate

the performance of the quantum state manipulation. The acceleration of decoherence is
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analogous to the inverse Zeno effect, namely the acceleration of the decay of an unstable

state due to frequent measurements [13, 14].

As a general rule, when one endeavors to control decoherence by suitably tailoring

the coupling of the system of interest to another system (such as an external field,

or a measuring apparatus), one should carefully look at the relevant timescales, as it

is not true that repeated measurements/interruptions always lead to a suppression of

decoherence.

It is convenient to summarize the main results obtained for the two-level system (7)-

(8) (qubit) with energy difference Ω. If the frequency τ−1 of measurements or BB kicks,

or the strength K of the coupling tend to∞, the computational (Zeno) subspace becomes

isolated and decoherence is completely suppressed. However, if τ−1 and K are large, but

not sufficiently large, the transition (decay) rates between the computational subspace

and the remaining sectors of the Hilbert space display a complicated dependence on τ−1

and K, and decoherence can be suppressed or enhanced, depending on the situation.

At low temperatures β−1 ¿ Ω ¿ W , where W is the bandwidth of the form factor

of the interaction, the decay rates read



γZ(τ) ∼ τ
τ2
Z
, τ → 0 ,

γk(τ) ∼ 8
π
κ

(
π
τ

)
, τ → 0 ,

γc(K) ∼ πκ(K), K →∞ ,

(53)

where the superscripts Z, k and c denote (Zeno) measurements, (BB) kicks and

continuous coupling, respectively, κ is the form factor and 1/τ 2
Z '

∫
dωκ(ω) the Zeno

time. As we have shown, there is a characteristic transition time τ ∗ [coupling K∗], such

that one obtains:

for τ < τ ∗ or K > K∗ ⇒ decoherence suppression: γ(τ or K) < γ,

for τ > τ ∗ or K < K∗ ⇒ decoherence enhancement: γ(τ or K) > γ.

Therefore, in order to obtain a suppression of decoherence, the interruptions/coupling

must be very frequent/strong. Notice, in this context, that both τ ∗ and 2π/K∗ are not

simply related to the inverse bandwidth 2πW−1: they can be in general (much) shorter.

For instance, in the Ohmic polynomial case (13), one gets



τ ∗Z/(2πW−1) ' 2(n− 1)α2
n

Ω
W
¿ 1 ,

τ ∗k/(2πW−1) ' αn

2

(
αnπ2

4
Ω
W

) 1
2n−1 ¿ 1 ,

K∗/W ' α−1
n

(
2

αn

W
Ω

) 1
2n−1 À 1 ,

(54)

where αn = (
√

π/2)Γ(n − 3/2)/Γ(n − 1) ≤ π/2 is a coefficient of order 1 and n

characterizes the polynomial fall off of the form factor (13). The above times/coupling

may be (very) difficult to achieve in practice. In fact, we see here that the relevant
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timescale is not simply the inverse bandwidth 2πW−1, but can be much shorter if

Ω ¿ W , as is typically the case. These conclusions, summarized here for the simple

case of a qubit, are valid in general, when one aims at protecting from decoherence a

higher dimensional subspace.

The results obtained in this paper are of general validity and bring to light the

different features of the control procedures as well as the crucial role played by the form

factor of the interaction. We do not expect any drastic change for different decoherence

mechanisms and/or different physical systems. The only somewhat delicate issue, in our

opinion, is to understand whether the system investigated can be consistently described

by means of a set of discrete levels.
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