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Zeno Subspaces for Coupled Superconducting Qubits
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Decoherence is one of the most serious drawback in quantum mechanical appli-
cations. We discuss the effects of noise in superconducting devices (Josephson
junctions) and suggest a decoherence-control strategy based on the quantum
Zeno effect.
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1. INTRODUCTION

This paper is dedicated to Prof. Emilio Santos on the occasion of his
70th birthday. His numerous contributions in the foundation of quantum
mechanics range from stochastic electrodynamics and optics to the Bell
inequality, subjects that were considered controversial until a couple of
decades ago. We therefore find it appropriate to celebrate Emilio’s birthday
by discussing a novel issue of practical interest that stems from the foun-
dation of quantum physics.

Quantum mechanics is a relatively young theory and was originally
conceived in order to describe the behavior of microscopic systems, such
as atoms and molecules. It is an extremely successful theory and hinges
upon the superposition principle, a basic postulate according to which the
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linear combination of two or more quantum states is a possible state.
The validity of this principle for the solutions of the equations of motion
requires these equations to be linear. Both are essential ingredients of the
quantum theory and are profoundly related to each other.

The superposition principle is experimentally very well confirmed for
microscopic systems. However, the last few decades have witnessed a growing
interest towards the existence of quantum superpositions of larger objects.
Such systems can be mesoscopic or even macroscopic and the application of
quantum mechanical concepts and principles therein has important conse-
quences. Among the most interesting systems of this kind there are Joseph-
son junctions and superconducting quantum interference devices.

One of the most detrimental effects against the coherent features
of these superconducting devices is decoherence(1). Decoherence tends to
suppress quantum superpositions, making these systems “classical”.(2) We
will consider the general problem of decoherence in Josephson systems,
with particular reference to the question of the preservation of quantum
superpositions.(3) Potential sources of decoherence are phonons, (normal)
electrons, nuclear spins, the electromagnetic field and the measurement sys-
tem (performing the read-out of the quantum state and enabling de facto
a reliable inference of the degree of quantum mechanical coherence). All
these sources of decoherence can be considered as being part of the
“environment” surrounding the superconducting device. We will focus in
particular on the implications for practical quantum computation.(4)

2. THE MODEL

Let us consider a Josephson junction, in the configuration shown in
Fig. 1. Its Hamiltonian in the charge regime reads

HJ = ε

2
σz − EJ

2
σx, ε(Vg) = 4EC(1 − CgVg/e), (2.1)

where EC = e2/2(Cg + CJ) is the charging energy, assumed to be much
larger than EJ (Josephson coupling), and σi ’s (i=1, 2, 3) are the Pauli
matrices.

The Hamiltonian of the junction in its environment is written as

H = HJ + η(t)Hdec, (2.2)

where the action of the environment is modeled by the noise term ηHdec,
η being a Gaussian stochastic process with

〈η(t)〉 = 0, 〈η(t)η(t ′)〉 = Fτ0(t − t ′), (2.3)
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Fig. 1. A Josephson junction: n is the number of excess Cooper
pairs, Vg the gate potential, Cg and CJ the gate capacitance and the
tunnel capacitance, respectively. EJ is the Josephson coupling. The
superconducting regions, in light blue, enclose the junction.

the brackets denoting the average over all the possible realizations of the
noise. Fτ0 is a generic function vanishing at ±∞, whose width τ0 is the
correlation time of the environment.

It is well known that there is no general recipe in order to get in
a rigorous way the “noise” terms from the total Hamiltonian (describing
the environment + the system). As a matter of fact, this program can be
carried out only in some particular cases,(5) that have played an important
historical role in clarifying the features of quantum dissipative phenom-
ena. The more pragmatic approach to the dynamics of two-level systems,
based on Eq. (2.2), has been used, e.g., in Ref. [6].

3. DECOHERENCE

For sufficiently small values of τ0, the density matrix ρ(t) of the
quantum system approximately satisfies the equation (–h = 1)

ρ̇(t) = −i[HJ, ρ(t)] −
∫ t

0
dsFτ0(s)

e−iHJs [HI
dec(s), [Hdec, ρ(t − s)]]eiHJs , (3.1)
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where HI
dec(s) = eiHJtHdece

−iHJ t is the interaction picture of Hdec. If the
correlation time τ0 is much smaller than all other characteristic times of
the problem, one can use the white-noise approximation

Fτ0(t) = τ0δ(t) (3.2)

and obtain a Gorini–Kossakowski–Sudarshan–Lindblad master equation.(7,8)

ρ̇(t) = −i[HJ, ρ(t)] − τ0

2
[Hdec, [Hdec, ρ(t)]]

= −i[HJ, ρ(t)] − τ0

2
{H 2

dec, ρ(t)} + τ0Hdecρ(t)Hdec, (3.3)

where {·, ·} is the anticommutator.
In general, in the two-level approximation, the operator Hdec in (2.2)

can be expressed as a superposition of the Pauli operators and must be
chosen according to the physical features of the system investigated. In the
following we will take

Hdec = �σz, (3.4)

in order to model the effects of charge noise. In this case, from Eq. (3.3),
the decoherence/dissipation rate is clearly of order �2τ0.

The noise provokes in general a relaxation towards a mixed state,
deteriorating the quantum features of the system (decoherence). If one
deals with a two-level system, like that in Fig. 1, there is no interesting
way to preserve the purity of the quantum state: indeed, assume that we
prepare the junction in a superposition of “up” (n = 1) and “down” (n = 0)
states. A possible mechanism for preventing the deteriorating effects of
noise is to hinder any motion, “freezing” de facto the system in one of
the (only) two available states. This is clearly not interesting, e.g. in the
context of quantum computation, where state manipulation is necessary.
There is, however, one possible way out, that consists in enlarging the
size of the Hilbert space and constraining the motion in a multidimen-
sional subspace. Physically, this can be achieved by coupling two (or more)
Josephson devices and will be discussed in the following.

4. COUPLING OF JOSEPHSON JUNCTIONS

In general, the Hamiltonian describing two interacting Josephson sys-
tems can be written in the form:

H = H0 + KHint = H(1) + H(2) + KHint, (4.1)
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where H0 = H(1) + H(2) is the total Hamiltonian of the uncoupled junc-
tions, H(1) and H(2) have the structure (2.2) and the interaction Hint
depends on the physical features of the coupling. We shall focus on
the most common coupling mechanisms and consider the interaction via:
(a) a capacitance, (b) another Josephson junction, and (c) an inductance.
The interaction Hamiltonians read

H
capacitance
int ∝ σ (1)

z σ (2)
z , (4.2)

H
Josephson
int ∝ σ

(1)
+ σ

(2)
− + h.c., (4.3)

H inductance
int ∝ σ (1)

y σ (2)
y , (4.4)

and the devices are sketched in Figs. 2, 3 and 4, respectively. We will see
that one can counter decoherence by increasing the coupling K in (4.1).
The idea hinges upon the quantum Zeno effect(9) and quantum Zeno
subspaces.(10)

Fig. 2. Josephson junctions coupled via a capacitance C.

Fig. 3. Josephson junctions coupled via a third Josephson junction.
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Fig. 4. Josephson junctions coupled via an inductance L.

5. QUANTUM ZENO SUBSPACES

Consider a system described by the Hamiltonian

HK = H0 + KHint, (5.1)

where H0 is the uncontrolled Hamiltonian and K defines the strength of
the interaction. Let

HintPn = λnPn, (5.2)

so that Pn is the orthogonal projection onto HPn , the eigenspace of Hint
belonging to the eigenvalue λn. In the large-K limit the generator of the
evolution becomes:(10)

HK
K−→∞−−−→ Hdiag = P̂HK =

∑
n

PnHKPn

=
∑
n

(PnH0Pn + KλnPn)

= HZ + KHint = Hdiag. (5.3)

It is important to notice that in Eq. (5.3) the eigenvalues are in general
distinct, λn �= λm for n �= m, and the HPn ’s are in general multidimensional.
The limiting evolution operator has the explicit form

UK(t) = exp(−iHKt)
K−→∞−−−→ U(t) = exp(−iHdiagt), (5.4)

so that in the large-K limit also the evolution operator becomes diagonal
with respect to Hint:

[U(t), Pn] = 0. (5.5)
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In words, in the K→∞ limit an effective superselection rule arises and the
total Hilbert space is split into (Zeno) subspaces HPn that are invariant
under the evolution. The dynamics within each subspace HPn is gov-
erned by the diagonal part HZPn=PnH0Pn of the free Hamiltonian H0
[plus a (sector-dependent) superselection charge KλnPn]. We stress that
the superselection rules discussed here are a consequence of the Zeno
dynamics (strong coupling) and are equivalent to the celebrated “W3”
ones.(11) The total Hilbert space splits into Zeno subspaces which do not
communicate. If decoherence is suppressed within some (or even only one)
of them, one obtains decoherence-free subspaces(12) via a Zeno mechanism
(strong continuous coupling).

For example, consider a Hamiltonian of the type (2.2), involving
noise terms that are responsible for decoherence: in order to obtain a
decoherence-free subspace (whose projector is Pn) it is sufficient to require
the minimal condition

PnHdecPn = αnPn. (5.6)

The evolution of the density matrix within the subspace HPn is unitary, as
one can easily see from (5.3)–(5.4). It is important to notice that in order
to encode a qubit the dimension of this subspace should be dim (HPn) � 2
[hence the simple system described by (2.2) does not suffice].

In practice the control of decoherence becomes effective when

K � 1/τ0, (5.7)

Where τ0 is the correlation time of the environment, introduced in Eq.
(2.3). From this condition we realize that this kind of control is useless
in the (idealized) case of white noise (for which the correlation time is
strictly 0). Physically, this simply means that the correlation time of the
noise is the shortest timescale of the problem and it is impossible to devise
a control mechanism (that should make use of strong couplings whose
inverse strength 1/K 	 τ0, according to the preceding equation).

6. EXAMPLE OF COUPLED JOSEPHSON QUBITS

Let us consider two coupled Josephson qubits described by the
Hamiltonian (4.1):

H = H(1) + H(2) + KHint, (6.1)

where the coupling Hint can be of any of the forms (4.2)–(4.4). Let the
basis of the 4-dimensional Hilbert space be
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|0〉 = |00〉 =
(

0
1

)
⊗

(
0
1

)
=




0
0
0
1


 , (6.2)

|1〉 = |01〉 =
(

0
1

)
⊗

(
1
0

)
=




0
0
1
0


 , (6.3)

|2〉 = |10〉 =
(

1
0

)
⊗

(
0
1

)
=




0
1
0
0


 , (6.4)

|3〉 = |11〉 =
(

1
0

)
⊗

(
1
0

)
=




1
0
0
0


 . (6.5)

The eigenvalues and eigenprojectors generated by the couplings (4.2)–(4.4)
are easily calculated.
(a) Capacitance (4.2):




P1 = {| 0〉, |3〉}, λ1 = +1

P−1 = {|1〉, |2〉}, λ−1 = −1
(6.6)

In this case we have two 2-dimensional subspaces in which we can in
principle encode a qubit.
(b) Josephson junction (4.3):




P0 = {| 0〉, |3〉}, λ0 = 0

P± =
{ | 1〉+| 2〉√

2

}
, λ± = ±1

(6.7)

We get one 2-dimensional subspace and two 1-dimensional subspaces. A
qubit can in principle be encoded in the 2-dimensional subspace.
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(c) Inductance (4.4):




P1 = {| + +〉, | − −〉}, λ1 = +1

P−1 = {| + −〉, | − +〉}, λ−1 = −1
(6.8)

with

| ± ±〉 = | 0〉 − | 3〉 ∓ i(| 2〉 + | 1〉)
2

= 1
2




−1
∓i

∓i

1


 , (6.9)

| ∓ ±〉 = | 0〉 + | 3〉 ∓ i(| 1〉 − | 2〉)
2

= 1
2




1
±i

±i

1


 . (6.10)

We again obtain two 2-dimensional spaces, in which we can in principle
encode a qubit.

We now assume that (6.1) contains a charge noise Hamiltonian of
the form

Hdec(t) = η1H
(1)

dec + η2H
(2)

dec = η1�σ(1)
z + η2�σ(2)

z , (6.11)

where ηi (i = 1, 2) are two independent Gaussian stochastic processes with
the property (2.3). Let us evaluate the possibility of controlling the effects
of Hdec in the strong coupling limit. We easily realize that the deteriorat-
ing effects of this kind of noise can be reduced only in the case of the
“inductive coupling” (4.4), (6.8), because in such a case

P1HdecP1 = P−1HdecP−1 = 0, (6.12)

so that Eq. (5.6) is satisfied with α1 = α−1 = 0. In this case, the strong
coupling splits the total Hilbert space into two 2-dimensional subspaces
HP1 , HP−1 , between which the noise is unable to provoke transitions: each
subspace becomes decoherence free (see Fig. 5).

In the other two cases Eq. (6.12) does not hold (or is valid just
for a 1-dimensional subspace where one cannot encode a qubit) and the
subspaces are useless for storing information.
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Fig. 5. Strong inductive coupling (4.4). The projections [red rect-
angular boxes, see Eq. (6.8)] split the total Hilbert space into two
subspaces HP1 , HP−1 . Noise-induced transitions (wavy lines) are
suppressed by the strong coupling and each subspace becomes de-
coherence free.

7. DIFFERENT KINDS OF NOISE AND FINAL REMARKS

In a Josephson device the noise can have several expressions, according
to the operating regime and the physical setup. If the noise is mainly due to
electrostatic charge effects, Eq. (6.11) is a good approximation. In general, if
one assumes that there is a “dominating” source of noise in each Josephson
device, the part of the Hamiltonian that is responsible for decoherence can
be written as

Hdec(t) = η1�1σ
(1)
i + η2�2σ

(2)
j (i, j = x, y, z) (7.1)

and the technique analyzed in the previous section can always be applied,
more easily if i=j in the above equation.

For a capacitive coupling (6.6), one finds two 2-dimensional Zeno
subspaces when i=j in Eq. (7.1). On the other hand, for a Josephson cou-
pling (6.7), under the same conditions, there is only one 2-dimensional
Zeno subspaces. As we have seen, inductive couplings (6.8) engender Zeno
subspaces that are insensitive to noises along direction x but are affected
by noise along y.

In general, by suitably exploiting the symmetries of the system, one
can always protect a given subspace in the strong coupling limit, but it is
clearly impossible to protect a subspace from every kind of noise. In prac-
tice, one must first scrutinize the physical origin of the imperfections and
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then choose the suitable structure of the coupling in order to get the most
robust subspaces.

The main physical problem to understand is whether it is realistic to
consider a coupling that is strong enough, in the sense of Eq. (5.7), in
order to generate the subspaces. In particular, in the case of inductive cou-
pling, it is difficult to obtain a large value of the inductance L. However,
some recent experiments using a Josephson junction device in a resonant
cavity seem to pave the way towards this possibility.(13)
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