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Abstract

We analyze the dynamics of a quantum mechanical system in interaction with a reservoir when
the initial state is not factorized. In the weak-coupling (van Hove) limit, the dynamics can be prop-
erly described in terms of a master equation, but a consistent application of Nakajima–Zwanzig’s
projection method requires that the reference (not necessarily equilibrium) state of the reservoir
be endowed with the mixing property.
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1. Introduction

The reduced dynamics of a quantum system in contact with a reservoir is generally
described in terms of a master equation. According to a widely accepted lore, the physical
and mathematical assumptions that are required in order to derive such an equation are of
two types: the reservoir is much larger than the system (in a sense that can be made math-
ematically precise) and the coupling between them is very weak. In these limits, the system
has a negligible influence on the reservoir and the global properties of the latter remain
unaffected during the evolution. In turns, this enables one to assume that the reservoir
is in an equilibrium state (which can be properly defined by virtue of its macroscopic fea-
tures—the large number of degrees of freedom). One should notice that a physically clear-
cut distinction between a ‘‘large’’ reservoir and one of its subsystems can only be made
because of their (small) mutual coupling. In this respect, the two above-mentioned hypoth-
eses are not only consistent, but also logically intertwined. Excellent introductions to this
subject can be found in Refs. [1–4].

There is, however, another important requirement that is necessary in the derivation of
the master equation, but that is often taken for granted: a factorized form of initial con-
ditions is used to define the dynamics. This is a hypothesis of initial statistical indepen-
dence that is certainly less easily justified. The objective of this article is to investigate
the evolution of the system with correlated initial conditions. We shall see that in such a
case Nakajima–Zwanzig’s projection method [2,4–6] requires an interesting refinement
and a characterization of the reference state of the reservoir.

Several authors have addressed the question of the modifications that arise when it is
not permissible to assume initially independent system-environment [7–20]. In such a case,
the features of the reduced dynamics have interesting spin-offs in relation to other issues,
such as the (complete) positivity of the evolution [11–18].

We will start off by introducing notation and setting up a general framework in Section
2. Nakajima–Zwanzig’s projection method is discussed in Section 3 and our main result on
the evolution when the initial state is not factorized is given in Section 4. Some of the
hypotheses that are necessary in order to prove our results are thoroughly discussed in Sec-
tion 5. The main theorem is proved in Section 6. In Section 7, we analyze the consistency
of the method and we conclude with some remarks in Section 8. In this article, in order to
stress the essential features in a transparent way, we will restrict ourselves to the main
arguments without emphasis on mathematical rigor. A more rigorous investigation will
be presented elsewhere.

Since some of the issues discussed in this article might not be familiar to every physicist,
in particular because of the mathematical background required to study nonequilibrium
statistical mechanics, we added some detailed explanations, translating some more
advanced mathematical concepts into rather simple physical examples. Several details of
the derivations, as well as more tutorial issues, are discussed in Appendices A, B, C, D.
The tutorial discussions are often adapted to the specific problems discussed in Sections
4 and 5.

This is the first of a sequel of two papers. Here, the general analysis is presented. In the
following article, hereafter referred to as Article II, the main theorem on the factorization
of the state, as well as the hypotheses that are necessary for its derivation, will be scruti-
nized in terms of two exactly solvable models, in which an oscillator is coupled to a boson-
ic reservoir.
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2. Framework and notation

We assume that the total system consists of a ‘‘large’’ reservoir B and a ‘‘small’’
(sub)system S, so that the total Hilbert space Htot can be expressed as the tensor product
of the Hilbert spaces of the reservoir HB and of the system HS,

Htot ¼ HS �HB: ð2:1Þ
The Liouvillian of the total system is written as

L ¼ L0 þ kLSB; ð2:2Þ
where k is the coupling constant and

L0 ¼ LS � 1B þ 1S � LB ¼ LS þ LB ð2:3Þ
is the free Liouvillian, describing the free uncoupled evolutions of the system (LS) and of
the reservoir (LB). In the second equality, we omitted the tensor product with the unit
operator and, with an abuse of notation, identified LS and LB with their dilations
LS � 1B and 1S � LB, respectively. In the following, we will always adopt such a conven-
tion, whenever no confusion can arise. It follows that

½LB;LS� ¼ 0: ð2:4Þ
Let us write the resolution of the system Liouvillian LS in terms of its eigenprojections ~Qm,

LS ¼ �i
X

m

xm
~Qm;

X
m

~Qm ¼ 1; ~Qm
~Qn ¼ dmn

~Qm: ð2:5Þ

This resolution will be used in the following. By making explicit use of the Hamiltonians

H ¼ H 0 þ kH SB ¼ H S þ HB þ kH SB ð2:6Þ
and noticing that, by the definition of Liouvillian, Lq ¼ �i½H ; q�, the superoperators ~Qm in
(2.5) can be expressed in terms of the eigenprojections Qi of the Hamiltonian HS as

~Qmq ¼
X

i;j
Ei�Ej¼xm

QiqQj; HS ¼
X

i

EiQi: ð2:7Þ

We are assuming that system S is finite, dimHS <1, and thus has a pure point spectrum.
Let q(t) be the density matrix of the total system at time t. As we anticipated, the initial

state of the total system, q0, is usually taken to be the tensor product of a system initial
state qS and a reservoir state qB,

q0 ¼ qS � qB: ð2:8Þ
This is an uncorrelated initial state. The reservoir state is assumed to be stationary (with
respect to the reservoir free evolution LB)

LBqB ¼ 0 ð2:9Þ
and thus belongs to the 0 eigenvalue of LB. In most applications, qB ¼ Z�1

b e�bHB is a ther-
mal state at the inverse temperature b = (kBT)�1 with the normalization constant Zb.
However, we have in mind more general instances, such as nonequilibrium steady states
[21]. The main target of the present article is the reconsideration of the assumption of
the factorized initial condition (2.8).
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The system state qS(t) at time t is given by

qSðtÞ ¼ trBqðtÞ; qðtÞ ¼ eLtq0; ð2:10Þ
where trB : T 1ðHtotÞ ! T 1ðHSÞ is the partial trace over the reservoir degrees of freedom, a
linear operator from T 1ðHtotÞ, the Banach space of trace-class operators on the total Hil-
bert space Htot, onto T 1ðHSÞ. In general, unlike q(t) = e�iHtq0eiHt, qS(t) is not unitarily
equivalent to qS and the system undergoes dissipation and/or decoherence.

3. The projection method

Consider the initial-value problem

d

dt
qðtÞ ¼ LqðtÞ; qð0Þ ¼ q0; ð3:1Þ

where the initial density operator q0 is not assumed here to be factorized like (2.8). We are
interested in the reduced dynamics of the system, qS(t) given by (2.10), with a correlated
initial state q0.

The starting point of Nakajima–Zwanzig’s procedure is the introduction of the projec-
tion operators [2,4–6]

Pq ¼ trBfqg � XB ¼ r� XB; Q ¼ 1� P; ð3:2Þ
where q 2 T 1ðHtotÞ, r 2 T 1ðHSÞ and XB 2 T 1ðHBÞ is a given reference state of the reser-
voir. Note that, from the normalization condition trBXB = 1, it follows that P2 ¼ P and
Q2 ¼ Q. Therefore, P is the projection onto the space of operators of the form r � XB,
a subspace of T 1ðHtotÞ isometrically isomorphic to T 1ðHSÞ. In particular,

PqðtÞ ¼ qSðtÞ � XB; QqðtÞ ¼ qðtÞ � qSðtÞ � XB; ð3:3Þ

where we used the definition (2.10).
Since we are interested in a correlated initial state q0, which is not factorized like (2.8), a

question arises as to which state should be taken as the reference state XB [6,9,10] and
whether the naive choice XB = trSq0 is in principle appropriate. We shall see that the sit-
uation is much more subtle than one might naively expect: the reference state XB and the
reservoir dynamics cannot be independent, but must satisfy some important properties in
order to yield a consistent description of the physical dynamics. One of the main subjects
of this article will be the specification of the correct state XB. Furthermore, our analysis
will show that attention should be paid to the reference state XB even for a factorized initial

state. This corroborates and sheds additional light on the rigorous conditions for the der-
ivation of the master equation [22]. At this moment, we take for granted only the stationa-
rity (2.9) of XB with respect to the reservoir free dynamics, namely LBXB ¼ 0.

Let us project the Liouville equation (3.1) onto the two subspaces defined by P and Q.
Notice first that

½P;LS� ¼ ½Q;LS� ¼ 0; PLB ¼ LBP ¼ 0; ½Q;LB� ¼ 0: ð3:4Þ
The first equation is a consequence of the fact that LS and P essentially operate in different
spaces, while the second derives from (2.9) and from the characteristic structure of the
Liouvillians, trfLqðtÞg ¼ 0 (a direct consequence of probability conservation). In addi-
tion, we require that
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PLSBP ¼ 0; ð3:5Þ
which is always satisfied as long as HSB has vanishing diagonal elements with respect to the
reservoir degrees of freedom.

By making use of (3.4) and (3.5), the total Liouvillian can be decomposed as

L ¼ PLSP þQL0Qþ kQLSBQþ kPLSBQþ kQLSBP: ð3:6Þ
Therefore, the free evolutions LS and LB leave invariant the two subspaces RanP and
RanQ, and all transitions are driven by the interaction LSB.

4. The main theorem

The main result of this article is the following theorem, that will be proved in Section 6:
for a correlated initial state q0, van Hove’s ‘‘k2t’’ limit [1,23] of the P-projected density
operator in the system-interaction picture,

qIðsÞ ¼ lim
k!0

qðkÞI ðsÞ ¼ lim
k!0

e�LSs=k2

Pqðs=k2Þ; ð4:1Þ

where we assume that the above limit exists, is the solution of

qIðsÞ ¼ Pq0 þ
Z s

0

ds0KqIðs0Þ ð4:2Þ

with

K ¼
X

m

Z 1

0

dtP ~QmLSBeL0tLSBe�L0t ~QmP

¼
X

m

Z 1

0

dtP ~QmLSBeðL0þixmÞtLSB
~QmP

¼�
X

m

P ~QmLSB

Q

L0 þ ixm � 0þ
LSB

~QmP; ð4:3Þ

or equivalently,

d

ds
qIðsÞ ¼ KqIðsÞ; qIð0Þ ¼ Pq0 ¼ trBfq0g � XB: ð4:4Þ

That is, even if the initial state q0 is not in a factorized form, but rather there is entangle-
ment, or simply a classical correlation, between system S and reservoir B, all correlations
disappear in van Hove’s limit and system S behaves as if the total system started from the
factorized initial state in (4.4) with a reservoir state XB specified below.

Moreover, one shows that

lim
k!0

Qqðs=k2Þ ¼ lim
k!0
½qðs=k2Þ � trBfqðs=k2Þg � XB� ¼ 0; ð4:5Þ

which makes the dynamics consistent, for no spurious term develops in the master equa-
tion and no correlations can appear at later times: not only the initial state, but also the
state at any moment t is factorized in van Hove’s limit. This supports the validity of the
assumption of the factorized state, that is frequently applied in literature in order to derive
a master equation [2–4]. The state of system S evolves according to the master equation
(4.4), while reservoir B remains in the state XB.
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These statements are proved under the following assumptions:

(i) 0 is a simple eigenvalue of the reservoir Liouvillian LB corresponding to the eigen-
vector XB and the remaining part of the spectrum of LB is absolutely continuous
[22,24] (strictly speaking, for infinitely extended reservoir, the spectrum of LB can
be properly defined only once the sector has been specified: in our case, the relevant
sector is that containing the state XB);

(ii) the initial (correlated) state of the total system is given in the form.

q0 ¼ Kð1S � XBÞ ¼
X

i

Lið1S � XBÞLyi ; ð4:6Þ

where K is a bounded superoperator (i.e., Li’s are bounded operators) satisfying the
normalization condition trq0 = 1. In other words, the initial state q0 is a bounded
perturbation of the state 1S � XB (and belongs to the sector specified by it).

Several comments are in order. First, observe that the Liouvillian of an infinitely
extended system can bear a point spectrum, as in hypothesis (i) (see for instance Proposi-
tion 4.3.36 of Ref. [25]).

Second, the spectral properties required in hypothesis (i) imply that XB is mixing with
respect to the reservoir dynamics eLBt [22,24–27], i.e.,

hX ðtÞY iXB
¼ hX eLBtY iXB

! hX iXB
hY iXB

as t!1 ð4:7Þ

for any bounded (super)operators X and Y of the reservoir, where X ðtÞ ¼ e�LBtX eLBt and
ÆXæq = trB{Xq}. A typical and familiar example is the thermal equilibrium state of a free
boson system at a finite temperature, as explicitly recalled in Appendix A. Among other
interesting mixing states, there are nonequilibrium steady states (NESS), where system
B consists of several reservoirs at different temperatures and a steady current flows among
them [21]. These two cases are pictorially shown in Fig. 1. Both situations are within the
scope of our analysis.
(a) (b)

Fig. 1. Two typical examples in which the state of the reservoir is mixing: (a) system S in contact with a reservoir
B in thermal equilibrium at the inverse temperature b and the chemical potential l; (b) system S in interaction
with a reservoir B made up of two subreservoirs at different temperatures b and b 0 and chemical potentials l and
l 0, with a steady current flowing between them (NESS). In both cases, k is the coupling constant: a proper
application of van Hove’s ‘‘k2t’’ rescaling in the derivation of the master equation for S requires that the reference
state of reservoir B be mixing.
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Third, hypothesis (i) can be relaxed. In fact, the proof will make use only of the mixing
property (4.7). Therefore, the remaining part of the spectrum can contain a singular con-
tinuous part: one must simply make sure that the continuous spectrum is transient (a prop-
erty automatically verified by the absolutely continuous part, due to Riemann–Lebesgue’s
lemma).

Fourth, the correlation between system S and reservoir B is more transparent if the ini-
tial state q0 in (4.6) is written as

q0 ¼ qS � qB þ dq0; ð4:8Þ
where

qS ¼ trBq0; qB ¼ trSq0: ð4:9Þ
The last term dq0 represents the correlation between system S and reservoir B. The impor-
tant point is that each term is a bounded perturbation of the state 1S � XB and thus be-
longs to the single sector specified by it (see Appendix B for a clarification and a
tutorial discussion of this issue). Indeed, the factorized part of the initial density matrix
can be written as

qS � qB ¼K0ð1S � XBÞ ¼
X
i;m;n

Limnð1S � XBÞLyimn; ð4:10aÞ

Limn ¼
ffiffiffiffiffi
qS

p �Sh/mjLij/niS; ð4:10bÞ

and

dq0 ¼ dKð1S � XBÞ; dK ¼ K� K0; ð4:10cÞ
where {j/næS} is any complete orthonormal basis of system S. Clearly, dq0 is self-adjoint,
but it is not necessarily positive-definite.

Fifth, the states of the type (4.6) belong to a very general class: basically, if one deals
with separable Hilbert spaces, (4.6) is of the Kraus form and therefore represents a com-
pletely positive map (that connects any two density matrices). For quantum mechanical
systems (with discrete spectra), (4.6) covers all the possible states. In more general cases
(with infinitely extended systems), since only bounded observables can be measured, one
usually deals with a sector, i.e. a set of states which are ‘‘normal’’ with respect to some
reference state (cf. the arguments of Sections III.2 and III.3 of Ref. [26]). In such a case,
any normal states with respect to 1S � XB can be written as (4.6) with arbitrary precision.
(See also the arguments in Ref. [24].)

Finally, the projection P in (3.3) must be defined in terms of XB, which is mixing and
‘‘contained’’ in the initial state q0 in the sense of (4.6). This is the criterion for a consistent

choice of the reference state XB. We will see in the next section that Nakajima–Zwanzig’s
projection P with the correct reference state XB is nothing but the eigenprojection of the
Liouvillian LB belonging to the simple eigenvalue 0, as suggested by (3.4).

Note further that a state q0 that refers [in the sense of (4.6)] to a coherent superposition
of two (or more) different mixing states of an infinite reservoir cannot be a physical state,
since it is the superposition of states belonging to different inequivalent sectors. (Imagine,
for example, the superposition of states with different temperatures.) Hypothesis (ii) is
therefore reasonable from this point of view and the states q0 of the form (4.6) cover
diverse physically interesting states, ranging from canonical equilibrium states to NESS,
as far as their XB’s are mixing.
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5. The diagonal projection

Before we prove the theorem, let us observe that the projection P with the correct ref-
erence state XB is nothing but the eigenprojection belonging to the simple eigenvalue 0 of
the reservoir Liouvillian LB. To this end, we first show how the eigenprojection of 0 acts
on a state of the total system.

Hypothesis (i) states that for any reservoir state qB in question the spectral resolution of
eLBtqB reads

eLBtqB ¼ P0qB þ
Z

e�imt dPðmÞqB; ð5:1Þ

where P0 and P(m) are the spectral projections of LB belonging to its simple eigenvalue 0
and to its absolutely continuous spectrum {m}, respectively. In particular,

LBP0 ¼ P0LB ¼ 0; P2
0 ¼ P0: ð5:2Þ

By Riemann–Lebesgue’s lemma, one gets from (5.1)

eLBtqB !
t!1

P0qB ¼ XB ð5:3Þ
in a weak sense. The last equality follows from the condition that XB is the eigenstate
belonging to the simple eigenvalue 0. As anticipated in the previous section, the require-
ment of an absolutely continuous spectrum is not really necessary to prove (5.3). One
needs only the mixing property (4.7). Indeed, let us consider a state of the total system
belonging to the same sector of 1S � XB, i.e., a state q of the kind (4.6). For any operator
D ¼

P
iAi � X i, where Ai’s are operators of system S and Xi’s bounded operators of reser-

voir B, the mixing property (4.7) of XB yields

trfDeLBtqg ¼
X

i

trB½X ie
LBttrSfAiKð1S � XBÞg�

!t!1
X

i

trBfX iXBgtrfAiKð1S � XBÞg

¼ tr½DðtrBfqg � XBÞ�; ð5:4Þ

and in this sense, we have

eLBtq !t!1 trBfqg � XB; ð5:5Þ
for any state q of the form (4.6). By comparing (5.3) and (5.5), it is clear that the eigenpro-
jection P0 of the Liouvillian LB belonging to the eigenvalue 0 acts on the total system as

ð1S �P0Þq ¼ trBfqg � XB ¼ Pq: ð5:6Þ
We have thus proved that (5.6) holds even when the spectrum {m} in (5.1) contains a sin-
gular continuous part, provided that the latter be transient, i.e., Riemann–Lebesgue’s lem-
ma hold also for it.

Furthermore, it is interesting to observe that the eigenprojection 1S � P0 is nothing but
the ‘‘diagonal projection,’’ that extracts the diagonal part (with respect to the reservoir
degrees of freedom) of a density operator. To discuss the diagonal components of a reser-
voir with a continuous spectrum, consider a large parameter V, corresponding to the vol-
ume, so that the Hamiltonian H ðVÞB admits a discrete spectrum fEðVÞl g, i.e.,
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H ðVÞB ¼
X

l

EðVÞl P ðVÞl ;
X

l

P ðVÞl ¼ 1; P ðVÞl P ðVÞm ¼ P ðVÞl dlm; ð5:7Þ

with EðVÞl 6¼ EðVÞm for l „ m. Then, it is easy to define the diagonal part (with respect to the
reservoir degrees of freedom) of a density matrix of the total system, qðVÞ,

qðVÞD ¼
X

l

P ðVÞl qðVÞP ðVÞl : ð5:8Þ

Since EðVÞl ’s are discrete, one easily sees that

lim
T!1

1

T

Z T

0

dt e
�iðEðVÞl �EðVÞ

l0
Þt ¼ dll0 ; ð5:9Þ

and thus,

qðVÞD ¼
X
l;l0

P ðVÞl qðVÞP ðVÞl0 dll0

¼ lim
T!1

1

T

Z T

0

dt
X
l;l0

e�iEðVÞl tP ðVÞl qðVÞP ðVÞl0 e
iEðVÞ

l0 t

¼ lim
T!1

1

T

Z T

0

dt e�iH ðVÞ
B

tqðVÞeiH ðVÞ
B

t

¼ lim
T!1

1

T

Z T

0

dt eL
ðVÞ
B

tqðVÞ: ð5:10Þ

We now define the diagonal part of q via

qD ¼ lim
V!1

qðVÞD ¼ lim
T!1

1

T

Z T

0

dt eLBtq; ð5:11Þ

assuming that the two limits can be interchanged. Then, under the assumption of the ergo-
dicity of XB [which follows from the mixing of XB: see Eq. (A.4)], one has, for any state q
of the type (4.6),

qD ¼ trBfqg � XB; ð5:12Þ
which is the right-hand side of (5.6). Indeed, for any bounded operator D ¼

P
iAi � X i

considered in (5.4),

trfDqDg ¼
X

i

lim
T!1

1

T

Z T

0

dt trB½X ie
LBttrSfAiKð1S � XBÞg�

¼
X

i

trBfX iXBgtrfAiKð1S � XBÞg

¼tr½DðtrBfqg � XBÞ�; ð5:13Þ

which proves (5.12), and the eigenprojection of LB belonging to the discrete eigenvalue 0 is
the diagonal projection. Notice that the ergodicity of XB is sufficient to show that 1S � P0

is the diagonal projection. A direct demonstration of the diagonal projection (5.12) in a
simple model is given in Appendix C.

It is now clear that the eigenprojection 1S � P0 in (5.6) acts like the projection P defined
in (3.3), provided the state q(t) is of the form Kt(1S � XB), with a bounded superoperator
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Kt. Since q(t) has evolved from the initial state (4.6), it always satisfies this criterion. As we
will discuss in the following, the eigenprojection 1S � P0 enables us to deal with the point
spectrum and yields the right choice for the projection P in order to derive a master equa-
tion in van Hove’s limit.

Summarizing, the initial state q0 ‘‘contains,’’ in the sense of (4.6) and (5.5), the mixing
state XB. The theorem stated in Section 4 will be proved in Section 6 with the projection
operator

P ¼ 1S �P0; ð5:14Þ
which is the eigenprojection of 1S � LB belonging to the unique simple eigenvalue 0. In the
following, with an abuse of notation, 1S � P0 will be written simply as P0, as far as no
confusion can arise.

Some additional comments are in order. If we assume only the ergodicity of XB, rather
than mixing, there can be other eigenvalues different from 0. The point spectrum other
than 0 is out of control and, as we shall see in the following section, provokes the appear-
ance of a secular term.

It is worth noting that the mixing property of XB is crucial even for a factorized initial
state like (2.8), although this point is usually not thoroughly discussed. (This is an inter-
esting byproduct of our analysis, that is rather motivated by the study of nonfactorized
initial states.) As we shall see, a wrong projection P would give rise to a divergence that
has nothing to do with the initial correlation.

In the standard derivations of the master equation for a factorized initial state, the pro-
jection (3.3) is defined in terms of the same XB which is contained in the factorized initial
state (2.8) and is usually the canonical state at temperature T, that is a mixing state. The
criteria listed in Section 4 are thus satisfied and the projection is properly chosen to be
P ¼ 1S �P0, provoking no problem. In this standard situation, the choice of the reference
state is obvious: probably this often induces one to assume that Nakajima–Zwanzig’s ref-
erence state is simply the canonical one (and therefore need not be characterized). How-
ever, in more articulated situations, such as those of NESS (see Fig. 1), the reference
state must be chosen with care: our analysis shows that a correct reference state must in
general be mixing.

6. Proof of the theorem

Let us now prove the theorem stated in Section 4. By projecting the Liouville equation
(3.1) onto the two subspaces defined by P and Q, and using (3.6), one gets

d

dt
Pq ¼LSPqþ kPLSBQq; ð6:1aÞ

d

dt
Qq ¼L00Qqþ kQLSBPq; ð6:1bÞ

respectively, where

L00 ¼ L0 þ kQLSBQ: ð6:2Þ
By formally integrating out the second equation and plugging the result into the first one,
one gets the following exact equation for the P-projected operator in the interaction pic-
ture [6]
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d

dt
e�LStPqðtÞ ¼ k2

Z t

0

dt0 e�LStPLSBeL
0
0ðt�t0ÞLSBPqðt0Þ þ ke�LStPLSBeL

0
0tQq0: ð6:3Þ

The last term in the right-hand side represents the contribution arising from a possible ini-
tial correlation between system S and reservoir B. We will show that this term dies out in
the weak-coupling limit k fi 0 with the scaled time s = k2t (>0) fixed, provided the projec-

tion P is chosen to be the eigenprojection 1S � P0 belonging to the simple eigenvalue 0 of LB.
To this end, consider the density operator

qðkÞI ðsÞ ¼ e�LSs=k2

Pqðs=k2Þ; ð6:4Þ
introduced in (4.1), that for any nonvanishing k satisfies

d

ds
qðkÞI ðsÞ ¼

Z s=k2

0

dt e�LSs=k2

PLSBeL
0
0ðs=k

2�tÞLSBPeLStqðkÞI ðk2tÞ

þ 1

k
e�LSs=k2

PLSBeL
0
0s=k

2

Qq0; ð6:5Þ

with the initial condition

qðkÞI ð0Þ ¼ Pq0: ð6:6Þ

By integrating (6.5) and (6.6), one gets

qðkÞI ðsÞ ¼ Pq0 þ
Z s

0

ds0
Z s0=k2

0

dt e�LSs0=k2

PLSBeL
0
0ðs
0=k2�tÞLSBPeLStqðkÞI ðk

2tÞ

þ 1

k

Z s

0

ds0 e�LSs0=k2

PLSBeL
0
0s
0=k2

Qq0: ð6:7Þ

The second term is rearranged as

Z s

0

ds0
Z s0=k2

0

dt e�LSs0=k2

PLSBeL
0
0ðs
0=k2�tÞLSBPeLStqðkÞI ðk2tÞ

¼
Z s=k2

0

dt
Z k2t

0

ds0 e�LStPLSBeL
0
0ðt�s0=k2ÞLSBPeLSs0=k2

qðkÞI ðs0Þ

¼
Z s

0

ds0
Z s=k2

s0=k2
dt e�LStPLSBeL

0
0ðt�s0=k2ÞLSBPeLSs0=k2

qðkÞI ðs0Þ

¼
Z s

0

ds0
Z ðs�s0Þ=k2

0

dt e�LSðtþs0=k2ÞPLSBeL
0
0tLSBPeLSs0=k2

qðkÞI ðs0Þ

¼
X
m;n

Z s

0

ds0 eiðxm�xnÞs0=k2

KðkÞmnðs� s0ÞqðkÞI ðs0Þ; ð6:8Þ

with the memory kernel

KðkÞmnðsÞ ¼
Z s=k2

0

dtP ~QmLSBQeðL
0
0þixmÞtLSB

~QnP: ð6:9Þ

The last term in Eq. (6.7), which is relevant to the initial correlation, reads
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I ðkÞðsÞ ¼ 1

k

Z s

0

ds0 e�LSs0=k2

PLSBeL
0
0s
0=k2

Qq0

¼k
X

m

Z s=k2

0

dtP ~QmLSBeðL
0
0þixmÞtQq0: ð6:10Þ

In conclusion,

qðkÞI ðsÞ ¼ Pq0 þ
X
m;n

Z s

0

ds0 eiðxm�xnÞs0=k2

KðkÞmnðs� s0ÞqðkÞI ðs0Þ þ I ðkÞðsÞ: ð6:11Þ

We can now analyze the van Hove limits of the memory kernel KðkÞmnðsÞ and of the initial
correlation I ðkÞðsÞ. Both limits can be computed at the same time if we consider the van
Hove limit of the operator

RðkÞm ðsÞ ¼
Z s=k2

0

dtQeðL
0
0þixmÞt; ð6:12Þ

since both KðkÞmnðsÞ and I ðkÞðsÞ contain it. The analysis of the properties of RðkÞm ðsÞ is given in
Appendix D, where it is shown that, irrespectively of the point spectrum of L00, one obtains

Rð0Þm ¼ lim
k!0

RðkÞm ðsÞ ¼ �
Q

L0 þ ixm � 0þ
ðs > 0Þ; ð6:13Þ

provided that P ¼ 1S �P0. The expression (6.13) is our key formula: it immediately leads
us to the conclusion that, in van Hove’s limit, the memory kernel KðkÞmnðsÞ in (6.9) is reduced
to a Markovian generator

KðkÞmnðsÞ ¼P ~QmLSBR
ðkÞ
m ðsÞLSB

~QnP

!k!0
Kð0Þmn ¼ �P ~QmLSB

Q

L0 þ ixm � 0þ
LSB

~QnP; ð6:14Þ

while the correlation term I ðkÞðsÞ in (6.10) disappears

I ðkÞðsÞ ¼ k
X

m

P ~QmLSBR
ðkÞ
m ðsÞQq0 !

k!0
0; ð6:15Þ

so that the reduced dynamics (6.11) becomes

qðkÞI ðsÞ !
k!0

Pq0 þ
X
m;n

Z s

0

ds0dmnK
ð0Þ
mnqIðs0Þ

¼Pq0 þ
Z s

0

ds0KqIðs0Þ: ð6:16Þ

The master equation in van Hove’s limit therefore reads

d

ds
qIðsÞ ¼ KqIðsÞ; ð6:17aÞ

K ¼
X

m
Kð0Þmm ¼ �

X
m

P ~QmLSB
Q

L0 þ ixm � 0þ
LSB

~QmP: ð6:17bÞ

We have thus proved (4.2)–(4.4), the first part of the theorem in Section 4. In van Hove’s
limit, the density matrix evolves as if it started from the initial condition Pq0, even when
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Qq0 6¼ 0: the initial correlation dies out immediately (at s = 0+) in the scaled time s. The
contribution originating from the initial correlation between the system and the reservoir
disappears in the scaling limit and one is allowed to start from an initial density matrix in
the factorized form (4.4). From a physical point of view, the factorization Ansatz de-
scribed above simply means that the ‘‘initial’’ correlations between the system and its envi-
ronment are ‘‘forgotten’’ on a time scale of order k2 in s (which is very small when
compared to the timescale of the evolution of the system). We shall see in Article II, by
looking at a specific example, that the problem of the relevant timescales must be tackled
with care, as it also involves locality issues related to the ‘‘size’’ of the local observables of
the reservoir.

It is important to note that, if we choose a different projection P from the eigenprojec-
tion of LB belonging to its vanishing eigenvalue, and fail to appropriately remove the point
spectrum of LB, Eq. (6.13) does not hold anymore, and RðkÞm ðsÞ diverges in van Hove’s
limit. [See, for example, Eq. (D.6) in Appendix D.] KðkÞmnðsÞ and I ðkÞðsÞ accordingly diverge
and the van Hove limit of the master equation does not exist. This is because a ‘‘wrong’’
projection P would project the reservoir onto a wrong (in general non-stationary) state, so
that the system evolution would develop a secular term in s/k2 [like in Eq. (D.6)]. It is
remarkable that such a secular term appears as a consequence of a sloppy application
of Nakajima–Zwanzig’s projection method: in a sense, the very method makes sense only
if applied to the ‘‘correct’’ mixing state.

As stressed at the end of the previous section, the reference state of the reservoir must
be mixing (and not, e.g., simply ergodic), in order that no discrete eigenvalue different
from 0 exists. Otherwise, the point spectrum (except 0) is out of control and again the
emergence of secular terms is inevitable. Moreover, the mixing property of the reservoir
is crucial even for a factorized initial state like (2.8). Indeed, careful scrutiny of the proof
shown in this section shows that the divergence of KðkÞmnðsÞ has nothing to do with the initial
correlation. In this sense, although our original motivation was the study of the factoriza-
tion Ansatz, the results have more general validity. The reason why this was unnoticed so
far is the following. In the standard textbook derivations of the master equation, a factor-
ized initial state is assumed and the projection (3.3) is defined in terms of the same refer-
ence state XB that is contained in the factorized initial state (2.8): in practically all
examples, this is taken to be the canonical state at temperature T, which is clearly mixing,
and all the criteria listed in Section 4 are satisfied. However, recently, more complicated
physical situations are attracting increasing interest, such as those related to NESS shown
in Fig. 1(b). These cases call for a characterization of the state of the reservoir, that is mix-
ing and satisfies the hypotheses in Section 4 required to prove the theorem [21].

7. Factorization at all times

Time t = 0 has no particular status: one can prove the same master equation (4.4) with
a factorized initial state for any ‘‘initial’’ time t0. This means that the limiting dynamics is
such that the density matrix remains factorized at all times: the reservoir state does not
evolve, while the system state follows the master equation (4.4). In order to show this,
one must prove the validity of Eq. (4.5) in van Hove’s limit. Then, clearly, no spurious
term will develop in the master equation and no correlations can appear.

By integrating (6.1a) and inserting it into (6.1b), we get the following integral equation
for QqðtÞ:
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QqðtÞ ¼ eL
0
0tQq0 þ k

Z t

0

dt0 eL
0
0ðt�t0ÞQLSBeLSt0Pq0

þ k2

Z t

0

dt0
Z t0

0

dt00 eL
0
0ðt�t0ÞQLSBeLSðt0�t00ÞPLSBQqðt00Þ;

ð7:1Þ

which is rearranged, by interchanging the integrations in the last term, to yield in the
scaled time s = k2t

Qqðs=k2Þ ¼ QeL
0
0s=k

2

Qq0 � k
X

m

RðkÞm ð�sÞLSB
~QmPq0

 

�
X

m

Z s

0

ds0 e�L
0
0s
0=k2

RðkÞm ðs0 � sÞLSB
~QmPLSBQqðs0=k2Þ

!
;

ð7:2Þ

where RðkÞm ðsÞ is defined in (6.12). Under the proper choice of the projection P, the kernel
RðkÞm ðsÞ is bounded for any s and k (even for k fi 0), as already discussed in the previous
section and in Appendix D, and it is possible to show that (see Appendix D)

lim
k!0

QeL
0
0s=k

2 ¼ 0: ð7:3Þ

Then, the integrand in the last term in (7.2) is bounded, all the terms in the parentheses are
finite, and the prefactor in (7.2) vanishes according to (7.3), which proves (4.5), the second
part of the theorem in Section 4.

It is worth noting that the interaction between system S and reservoir B is not essential to
the factorization; the free evolution eliminates the correlation, and the reservoir relaxes into
the mixing state XB. Indeed, for any state q0 of the total system of the type (4.6), we have

eL0tq0 !
t!1

eLStP0q0 ¼ eLSttrBfq0g � XB; ð7:4Þ
where the contribution of the absolutely continuous spectrum decays out due to Riemann–
Lebesgue’s lemma [see Eqs. (5.1) and (5.5)]. In the rescaled time s, the factorization is very
rapid, and the total system looks factorized at any moment (if the observables that one can
measure on the reservoir are local enough: a concrete example will be discussed in the fol-
lowing Article II). Summarizing, reservoir B relaxes into the mixing state XB through its
own free evolution, yielding the factorization of the state of the total system, while system
S dissipates through the interaction: a remarkable and consistent global view.

It is also interesting to compare the present result with Bogoliubov’s view on the classical
gas dynamics [2,28,29]. According to this view, ‘‘molecular chaos’’ erases a large amount of
initial information and the system reaches the so-called kinetic stage, where the one-body dis-
tribution function governs the evolution of the whole system and obeys the Boltzmann equa-
tion, irrespectively of the initial conditions. In the present case, the initial loss of system-
reservoir correlations corresponds to the information loss due to molecular chaos, and the
stage described by the master equation in van Hove’s limit corresponds to the kinetic stage.

8. Concluding remarks

We analyzed the assumption of factorization of the initial state in the dynamics of a
quantum mechanical system in interaction with a reservoir. In van Hove’s limit, the
dynamics can be consistently described in terms of a master equation, but a correct
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application of Nakajima–Zwanzig’s projection method requires that the reference state of
the reservoir, in terms of which the projection operator is defined, be endowed with the
mixing property. If the reservoir dynamics is not mixing, the evolution develops secular
terms. In the above discussion, one implicitly assumes that the van Hove limit (4.1) exists
and is the solution of Eqs. (4.2)–(4.4).

In the standard situation, when a small system is coupled to a reservoir at a given tem-
perature, the choice of the reference state is obvious and is simply the canonical state (that
is also mixing). In more articulated situations, such as those of NESS, the choice of the
reference state requires care and need to be characterized: our analysis shows that a correct
reference state must in general be mixing.

This Ansatz yields the standard procedure and the usual master equation. As a byprod-
uct, one observes that the mixing property is crucial even when the initial state is assumed
to be factorized, otherwise the presence of a secular terms is inevitable. In this respect our
analysis, that was originally motivated by the study of the assumption of initial state fac-
torization, has more general validity.

We shall see in the following Article II, by close scrutiny of some explicit examples, that
Markovianity becomes a valid approximation for timescales that depend both on the form
factors of the interaction and on the spatial extension of the local observables that can be
measured on the reservoir. This will corroborate and complement the general findings dis-
cussed in this article. Other issues, such as the spin-offs on the complete positivity of the
dynamics [11–18], the mathematical conditions at the origin of van Hove’s limit [30], as
well as the consequences of higher order corrections [31] and their interplay with initial
correlations will be investigated in a future paper.
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Appendix A. Mixing property

The free Liouvillian of an infinite reservoir LB has a point spectrum [22,25,26]. The clue
for our problem is to handle it properly, by making use of the right projection P. The
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mixing property of the reservoir plays an important role in this context. Let us hence brief-
ly recall these notions.

A.1. Mixing property and spectrum of the Liouvillian

The state XB is said to be mixing with respect to the reservoir dynamics eLBt, if the cor-
relation function of any two bounded operators of the reservoir, X and Y, behaves as (4.7)
[22,24–27]. The ordinary canonical equilibrium state of free bosons at a finite temperature
is a typical mixing state. Other interesting examples are nonequilibrium steady states
(NESS).

It is important to observe that the mixing property is strongly related to the spectral prop-
erties of the Liouvillian LB [27]. Let us consider a reservoir state qB = KBXB (trBqB = 1)
related to a mixing state XB by a bounded superoperator KB, in the sense of (4.6). Then,
by setting YXB = KBXB = qB in (4.7), the mixing property of XB translates into

hX ðtÞiqB
! hX iXB

as t!1; ðA:1Þ

and in this sense,

eLBtqB ! XB as t!1; ðA:2Þ
i.e., the state qB relaxes towards the mixing state XB. Let us consider the spectral resolution
of eLBtqB,

eLBtqB ¼
X

mj

e�imjtPjqB þ
Z

e�imtdPðmÞqB; ðA:3Þ

where Pj and P(m) are the spectral projections of LB belonging to its possible discrete
eigenvalues {mj} and to its absolutely continuous spectrum {m}, respectively. The second
term, representing the contribution of the absolutely continuous spectrum, decays out
as t fi1 due to Riemann–Lebesgue’s lemma, but the first term, the contribution of the
point spectrum, survives. Property (A.2) means that (within the class of states of the form
qB = KBXB) there exists the only simple eigenvalue 0 of the Liouvillian LB with the eigen-
projection P0 satisfying P0qB = XB: mixing forbids the existence of other eigenvalues than
0, reducing (A.3) to (5.1), and the eigenvalue 0 is not degenerated within the single sector
specified by XB. Furthermore, since P(m)XB = 0 [remember the orthogonality
P0P(m) = P(m)P0 = 0], the mixing state XB is a stationary state with respect to the reser-
voir dynamics eLBt, i.e., Eq. (2.9).

If we only require that 0 be a simple eigenvalue of LB, but we do not care about the rest
of the spectrum, then property (4.7) only holds in a Cesaro sense, namely

lim
T!1

1

T

Z T

0

dthX ðtÞY iXB
¼ hX iXB

hY iXB
; ðA:4Þ

and XB is called an ergodic state. Ergodicity suffices to show the stationarity (2.9) of XB;
the mixing property is not necessary [22,24–27]. The uniqueness of the point spectrum 0,
however, is equivalent to weak mixing [22,25–27]

R T
0

dtjhX ðtÞY iXB
� hX iX B

hY iXB
j=T ! 0

and this implies that the remaining part of the spectrum can also contain singular contin-
uous components. In such a case, one might conjecture that the theorem of Section 4 is still
valid, but in a weaker sense.



S. Tasaki et al. / Annals of Physics 322 (2007) 631–656 647
A.2. A solvable example

Let us demonstrate the mixing property (4.7) in a solvable example. Let us consider the
reservoir Hamiltonian

HB ¼
Z

dxxbyxbx ðA:5Þ

and the reservoir dynamics starting from the initial state

qB ¼ ~KBqW ¼
Z

dx
Z

dx0wxx0b
y
xqWbx0 ; ðA:6Þ

with

qW ¼
1

ZW

exp �
Z

dx
Z

dx0 byxWxx0bx0

� �
; ðA:7Þ

where bx (byx) is the annihilation (creation) operator of the reservoir, satisfying the canon-
ical commutation relation ½bx; b

y
x0 � ¼ dðx� x0Þ. The states qB and qW are normalized,

trBqB = 1 and trBqW ¼ 1, with the normalization constant ZW . wxx 0 is a bounded and Her-
mitian positive matrix (wxx0 ¼ w�x0x), and the Gaussian state qW is perturbed by the bound-
ed superoperator ~KB. Furthermore, Wxx0 is Hermitian (Wxx0 ¼W�

x0x) and consists of
W
ð0Þ
xx0 , that is proportional to d(x � x 0), and the remaining part ~Wxx0 ,

Wxx0 ¼W
ð0Þ
xx0 þ ~Wxx0 ; W

ð0Þ
xx0 ¼ W ðxÞdðx� x0Þ: ðA:8Þ

The Gaussian state qW is fully characterized by the two-point function

N xx0 ¼ hbyx0bxiqW ¼ NðxÞdðx� x0Þ þ ~N xx0 ; ðA:9Þ

where the first term, proportional to d(x � x 0), is the expectation value of the number
operator in the state qW0

,

N
ð0Þ
xx0 ¼ hb

y
x0bxiqW0

¼ NðxÞdðx� x0Þ; NðxÞ ¼ 1

eW ðxÞ � 1
; ðA:10Þ

with

qW0
¼ 1

ZW0

exp �
Z

dxbyxW ðxÞbx

� �
; trBqW0

¼ 1: ðA:11Þ

In fact, qW is different from qW0
by a bounded operator LB, as

qW ¼ LBqW0
LyB; ðA:12Þ

where

LB ¼ q1=2
W q�1=2

W0
¼

ffiffiffiffiffiffiffiffi
ZW0

ZW

r
�T exp �

Z 1=2

0

dbbye�bWð0Þ ~WebWð0Þb
� �

; ðA:13Þ

with �T denoting the anti-chronologically ordered product and

bye�bWð0Þ ~WebWð0Þb ¼
Z

dx
Z

dx0 byxe�bW ðxÞ ~Wxx0e
bW ðx0Þbx0 : ðA:14Þ

Hence, by applying Wick’s theorem, the two-point function (A.9) reads
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N xx0 ¼ hLyBbyx0bxLBiqW0
¼ hbyx0bxiqW0

hLyBLBiqW0
þ � � � : ðA:15Þ

The first term is N
ð0Þ
xx0 in (A.10), since hLyBLBiqW0

¼ trBqW ¼ 1, and the other terms, defining
~N xx0 , are bounded functions, not proportional to d(x � x 0).

Let us now take any two bounded operators of the reservoir, of the form

X ¼
Z

dx
Z

dx0 byxXxx0bx0 ; Y ¼
Z

dx
Z

dx0 byxYxx0bx0 ; ðA:16Þ

and observe how the mixing property (4.7) emerges. In this case, the correlation function
reads

hX ðtÞY iqB
¼heiHBtX e�iHBtY iqB

¼
Z

dx1

Z
dx2

Z
dx3

Z
dx4

Z
dx
Z

dx0Xx1x2
Yx3x4

wxx0

� hbx0b
y
x1

bx2
byx3

bx4
byxiqW eiðx1�x2Þt: ðA:17Þ

By applying Wick’s theorem, hbx0b
y
x1

bx2
byx3

bx4
byxiqW can be expressed in terms of two-point

functions (A.9), and by applying Riemann–Lebesgue’s lemma, only the contribution of
d(x1 � x2) in hbyx1

bx2
iqW survives in the long-time limit, to yield

hX ðtÞY iqB
!t!1
Z

dx1

Z
dx3

Z
dx4

Z
dx
Z

dx0Xx1x1
Yx3x4

wxx0

� Nðx1Þhbx0b
y
x3

bx4
byxiqW

¼hX iqW0
hY iqB

: ðA:18Þ

Therefore, if qB ¼ qW0
(i.e., ~Wxx0 ¼ 0 without the perturbation ~KB), Eq. (A.18) is nothing

but the definition of mixing in (4.7), and qW0
given in (A.11) is an example of mixing state.

The canonical state qW0
with W(x) = bx, is thus a typical mixing state. We have demon-

strated (A.18) with the specific observables X and Y in (A.16), but this example helps us
understand how mixing emerges for general observables.

It is important to note that, in this appendix, we have considered only the reservoir
dynamics generated by the reservoir Hamiltonian HB, without any interaction. The free
evolution is responsible for the mixing.

The mixing property (4.7) is demonstrated here with the thermal equilibrium state
(A.11). It is also possible to prove it for the NESS depicted in Fig. 1(b). See Ref. [21]
for details.

Appendix B. Inequivalent sectors

The main purpose of this tutorial appendix is to clarify that different mixing states
belong to different sectors which are inequivalent to each other, and any bounded pertur-
bation on a mixing state does not bring it to a different sector. Let us demonstrate the
inequivalence of the sectors with an explicit example that captures the essence of the
inequivalent representation.

In order to analyze an infinitely extended system, let us begin with a free bosonic gas in
a 1D box whose size is specified by a parameter ‘, and then take the continuum limit
‘ fi1. We consider two canonical states Xb and Xb0 with different temperatures and
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compute the overlap between them through the quantity trBfX1=2
b X1=2

b0 g. Note that the
canonical state is a mixing state as shown in Appendix A.

In the finite box, momentum k is discrete, and the Hamiltonian of the bosonic gas is
given by

HB ¼
X

k

xkbð‘Þk

y
bð‘Þk ; ðB:1Þ

where bð‘Þk and bð‘Þk

y
satisfy the canonical commutation relation ½bð‘Þk ; b

ð‘Þ
k0
y
� ¼ dkk0 . The canon-

ical state at the inverse temperature b is given by

Xb ¼
1

Zb
e�bHB ; Z�1

b ¼
Y

k

ð1� e�bxk Þ; ðB:2Þ

and the overlap between Xb and Xb0 reads

trBfX1=2
b X1=2

b0 g ¼
Y

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� e�bxk Þð1� e�b0xk Þ

p
1� e��bxk

¼ exp � 1

2

X
k

ln
ð1� e�

�bxk Þ2

ð1� e�bxk Þð1� e�b0xk Þ

" #
; ðB:3Þ

where �b ¼ ðbþ b0Þ=2. The exponent in (B.3) is easily shown to be less than zero for b „ b 0

and equal to zero for b = b 0. In the continuum limit ‘ fi1, the summation in the expo-
nent is replaced with an integral as

P
k ! ð‘=2pÞ

R
dk, and the overlap is reduced to

trBfX1=2
b X1=2

b0 g ¼ exp � ‘

4p

Z
dk ln

ð1� e�
�bxk Þ2

ð1� e�bxk Þð1� e�b0xk Þ

" #

! 1 ðb ¼ b0Þ
0 ðb 6¼ b0Þ

�
as ‘!1; ðB:4Þ

which means that canonical states with different temperatures do not overlap and belong
to inequivalent sectors.

Any bounded perturbation does not change the situation: a state ~Xb, which is different
from a canonical state Xb only by a bounded superoperator, belongs to the same sector as
that of the canonical state Xb and does not overlap with a canonical state Xb 0 with different
temperature. Consider, for example, a state ~Xb, whose square root ~X1=2

b is different from
X1=2

b by a bounded operator KB (or LB) as

~X1=2
b ¼ KBX1=2

b KyB ¼ LBX1=2
b ¼ X1=2

b LyB; LB ¼ KBX1=2
b KyBX�1=2

b ðB:5Þ

with the normalization conditions trB
~Xb ¼ 1 and trBXb = 1. We again begin with a finite ‘,

so that the overlap between ~Xb and Xb0 now reads

trBf~X1=2
b X1=2

b0 g ¼ trBfLBX1=2
b X1=2

b0 g ¼
Y

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� e�bxk Þð1� e�b0xk Þ

p
1� e��bxk

hLBi�b; ðB:6Þ

where hLBi�b is the expectation value of LB in the canonical state at temperature �b. Note
that hLBi�b is finite even in the continuum limit ‘ fi1, since LB is a bounded operator.
Therefore, exactly the same argument as (B.4) applies to this case and leads to the conclu-
sion
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trBf~X1=2
b X1=2

b0 g !
hLBib ðb ¼ b0Þ
0 ðb 6¼ b0Þ

(
as ‘!1; ðB:7Þ

i.e., ~Xb does not overlap with Xb0 and belongs to the sector equivalent to Xb.

Appendix C. Diagonal projection

Let us confirm the property of the diagonal projection in (5.12) with an explicit exam-
ple. We consider the same model as in Appendix B and observe how the diagonal projec-
tion acts on a reservoir state ~Xb ¼ KBXb, which is different from the canonical state Xb at
the inverse temperature b only by a bounded superoperator KB, and therefore belongs to
the sector equivalent to Xb.

We begin with a 1D bosonic gas in a finite box, and then take the continuum limit
‘ fi1. For a finite ‘, the diagonal projection PD is defined as (5.8) and is given in this
case by

PD
~Xb ¼

X
fnkg
jfnkgihfnkgj~Xbjfnkgihfnkgj; ðC:1Þ

where jfnkgi ¼ jnk1
nk2
� � �i; nk being the occupation number in mode xk. To be explicit, let

us take a reservoir state

~Xb ¼ KBXb ¼
X
k;k0

wð‘Þkk0b
ð‘Þ
k

y
Xbbð‘Þk0 ¼

X
k;k0

wð‘Þkk0e
bxk0 bð‘Þk

y
bð‘Þk0 Xb ðC:2Þ

with a Hermitian (wð‘Þkk0 ¼ wð‘Þk0k

�
) positive matrix, and consider the expectation value of a

bounded operator of the reservoir

Y ¼
X
k;k0

Y
ð‘Þ
kk0b

ð‘Þ
k

y
bð‘Þk0 ðC:3Þ

in the projected state PD
~Xb,

trBfYPD
~Xbg ¼

X
fnkg
hfnkgjY jfnkgihfnkgj~Xbjfnkgi

¼
X
fnkg
hfnkgjY jfnkgihfnkgjLBjfnkgihfnkgjXbjfnkgi; ðC:4Þ

where LB ¼
P

k;k0w
ð‘Þ
kk0e

bxk0bð‘Þk

y
bð‘Þk0 is the bounded operator acting on the left side of Xb in

(C.2). Note that Xb is diagonal with respect to the basis j{nk}æ and the diagonal elements
are given by

hfnkgjXbjfnkgi ¼
1

Zb
e
�b
P

k

nkxk

ðC:5Þ

with Zb given in (B.2). The diagonal elements of Y and LB are easily evaluated to be

hfnkgjY jfnkgi ¼
X

k

Y
ð‘Þ
kk nk; hfnkgjLBjfnkgi ¼

X
k

wð‘Þkk ebxk nk; ðC:6Þ

respectively, and Eq. (C.4) is
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trBfYPD
~Xbg ¼

1

Zb

X
fnkg

X
k;k0

Y
ð‘Þ
kk wð‘Þk0k0e

bxk0nknk0e
�b
P
k00

nk00xk00

: ðC:7Þ

Notice here that

hnknk0 ib ¼
1

Zb

X
fnkg

nknk0e
�b
P
k00

nk00xk00

¼
hnkibhnk0 ib ðk 6¼ k0Þ
hn2

kib ðk ¼ k0Þ;

(
ðC:8Þ

where

hnkib ¼ hb
ð‘Þ
k

y
bð‘Þk ib ¼

1

ebxk � 1
; hn2

kib ¼ hðb
ð‘Þ
k

y
bð‘Þk Þ

2ib ¼ 2hnki2b þ hnkib; ðC:9Þ

so that Eq. (C.7) is decomposed into two terms,

trBfYPD
~Xbg ¼

X
k 6¼k0

Y
ð‘Þ
kk wð‘Þk0k0e

bxk0 hnkibhnk0 ib þ
X

k

Y
ð‘Þ
kk wð‘Þkk ebxk hn2

kib: ðC:10Þ

We are now in a position to take the continuum limit ‘ fi1 by recalling the correspon-
dence

X
k

$ ‘

2p

Z
dk; bð‘Þk $

ffiffiffiffiffiffi
2p
‘

r
bk; Y

ð‘Þ
kk0 $

2p
‘
Ykk0 ; wð‘Þkk0 $

2p
‘

wkk0 ; ðC:11Þ

where bk and byk satisfy the canonical commutation relation ½bk; b
y
k0 � ¼ dðk � k0Þ, and Ykk0

and wkk 0 are assumed to be bounded functions. The relevant quantity now becomes

trBfYPD
~Xbg ¼

Z
dk
Z

dk0Ykkwk0k0e
bxk0 hnkibhnk0 ib þ

2p
‘

Z
dkYkkwkkebxk hn2

kib ðC:12Þ

for large ‘, and the second term disappears in the continuum limit ‘ fi1. We finally ob-
tain

trBfYPD
~Xbg ! hY ibhLBib ¼ hY ibtrB

~Xb as ‘!1; ðC:13Þ

which yields the formula for the diagonal projection,

PD
~Xb ¼ Xb: ðC:14Þ

The action of the diagonal projection PD on the total system is now readily understood.
Consider, for example, a state of the total system

q ¼ Kð1S � XbÞ ¼
X

i;j

Z
dk
Z

dk0wij;kk0Sib
y
kðrS � XbÞbk0S

y
j ; ðC:15Þ

where rS is any positive operator of system S, Si’s are system operators, and K is a bound-
ed superoperator acting on 1S � Xb. Take an operator of the system, A, and an operator of
the reservoir, Y given in (C.3). Starting with a finite ‘, the expectation value of the operator
D = A � Y in the projected state PDq is

trfDPDqg ¼
X
fnkg
hfnkgjY jfnkgihfnkgjtrSfAqgjfnkgi

¼
X

i;j

X
k;k0

trSfASirSSyjgY
ð‘Þ
kk wð‘Þij;k0k0e

bxk0 hnknk0 ib; ðC:16Þ
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which is reduced, in the continuum limit ‘ fi1, to

trfDPDqg !
X

i;j

Z
dk
Z

dk0 trSfASirSSyjgYkkwij;k0k0e
bxk0 hnkibhnk0 ib

¼trS½AtrBfKð1S � XbÞg�hY ib
¼tr½DðtrBfqg � XbÞ�; ðC:17Þ

reproducing (5.12).

Appendix D. Key formulas for the theorem

Here we prove the key formulas (6.13) (with its counterpart for s < 0, which is nec-
essary in Section 7) and (7.3), and see how the proper choice of the projection P is
crucial.

D.1. The van Hove Limit of RðkÞm ðsÞ

Let us analyze the kernel RðkÞm ðsÞ, defined in (6.12). In this appendix, the eigenprojection
1S � P0 is written simply as P0.

We start by noting that in van Hove’s limit, for n > 2,

knRðkÞm ðsÞ ¼ kn
Z s=k2

0

dtQeðL
0
0þixmÞt ! 0 as k! 0 ðn > 2Þ; ðD:1Þ

irrespectively of the spectrum of L00.
Second, the following observation will be important: the convolutionZ t

0

dt0 eL0ðt�t0ÞQLSBQeL
0
0t0 ðD:2Þ

is bounded for any t, provided the point spectrum of L0 is removed by the projection

Q ¼ 1� P with P ¼ P0. Let us look at the Laplace transform of this convolution (for
t > 0),

1

s� L0

QLSBQ
1

s� L00
: ðD:3Þ

Neither 1=ðs� L0Þ nor 1=ðs� L00Þ has a singularity on the right half plane Res > 0. If L0

and L00 have common eigenvalues (along the imaginary axis Res = 0) that are not project-
ed out, these would give second order poles and yield linearly diverging functions of t (for
large t) after the inverse Laplace transform; otherwise, the convolution decays or just oscil-
lates. On the other hand, if the point spectrum of L0 is removed by the projection Q, such
a coincidence between the point spectra does not happen and the convolution (D.2) is
bounded for t fi1, irrespectively of the point spectrum of L00.

Now by using

eL
0
0t ¼ eL0t þ k

Z t

0

dt0 eL0ðt�t0ÞQLSBQeL
0
0t0 ; ðD:4Þ

we expand the relevant quantity (6.12) as
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RðkÞm ðsÞ ¼
Z s=k2

0

dtQeðL0þixmÞt þ k
Z s=k2

0

dt
Z t

0

dt0 eðL0þixmÞte�L0t0QLSBQeL
0
0t0 : ðD:5Þ

The first term is decomposed into two parts by the projections P0 and Pc = 1 � P0, and
the integrations are easily carried out to give (for s > 0)

Z s=k2

0

dtQeðL0þixmÞt ¼
Z s=k2

0

dtQP0eðLSþixmÞt þ
Z s=k2

0

dtQPce
ðL0þixmÞt

¼
X

n

Z s=k2

0

dtQP0
~Qneiðxm�xnÞt þQPc

eðL0þixmÞs=k2 � 1

L0 þ ixm � 0þ

¼ s

k2
QP0

~Qm þ
X
n6¼m

QP0
~Qn

eiðxm�xnÞs=k2 � 1

iðxm � xnÞ

þQPc

eðL0þixmÞs=k2 � 1

L0 þ ixm � 0þ
; ðD:6Þ

which shows that the only possible divergence of the relevant operator in (6.12) in van
Hove’s limit k fi 0 stems from the point spectrum of L0 (i.e. the first term of the last expres-
sion). This divergence results in the divergences of both the memory kernel KðkÞmnðsÞ and the
initial correlation I ðkÞðsÞ. However, if P ¼ P0, the divergent term disappears due to
QP0 ¼ 0, and we have (for s > 0)

Z s=k2

0

dtQeðL0þixmÞt ¼ Q
eðL0þixmÞs=k2 � 1

L0 þ ixm � 0þ
! � Q

L0 þ ixm � 0þ
as k! 0; ðD:7Þ

by noting the formula

lim
t!�1

Pc

eðL0þixmÞt

L0 þ ixm 	 0þ
¼ 0; ðD:8Þ

which is valid in the sense of distributions. The second term in (D.5) can be manipulated to
yield

k
Z s=k2

0

dt
Z t

0

dt0 eðL0þixmÞte�L0t0QLSBQeL
0
0t0

¼ k
Z s=k2

0

dt0
Z s=k2

t0
dteðL0þixmÞte�L0t0QLSBQeL

0
0t0

¼ k
Q

L0 þ ixm � 0þ
eixms=k2

Z s=k2

0

dt eL0ðs=k2�tÞQLSBQeL
0
0t

� k
Q

L0 þ ixm � 0þ
LSB

Z s=k2

0

dtQeðL
0
0þixmÞt: ðD:9Þ

The integral in the first term is the convolution (D.2). Since the point spectrum of L0 is
removed by the projection Q, this convolution is bounded for s/k2 fi1. In summary,
with the choice of the projection P ¼ P0, Eq. (D.5) is arranged into the recurrence
formula
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RðkÞm ðsÞ ¼Q
eðL0þixmÞs=k2 � 1

L0 þ ixm � 0þ

þ k
Q

L0 þ ixm � 0þ
eixms=k2

Z s=k2

0

dt eL0ðs=k2�tÞQLSBQeL
0
0t

� k
Q

L0 þ ixm � 0þ
LSBR

ðkÞ
m ðsÞ ðs > 0Þ; ðD:10Þ

where the first term converges to (D.7) and the second term vanishes in van Hove’s limit.
Therefore, by iterating the above expansion twice, we arrive at

lim
k!0

RðkÞm ðsÞ ¼ �
Q

L0 þ ixm � 0þ
� Q

L0 þ ixm � 0þ
LSB

� �3

lim
k!0

k3RðkÞm ðsÞ

¼ � Q

L0 þ ixm � 0þ
ðs > 0Þ; ðD:11Þ

which is Eq. (6.13) of the text.
A similar argument applies to the case s < 0 to yield

RðkÞm ðsÞ ¼Q
eðL0þixmÞs=k2 � 1

L0 þ ixm þ 0þ

þ k
Q

L0 þ ixm þ 0þ
eixms=k2

Z s=k2

0

dt eL0ðs=k2�tÞQLSBQeL
0
0t

� k
Q

L0 þ ixm þ 0þ
LSBR

ðkÞ
m ðsÞ ðs < 0Þ; ðD:12Þ

and

lim
k!0

RðkÞm ðsÞ ¼ �
Q

L0 þ ixm þ 0þ
ðs < 0Þ: ðD:13Þ
D.2. The van Hove Limit of QeL
0
0
s=k2

Using the expansion (D.4), we have

QeL
0
0s=k

2 ¼ QeL0s=k
2 þ k

Z s=k2

0

dt eL0ðs=k2�tÞQLSBQeL
0
0t: ðD:14Þ

The convolution in the second term is the same as that discussed in (D.2), which is bound-
ed for any s and k, provided the projection P is the eigenprojection P0, and hence the sec-
ond term vanishes in van Hove’s limit k fi 0. Since the right projection Q ¼ 1�P0

removes the point spectrum of L0, the first term disappears as s/k2 fi1 due to Rie-
mann–Lebesgue’s lemma. Therefore, QeL

0
0s=k

2
decays in van Hove’s limit, yielding (7.3).

References

[1] H. Spohn, Rev. Mod. Phys. 52 (1980) 569.
[2] R. Kubo, M. Toda, N. Hashitsume, Statistical Physics II: Nonequilibrium Statistical Mechanics, 2nd ed.,

Springer, Berlin, 1995.
[3] U. Weiss, Quantum Dissipative Systems, World Scientific, Singapore, 1993.



S. Tasaki et al. / Annals of Physics 322 (2007) 631–656 655
[4] C.W. Gardiner, P. Zoller, Quantum Noise, 2nd ed., Springer, Berlin, 2000.
[5] S. Nakajima, Prog. Theor. Phys. 20 (1958) 948;

R. Zwanzig, J. Chem. Phys. 33 (1960) 1338.
[6] F. Haake, in: G. Höhler (Ed.), Quantum Statistics in Optics and Solid-State Physics, Springer Tracts in

Modern Physics, vol. 66, Springer, Berlin, 1973, pp. 98–168.
[7] H. Grabert, P. Schramm, G.L. Ingold, Phys. Rep. 168 (1988) 115.
[8] F. Haake, R. Reibold, Phys. Rev. A 32 (1985) 2462;
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