
Annals of Physics 322 (2007) 657–676

www.elsevier.com/locate/aop
On the assumption of initial factorization
in the master equation for weakly coupled

systems II: Solvable models

K. Yuasa a,*, S. Tasaki b, P. Facchi c,d, G. Kimura a,1,
H. Nakazato a, I. Ohba a, S. Pascazio e,d

a Department of Physics, Waseda University, Tokyo 169-8555, Japan
b Department of Applied Physics and Advanced Institute for Complex Systems, Waseda University,

Tokyo 169-8555, Japan
c Dipartimento di Matematica, Università di Bari, I-70125 Bari, Italy
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Abstract

We analyze some solvable models of a quantum mechanical system in interaction with a reservoir
when the initial state is not factorized. We apply Nakajima–Zwanzig’s projection method by choos-
ing a reference state of the reservoir endowed with the mixing property. In van Hove’s limit, the
dynamics is described in terms of a master equation. We observe that Markovianity becomes a valid
approximation for timescales that depend both on the form factors of the interaction and on the
observables of the reservoir that can be measured.
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1. Introduction

The dissipative dynamics of a small quantum system weakly coupled to a large reservoir
is described in terms of a master equation [1–4]. In the standard approach to this problem,
one usually takes for granted that there are no initial correlations between the system and
the reservoir. In the preceding article, hereafter referred to as Article I, we reconsidered
this hypothesis in the framework of Nakajima–Zwanzig’s projection method [2,4–6] and
proved that, in order to get a consistent description, the reference state of the reservoir
should be endowed with the mixing property. In such a case, the initial correlations disap-
pear in the Markovian (van Hove) limit and the system behaves as if it started from a fac-
torized initial condition. Interestingly, one arrives at the same conclusions also for
uncorrelated initial conditions. The mixing property is therefore crucial, and a ‘‘wrong’’
choice of the reservoir state provokes the appearance of secular terms.

In this article, we shall focus on the hypotheses that are necessary for the derivation of
the theorem proved in Article I. These will be scrutinized in terms of two exactly solvable
models, in which an oscillator is coupled to a bosonic reservoir. This will enable us to
describe the onset to Markovianity and the timescales at which Markovianity becomes
a valid approximation.

This article is organized as follows. We introduce notation and summarize previous
results in Section 2. The first exactly solvable model is introduced in Section 3 and solved
in Sections 4–6. The second model is briefly discussed in Section 7. Section 8 is devoted to
a discussion and some concluding remarks. Two Appendices contain the details of the
derivations.

2. Summary of previous results

2.1. Notation

We start by briefly summarizing the main ideas of Article I and introduce notation. Let
the total system consist of a ‘‘large’’ reservoir B and a ‘‘small’’ (sub)system S, so that the
total Hilbert space can be expressed as the tensor product of the Hilbert spaces of the res-
ervoir HB and of the system HS,

Htot ¼ HS �HB: ð2:1Þ

The Hamiltonian and the corresponding Liouvillian of the total system read

H ¼ H 0 þ kHSB ¼ HS þ H B þ kHSB; ð2:2Þ
L ¼ L0 þ kLSB ¼ LS þ LB þ kLSB; ð2:3Þ

respectively, where k is the coupling constant. Clearly,

½H S;H B� ¼ 0; ½LS;LB� ¼ 0: ð2:4Þ

We assume that the system Hamiltonian HS admits a pure point spectrum, and the system
Liouvillian LS is resolved in terms of its eigenprojections ~Qm,

LS ¼ �i
X

m

xm
~Qm;

X
m

~Qm ¼ 1; ~Qm
~Qn ¼ dmn

~Qm: ð2:5Þ
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2.2. Nakajima–Zwanzig’s projection method

Let q(t) be the density operator of the total system at time t, which has evolved from the
initial state q0

qðtÞ ¼ eLtq0 ð2:6Þ

and is the solution of the von Neumann equation

d

dt
qðtÞ ¼ LqðtÞ; qð0Þ ¼ q0: ð2:7Þ

We are interested in the reduced dynamics of system S, which is described by the density
operator of S,

qSðtÞ ¼ trBqðtÞ: ð2:8Þ

In order to derive a master equation for qS(t), Nakajima–Zwanzig’s procedure makes use
of the projection operators [2,4–6]

Pq ¼ trBfqg � XB ¼ r� XB; Q ¼ 1� P; ð2:9Þ

where XB is a certain reference state of the reservoir. Due to normalization trBXB = 1, it
follows that P2 ¼ P and Q2 ¼ Q. In particular,

PqðtÞ ¼ qSðtÞ � XB; QqðtÞ ¼ qðtÞ � qSðtÞ � XB; ð2:10Þ

where we used the definition (2.8).
In the standard derivation of a master equation, the initial state of the total system, q0,

is taken to be the tensor product of a system initial state qS and a reservoir state qB,

q0 ¼ qS � qB: ð2:11Þ
This is an uncorrelated initial state. The reservoir is assumed to be at equilibrium (with
respect to the reservoir free evolution LB)

LBqB ¼ 0; ð2:12Þ

and in most applications qB ¼ Z�1
b e�bHB is a thermal state at the inverse temperature

b = (kBT)�1 with the normalization constant Zb. Then, the reservoir state qB in the uncor-
related initial state (2.11) is usually taken as the reference state XB.

When the assumption of a factorized initial state is not justified, however, an ambiguity
arises regarding the choice of the reference state XB. Indeed, if

q0 ¼ qS � qB þ dq0; ð2:13Þ

where

qS ¼ trBq0; qB ¼ trSq0; ð2:14Þ
and the term dq0 represents the correlation between system S and reservoir B, the relation
between qB and XB is by no means obvious. We discussed this point in Article I and
proved the following theorem.
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2.3. Theorem

Given a correlated initial state q0, if

(i) 0 is the unique simple eigenvalue of the reservoir Liouvillian LB corresponding to the
eigenvector XB and the remaining part of the spectrum of LB is absolutely continu-
ous (strictly speaking, the spectrum of LB can be defined only once the sector has
been specified: in our case, the relevant sector is that containing the state XB);

(ii) the initial (correlated) state of the total system is given in the form

q0 ¼ Kð1S � XBÞ ¼
X

i

Lið1S � XBÞLyi ; ð2:15Þ
where K is a bounded superoperator (i.e., Li’s are bounded operators) satisfying the
normalization condition trq0 = 1, namely, the initial state q0 belongs to the sector
specified by 1S � XB,
then van Hove’s ‘‘k2t’’ limit [1,7,8] of the P-projected density operator in the interaction
picture,

qIðsÞ ¼ lim
k!0

qðkÞI ðsÞ ¼ lim
k!0

e�LSs=k2

Pqðs=k2Þ; ð2:16Þ

is the solution of

qIðsÞ ¼ Pq0 þ
Z s

0

ds0KqIðs0Þ ð2:17Þ

with

K ¼ �
X

m

P ~QmLSB

Q

L0 þ ixm � 0þ
LSB

~QmP; ð2:18Þ

or equivalently,

d

ds
qIðsÞ ¼ KqIðsÞ; qIð0Þ ¼ Pq0 ¼ trBfq0g � XB: ð2:19Þ

That is, even if the initial state q0 is not in a factorized form, all correlations disappear in
van Hove’s limit and system S behaves as if the total system started from the factorized
initial state in (2.19) with the reservoir state XB.

In addition, we showed that

lim
k!0

Qqðs=k2Þ ¼ 0; ð2:20Þ

which makes the dynamics consistent, for no spurious term will develop in the master
equation and no correlations can appear at later times: not only the initial state, but also
the state at any moment t is factorized in van Hove’s limit. This supports the validity of the
assumption of the factorized state, that is frequently applied in literature in order to derive
a master equation [2–4]. The state of system S evolves according to the master equation
(2.19), while the reservoir B remains in the state XB.

It is important to note that, in van Hove’s limit, the reservoir state immediately relaxes
into XB, which is the eigenstate of the reservoir Liouvillian LB belonging to its unique
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simple eigenvalue 0, and the spectral properties required in hypothesis (i) imply that it is a
mixing state. The right choice for the reference state of the projection (2.10) is this mixing
state XB, and such a projection is nothing but the eigenprojection of the reservoir Liouvil-
lian LB belonging to the simple eigenvalue 0. This is the criterion for the reference state,
that covers both equilibrium states and nonequilibrium steady states. Furthermore, as
clarified in Article I, the interaction between system S and reservoir B is not essential to
the factorization or the mixing; the total system is factorized and the reservoir relaxes into
the mixing state through its own free evolution.

The purpose of the present article is to scrutinize these issues in some explicit examples.
In particular, we shall focus on: (a) the disappearance of the initial correlation, (b) the
factorization of the total system, and (c) the relaxation of the reservoir into the mixing
state, in van Hove’s limit. This will also enable us to discuss the relevant timescales for
the factorization and the mixing.

3. An exactly solvable model

Let us corroborate the above general arguments by scrutinizing an exactly solvable
model. We consider an oscillator a coupled to a reservoir bx, whose Hamiltonian is given
by (2.2) with

HS ¼ xSaya; HB ¼
Z 1

0

dxxbyxbx; HSB ¼ i

Z 1

0

dxðg�xaybx � gxabyxÞ; ð3:1Þ

where a(a�) and bxðbyxÞ are annihilation (creation) operators satisfying the canonical com-
mutation relations

½a; ay� ¼ 1; ½bx; b
y
x0 � ¼ dðx� x0Þ; ð3:2Þ

and gx is the form factor of the interaction. Even though system S has an infinite number
of levels, and does not fulfill the conditions of the main theorem proved in Article I, the
following explicit calculation will show that all the conclusions are still valid and therefore
the theorem has a wider applicability.

The above model is exactly solvable [9–11]. Indeed, the Heisenberg equations of motion
for a(t) = eiHtae�iHt and bxðtÞ ¼ eiHtbxe�iHt read

_aðtÞ ¼ �ixSaðtÞ þ k
Z 1

0

dxg�xbxðtÞ; ð3:3aÞ

_bxðtÞ ¼ �ixbxðtÞ � kgxaðtÞ; ð3:3bÞ

and by integrating the second equation and inserting it into the first, one obtains an inte-
gro-differential equation for a(t),

_aðtÞ ¼ �ixSaðtÞ � k2

Z t

0

dt0Kðt � t0Þaðt0Þ þ kBðtÞ; ð3:4Þ

with

KðtÞ ¼
Z 1

0

dx jgxj
2e�ixt; BðtÞ ¼

Z 1

0

dxg�xe�ixtbx; ð3:5Þ

which is solved via Laplace transform to yield
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aðtÞ ¼ GðtÞaþ k
Z t

0

dt0Gðt � t0ÞBðt0Þ; ð3:6aÞ

bxðtÞ ¼ e�ixtbx � k
Z t

0

dt0e�ixðt�t0Þgxaðt0Þ; ð3:6bÞ

where

GðtÞ ¼
Z

CB

ds
2pi

est

sþ ixS þ k2K̂ðsÞ
; K̂ðsÞ ¼

Z 1

0

dx
jgxj

2

sþ ix
; ð3:7Þ

CB being the Bromwich path on the complex s-plane. Note that G(0+) = 1 and _Gð0þÞ ¼
�ixS.
4. A correlated initial state

Any physical preparation of a quantum state is based on concrete physical procedures
that cannot be controlled with complete accuracy. The real initial state is therefore
unknown to some extent and in general has certainly some correlations built in. As an
example of a correlated initial state, that has the advantage of being solvable, we take

q0 ¼
1

Z0

eaynybðrS � qWÞebyna; ð4:1Þ

with any positive operator rS of system S and a reservoir state

qW ¼
1

ZW

e�byWb; ð4:2Þ

where the summations over the reservoir modes x are implicit (and so henceforth as long
as no confusion can arise)

nyb ¼
Z 1

0

dxn�xbx; byWb ¼
Z 1

0

dx
Z 1

0

dx0byxWxx0bx0 : ð4:3Þ

Wxx0 is Hermitian ðWxx0 ¼W�
x0xÞ and consists of Wð0Þ

xx0 , that is proportional to d(x � x 0),
and the remaining square integrable part ~Wxx0 ,

Wxx0 ¼W
ð0Þ
xx0 þ ~Wxx0 ; W

ð0Þ
xx0 ¼ W ðxÞdðx� x0Þ: ð4:4Þ

The states q0 and qW are normalized with the normalization constants Z0 and ZW , and nx

is the relevant parameter to the initial correlation between system S and reservoir B.
For nx = 0, the state (4.1) is obviously factorized, while it becomes a tightly correlated

state for any nx „ 0, with correlations proportional to nx, as will be shown later in (5.7).
Actually, the operator eaynyb appearing in the initial state (4.1) generates a correlation
between S and B: it changes the n-particle states b�g1 � � � b�gn| vacæ of the reservoir into
eaynybbyg1 � � � bygnjvaci ¼ ðbyg1 þ aynyg1Þ � � � ðbygn þ aynygnÞjvaci, so that S and B are entan-
gled for any nonvanishing value of nx. It is also possible to explicitly compute the corre-
lation functions in the initial state (4.1): see the generating functional (5.4) and the
correlation function (5.7) below. The choice of this particular form for the initial state
q0 is mainly due to the fact that it allows us to solve the dynamics of the total system exact-
ly and to discuss the correlation between system S and reservoir B. One can think of the
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correlations in (4.1) as engendered by a linear interaction of the form Hprep / a�n�b + h.c.
in a rotating-wave-like approximation.

As shown in Appendix A of Article I, the (normalized) reservoir state

XB ¼
1

ZW0

e�byWð0Þb ð4:5Þ

is mixing with respect to the reservoir dynamics driven by the Hamiltonian HB in (3.1),
and the initial state q0 in (4.1) belongs to the sector specified by 1S � XB in the sense of
(2.15). Indeed, q0 is the state perturbed from 1S � XB by a local operator L,

q0 ¼ Lð1S � XBÞLy; L ¼ 1ffiffiffiffiffi
Z0

p eaynybð ffiffiffiffiffirS

p � LBÞ; ð4:6Þ

where

LB ¼ q1=2
W X�1=2

B ¼
ffiffiffiffiffiffiffiffi
ZW0

ZW

r
�T exp �

Z 1=2

0

dbbye�bWð0Þ ~WebWð0Þb
� �

ð4:7Þ

is a local perturbation such that

qW ¼ LBXBLyB; ð4:8Þ
�T denoting the anti-chronologically ordered product and

bye�bWð0Þ ~WebWð0Þb ¼
Z 1

0

dx
Z 1

0

dx0byxe�bW ðxÞ ~Wxx0e
bW ðx0Þbx0 : ð4:9Þ

Even though the initial state q0 does not satisfy the hypotheses of the theorem proved in
Article I, the following analysis extends the general results valid for a bounded perturba-
tion.

Note that the reservoir Gaussian state qW in (4.2) is fully characterized by the two-point
function

N xx0 ¼ hbyx0bxiqW ¼ trBfbyx0bxqWg ð4:10Þ

and, as shown in Appendix A in Article I, it is also composed of two parts like Wxx0 in
(4.4),

N xx0 ¼ N
ð0Þ
xx0 þ ~N xx0 : ð4:11Þ

The first term is the two-point function in the mixing state XB,

N
ð0Þ
xx0 ¼ hb

y
x0bxiXB

¼ NðxÞdðx� x0Þ; NðxÞ ¼ 1

eW ðxÞ � 1
; ð4:12Þ

which is the Bose distribution function when W(x) = bx, while the second one is a local
function representing the effect of the local perturbation LB in (4.8).

5. Dynamics of the total system

Since we are interested in the correlation between system S and reservoir B, we need to
look at the state of the total system, q(t). In order to treat the reservoir degrees of freedom
rigorously, we should restrict ourselves to reservoir observables whose expectation values
are finite and discuss the state of the total system through a set of such expectation values.
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The relevant quantity for our discussion is therefore a characteristic functional of the state
q(t), e.g.,

G½J a; J �a; J b; J
y
b; t� ¼ trfeJ�aaeJ ybbe�byJb e�ayJaqðtÞg; ð5:1Þ

where J ybb ¼
R1

0
dxJ �b;xbx, which is the generating functional of the expectation values of

any anti-normally ordered products of a, a�, bx, and byx and characterizes the state of the
total system, q(t). It is important to note that we are not interested in infinitely extended
objects, such as the Hamiltonian of the reservoir HB, since their expectation values are infi-
nite: our targets are locally distributed objects. Such a formalization of the problem is rea-
sonable, since we cannot observe infinitely extended objects in practice, and this is nothing
but the starting point of the C*-algebraic approach to quantum statistical mechanics [12].
In the characteristic functional (5.1), the bandwidth of Jb,x represents the locality of the
observables.

Let us begin with the characteristic functional of the initial state q0 in (4.1),

G0½J a; J �a; Jb; J
y
b� ¼ G½J a; J �a; J b; J

y
b; 0� ¼ trfeJ�aaeJ ybbe�byJb e�ayJaq0g; ð5:2Þ

which, in the coherent-state representation (Q-representation [4])

ajai ¼ ajai; haja0i ¼ e�jaj
2=2�ja0 j2=2þa�a0 ;

Z
d2a
p
jaihaj ¼ 1S; ð5:3Þ

is evaluated as

G0½J a; J �a; J b; J
y
b�

¼ 1

Z0

e�J ybJb

Z
d2a
p
hajrSjaieJ�aa�a�Jahebyðna�JbÞeða

�nyþJ ybÞbiW

¼ 1

Z0

e�J ybð1þN ÞJ b

Z
d2a
p
hajrSjaiea�nyN naeðJ

�
aþJ ybN nÞae�a�ðJaþnyN JbÞ

¼ e�J y
b
ð1þN ÞJbGSðJ a þ nyN J b; J �a þ J ybN nÞ;

ð5:4Þ

where

GSðJ a; J �aÞ ¼ G0½J a; J �a; 0; 0� ¼ trSfeJ�aae�ayJaqSg ð5:5Þ

is the characteristic function of the initial state of system S and

qS ¼ trBq0: ð5:6Þ
One can see from this characteristic functional how the parameter nx embodies the initial
correlation. For example,

habyxiq0
¼ � o

oJ �a

d
dJ b;x

G0½J a; J �a; J b; J
y
b�
����
Ja;J�a;Jb;J

y
b
¼0

¼ �
Z 1

0

dx0n�x0N x0x
o

2GSðJ a; J �aÞ
oJ aoJ �a

����
Ja;J�a¼0

¼
Z 1

0

dx0n�x0N x0xhaayiqS
:

ð5:7Þ
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Let us discuss the evolution of the state of the total system

qðtÞ ¼ e�iHtq0eiHt: ð5:8Þ
The characteristic functional (5.1) of the state q(t) is easily computed in the Heisenberg
picture

G½J a; J �a; J b; J
y
b; t� ¼ trfeJ�aaðtÞeJ y

b
bðtÞe�byðtÞJb e�ayðtÞJaq0g

¼ trfeJ�aðtÞaeJ ybðtÞbe�byJbðtÞe�ayJaðtÞq0g
¼ G0½J aðtÞ; J �aðtÞ; J bðtÞ; J ybðtÞ�;

ð5:9Þ

where Ja(t) and Jb(t) are functionals of Ja and Jb, defined via a�(t)Ja + b�(t)Jb = a�

Ja(t) + b�Jb(t). Note that the solutions (3.6) for a(t) and bx(t) are linear in a and bx, but
do not contain a� or byx. The characteristic functional of the initial state q0 is given in
(5.4) and Eq. (5.9) is further reduced to

G½J a; J �a; J b; J
y
b; t� ¼ e�J ybðtÞð1þN ÞJbðtÞGSðJ aðtÞ þ nyN J bðtÞ; J �aðtÞ þ J ybðtÞN nÞ: ð5:10Þ

We thus obtain the exact characteristic functional of the state of the total system, q(t),

G½J a; J �a; J b; J
y
b; t� ¼ e�J

yAðtÞJ GSðhyðtÞJ ;J yhðtÞÞ; ð5:11Þ

where

J yAðtÞJ ¼ J �a J yb
� � AaaðtÞ AabðtÞ

AbaðtÞ AbbðtÞ

� �
J a

J b

� �
; hyðtÞJ ¼ h�aðtÞ hybðtÞ

� � J a

J b

� �
ð5:12Þ

with

AaaðtÞ ¼ k2

Z t

0

dt0
Z t

0

dt00Gðt � t0ÞUggðt0; t00ÞG�ðt � t00Þ; ð5:13aÞ

J ybAbbðtÞJ b ¼ UJbJbðt; tÞ � 2k2Re

Z t

0

dt0ðKJbg � GÞðt � t0ÞUgJ b
ðt0; tÞ

þ k4

Z t

0

dt0
Z t

0

dt00ðKJbg � GÞðt � t0ÞUggðt0; t00ÞðG� � K�JbgÞðt � t00Þ;

ð5:13bÞ

J ybAbaðtÞ ¼ k
Z t

0

dt0UJbgðt; t0ÞG�ðt � t0Þ

� k3

Z t

0

dt0
Z t

0

dt00ðKJbg � GÞðt � t0ÞUggðt0; t00ÞG�ðt � t00Þ ð5:13cÞ

and

haðtÞ ¼ GðtÞ þ kðG � KgðN nÞÞðtÞ; ð5:13dÞ

J ybhbðtÞ ¼ KJbðN nÞðtÞ � kðKJbg � GÞðtÞ � k2ðKJbg � G � KgðN nÞÞðtÞ: ð5:13eÞ
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We have introduced

KfgðtÞ ¼
Z 1

0

dxf �xe�ixtgx;

Ufgðt; t0Þ ¼
Z 1

0

dx
Z 1

0

dx0f �xe�ixtð1þN Þxx0e
ix0t0gx0 ; ð5:14Þ

where 1xx0 ¼ dðx� x0Þ, and the convolution

ðF � GÞðtÞ ¼
Z t

0

dt0F ðt � t0ÞGðt0Þ: ð5:15Þ

The characteristic functional of the total system (5.11) is exact and valid for any time t.
The functions kðG � KgðN nÞÞðtÞ in ha(t) and KJbðN nÞðtÞ in hb(t) describe how the initial cor-

relation propagates, while AbaðtÞ and kðKJbg � GÞðtÞ in hb(t) describe the correlation estab-
lished through the interaction between system S and reservoir B. System S forgets its initial
state through the decay of G(t) and approaches an equilibrium state via the action of
AaaðtÞ, while AbbðtÞ governs the relaxation of reservoir B into its equilibrium, i.e., the mix-
ing state XB, as explained in the following.

6. The van Hove limit of the characteristic functional and discussion

We are now in a position to discuss the van Hove limit of the evolution of the total sys-
tem and demonstrate the validity of the general theorem proved in Article I: (a) the disap-
pearance of the initial correlation, (b) the factorization of the total system, and (c) the
relaxation into the mixing state, in van Hove’s limit.

In order to discuss van Hove’s limit, let us remove the (rapid) oscillation of system S.
That is, let us look at the characteristic functional of the density operator eiHStqðtÞe�iHSt in
the scaled time s = k2t,

G
ðkÞ
I ½J a; J �a; J b; J

y
b; s� ¼ G½J ae�ixSs=k2

; J �aeixSs=k2

; J b; J
y
b; s=k

2�: ð6:1Þ

Then, the van Hove limits of the constituent functions (5.13) (Appendix A),

lim
k!0

Aaaðs=k2Þ ¼ ½1þ NðxSÞ�ð1� e�CðxSÞsÞ; ð6:2aÞ

lim
k!0

J ybAbbðs=k2ÞJ b ¼
Z 1

0

dxJ �b;x½1þ NðxÞ�J b;x; ð6:2bÞ

lim
k!0

eixSs=k2

Aabðs=k2ÞJ b ¼ lim
k!0

J ybAbaðs=k2Þe�ixSs=k2 ¼ 0; ð6:2cÞ

lim
k!0

haðs=k2ÞeixSs=k2 ¼ e�CðxSÞs=2e�iDðxSÞs; lim
k!0

J ybhbðs=k2Þ ¼ 0; ð6:2dÞ

lead us to the van Hove limit of the characteristic functional (5.11)

GI½J a; J �a; J b; J
y
b; s� ¼ lim

k!0
G
ðkÞ
I ½J a; J �a; J b; J

y
b; s�

¼ e�J�aJa½1þNðxSÞ�ð1�e�CðxSÞsÞe
�
R1

0
dx J�b;x½1þNðxÞ�Jb;x

� GSðJ ae�CðxSÞs=2eiDðxSÞs; J �ae�CðxSÞs=2e�iDðxSÞsÞ;

ð6:3Þ
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where

CðxÞ ¼ 2pjgxj
2
; DðxÞ ¼ P

Z 1

0

dx0

2p
Cðx0Þ
x� x0

: ð6:4Þ

It is clear from (6.3) that (a) the initial correlation (or, equivalently, nx) disappears and (b)
the state of the total system is factorized at all times in van Hove’s limit. Furthermore, (c)
the local perturbation in the initial state q0, i.e., L in (4.6) (especially, the contribution of
~Wxx0 , which appears in the characteristic functional through ~N xx0), decays out and the res-

ervoir relaxes into the mixing state XB given in (4.5). The dynamics of the system in van
Hove’s limit is exactly the same as that derived from the uncorrelated initial state
tr{q0} � XB with the mixing state XB and it is actually possible to show that the density
operator qI(s) characterized by the characteristic functional (6.3) obeys the master equation

d

ds
qIðsÞ ¼ � i½DðxSÞaya; qIðsÞ�

� 1
2
½1þ NðxSÞ�CðxSÞ½ayaqIðsÞ þ qIðsÞaya� 2aqIðsÞay�

� 1
2
NðxSÞCðxSÞ½aayqIðsÞ þ qIðsÞaay � 2ayqIðsÞa�:

ð6:5Þ

This is nothing but the familiar master equation derived from the factorized initial condi-
tion with the reservoir in the thermal equilibrium state at a finite temperature,
q0 � qS � e�bHB [3,4].

These points corroborate the theorem in Article I, suggesting that the mixing state XB,
which is contained in the initial state q0, should be selected as the reference state of Nak-
ajima–Zwanzig’s projection P. Note that the characteristic functional in van Hove’s limit,
Eq. (6.3), approaches

GI½J a; J �a; J b; J
y
b; s� �!s!1

e�J�aJa½1þNðxSÞ�e
�
R1

0
dxJ�b;x ½1þNðxÞ�J b;x ; ð6:6Þ

which means that the equilibrium state (in van Hove’s limit) is

qeq ¼
1

Zeq

e�W ðxSÞaya � XB; Z�1
eq ¼ 1� e�W ðxSÞ; ð6:7Þ

i.e., system S relaxes into the equilibrium state with the same structure as that of the mix-
ing state XB.

As discussed in Article I, the state of the total system is factorized through its free evo-
lution and the interaction between system S and reservoir B is not essential, which is also
confirmed by the present exact solution. In the absence of the interaction, the exact char-
acteristic functional (5.11) reads

G½J a; J �a; J b; J
y
b; t� ¼ e�UJbJb ðt;tÞGSðJ aeixSt þ K�JbðN nÞðtÞ; J �ae�ixSt þ KJbðN nÞðtÞÞ ð6:8Þ

and approaches

G½J a; J �a; J b; J
y
b; t� �!t!1

e
�
R1

0
dx J�b;x½1þNðxÞ�Jb;xGSðJ aeixSt; J �ae�ixStÞ ð6:9Þ

by Riemann–Lebesgue’s lemma [see the discussion below and Eq. (A.1b)]. The state is thus
factorized into

qðtÞ�!t!1
qSðtÞ � XB; qSðtÞ ¼ eLSttrBq0 ð6:10Þ

through the free evolution, which confirms the second part of the theorem in Article I.
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The timescales of the factorization and the relaxation into the mixing state are clear
from (6.8): the former is governed by the function

KJbðN nÞðtÞ ¼
Z 1

0

dx
Z 1

0

dx0 J �b;xN xx0nx0

� �
e�ixt ð6:11Þ

contained in J ybhbðtÞ in (5.13e), and the latter by the leading term of AbbðtÞ in (5.13b),

UJbJbðt; tÞ ¼ Uð0ÞJbJb
ð0Þ þ 2Re

Z 1

0

dx
Z 1

x=2

d�xJ �b;�xþx=2
~N ð�xþx=2Þð�x�x=2ÞJ b;�x�x=2

 !
e�ixt;

ð6:12Þ
where

Uð0Þfg ðtÞ ¼
Z 1

0

dxf �x½1þ NðxÞ�gxe�ixt: ð6:13Þ

The timescales of the decay of these functions are determined by the bandwidths of their
Fourier transforms,

~KJbðN nÞðxÞ ¼ 2p
Z 1

0

dx0 J �b;xN xx0nx0 ð6:14Þ

for the former, and

~UJbJbðxÞ ¼ 2p
Z 1

x=2

d�xJ �b;�xþx=2
~N ð�xþx=2Þð�x�x=2ÞJ b;�x�x=2 ð6:15Þ

for the latter. Therefore, besides the spread of the initial correlation (nx) and of the per-
turbation from the mixing state ð ~N xx0 Þ, the size of the relevant reservoir observables

(Jb, x) influences the timescales of the factorization and the mixing. In the weak-coupling
regime they are very short compared with the timescale of the dissipative dynamics of sys-
tem S, which is of order 1/k2 in the original time t.

It is interesting to discuss what happens from a physical point of view. The initial cor-
relations and the local perturbations propagate outwards from the region of interest
(defined by the ‘‘size’’ of the relevant local observables) and never come back. What
remains is the ‘‘unperturbed’’ state, that is the mixing state XB and is the stable ‘‘ground
state’’ within the sector it specifies. The relaxation time of such a process is the time nec-
essary for the disturbance to pass through the range of the interaction, that of the initial
correlation, and the extension of the observable. It should be noted that, when we work in
the interaction picture eiH0tqðtÞe�iH0t, instead of eiHStqðtÞe�iHSt considered above in (6.1), we
should duly take into account the time dependence of the observables in such a picture,
X ðtÞ ¼ eiH0tX e�iH0t, otherwise mixing is not observed.

7. A solvable model with counter-rotating interaction

Let us look at another solvable example: the same model as the previous one (3.1) but
with a different interaction Hamiltonian

H SB ¼ iðaþ ayÞ
Z 1

0

dxðg�xbx � gxbyxÞ; ð7:1Þ
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containing counter-rotating terms. This model is also exactly solvable [9,11,13–15]. Let us
only briefly sketch the main results. More details are given in Appendix B. The exact char-
acteristic functional of the state of the total system, q(t), reads

G½J a; J �a; J b; J
y
b; t� ¼ e�J

yAðtÞJ e�J
y �AðtÞJ �e�J

T �AyðtÞJ

� GSðhyðtÞJ þ J y�hðtÞ;J yhðtÞ þ �hyðtÞJ Þ ð7:2Þ

for the same correlated initial state as before, q0 in (4.1), where T denotes the transpose
matrix, and

J y �AðtÞJ � ¼ J �a J yb
� � �AaaðtÞ �AabðtÞ

�AbaðtÞ �AbbðtÞ

 !
J �a
J �b

� �
; �hyðtÞJ ¼ �h�aðtÞ �hybðtÞ

� � J a

J b

� �
:

ð7:3Þ
The details of these functions are given in Appendix B.

This characteristic functional contains different types of terms from those in the previ-
ous example (5.11): the counter-rotating interaction provokes ‘‘squeezing.’’ In van Hove’s
limit, however, these contributions disappear. Indeed, the van Hove limits of the constit-
uent functions (B.4)–(B.6) of the characteristic functional (7.2) are

lim
k!0

Aaaðs=k2Þ ¼ ½1þ NðxSÞ�ð1� e�CðxSÞsÞ; ð7:4aÞ

lim
k!0

J ybAbbðs=k2ÞJ b ¼
Z 1

0

dxJ �b;x½1þ NðxÞ�J b;x; ð7:4bÞ

lim
k!0

haðs=k2ÞeixSs=k2 ¼ e�CðxSÞs=2e�i½DðxSÞ��DðxSÞ�s; ð7:4cÞ

while all other limits vanish (see Appendix B.3), and one ends up with the same dynamics
as the previous one (6.3) except for the frequency shift; D(xS) must be substituted with
DðxSÞ � �DðxSÞ, where �DðxÞ is defined in (B.10). The present example again supports
the validity of the theorem proved in Article I: (a) the initial correlation disappears, (b)
the state of the total system is factorized at all times, and (c) the reservoir remains in
the mixing state, in van Hove’s limit. The effect of the counter-rotating interaction man-
ifests itself only in the frequency shift; no other differences in the resultant dynamics from
the previous example with the rotating-wave interaction [8].

Furthermore, the timescales of the factorization and of the mixing are governed by the
functions KJbðN nÞðtÞ and UJbJbðt; tÞ, respectively (see Appendix B.2); they are the same as
those in the previous example [Eqs. (6.11) and (6.12)]. This also supports the general con-
clusion that the free evolution of the reservoir plays an essential role for the factorization
and the mixing, but the interaction does not. The counter-rotating interaction gives rise to
no significant effect on the factorization or the mixing.

8. Concluding remarks

We have investigated two solvable models in the light of the general theorem proved in
Article I. In both cases, we confirmed that when the initial state of the quantum system
and the reservoir is not factorized, a correct application of Nakajima–Zwanzig’s projec-
tion method requires that the reference state of the latter be mixing. In addition, close
scrutiny of the solvable models enabled us to focus on the relevant timescales. It turns
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out that an effective factorization of the state of the total system depends on the free

dynamics of the reservoir (responsible for mixing) as well as on the interaction. Indeed,
the free dynamics itself is sufficient to drive a complete factorization. Moreover, the time-
scales for mixing (that in turn govern the very applicability of the projection method in
terms of the ‘‘reference’’ state of the reservoir) depend on the ‘‘size’’ of local observables
of the reservoir: clearly, if one has access to information that is distributed over larger

portion of the reservoir, one can in general detect finer deviations from mixing. The time-
scales at which Markovianity can be considered a good approximation depend on the
structure of the local observables that one can measure, that is on the dimension of the
(sub)system whose evolution one wants to describe. This conclusion, physically sound,
is in some sense a strict consequence of the philosophy at the basis of the C*-algebraic
approach to infinite systems (in the case at hand, the reservoir, whose observables one
can measure).

There are other very interesting problems that we have not analyzed and that are relat-
ed to the general features of the evolutions when it is not permissible to consider a factor-
ized initial state [11,13,15–19]. Among others, the problems related to the (complete)
positivity of the evolution requires additional investigations [20–27]. Another interesting
issue would be to discuss the applicability of this method to more articulated (and intrigu-
ing) thermodynamical situations, such as those of nonequilibrium steady states [28], short-
ly discussed in Article I (see Fig. 1 in Article I). It is indeed possible to apply the method
we propose to discuss the relaxation of a system driven by a reservoir at a nonequilibrium
steady state and this aspect will be discussed elsewhere.
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Appendix A. Prototypes of the van Hove limits

The characteristic functional G½J a; J �a; J b; J
y
b; t� in (5.11) is expressed in terms of the func-

tions given in (5.13). The van Hove limits of these functions fall into the following types:
by taking the weak-coupling limit k fi 0 keeping s = k2t finite, one obtains

ðiÞ GðtÞeixSt ! e�CðxSÞs=2e�iDðxSÞs; ðA:1aÞ
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ðiiÞ KfgðtÞ ! 0; Ufgðt; tÞ !
Z 1

0

dxf �x½1þ NðxÞ�gx; ðA:1bÞ

ðiiiÞ ðKfg � G � Kgf 0 ÞðtÞeixSt ! K̂fgð�ixS þ 0þÞK̂gf 0 ð�ixS þ 0þÞe�CðxSÞs=2e�iDðxSÞs;

ðA:1cÞ

ðivÞ k2

Z t

0

dt0
Z t

0

dt00ðKfg � GÞðt � t0ÞUggðt0; t00ÞðG� � K�f 0gÞðt � t00Þ

! K̂fgð�ixS þ 0þÞ½K̂f 0gð�ixS þ 0þÞ��½1þ NðxSÞ�ð1� e�CðxSÞsÞ; ðA:1dÞ

ðvÞ
Z t

0

dt0UJbgðt; t0ÞðG� � K�fgÞðt � t0Þ !
Z 1

0

dxJ �b;x½1þ NðxÞ�gx

½K̂fgð�ixþ 0þÞ��

iðx� xSÞ þ 0þ
;

ðA:1eÞ
where C(x) and D(x) are defined in (6.4), and K̂fgðsÞ is the Laplace transform of Kfg(t) in
(5.14). Let us prove these results.

(i) The van Hove limit of G(t), which is defined in (3.7), is the ordinary one [8]:

GðtÞeixSt ¼
Z

CB

d~s
2pi

e~ss

~sþ K̂ðk2~s� ixSÞ
!k!0
Z

CB

d~s
2pi

e~ss

~sþ K̂ð�ixS þ 0þÞ
; ðA:2Þ
which results in (A.1a), by noting the formula for K̂ðsÞ in (3.7),
K̂ð�ixS þ 0þÞ ¼ 1
2
CðxSÞ þ iDðxSÞ; ðA:3Þ
with C(x) and D(x) defined in (6.4).

(ii) The van Hove limits in (A.1b) are just the long-time limits and are due to Riemann–

Lebesgue’s lemma. The timescales of the decays are determined by the band widths
of their Fourier transforms. See Eqs. (5.14) and (6.12).

(iii) In terms of the inverse Laplace transform, the convolution in (A.1c) is written as

ðKfg � G � Kgf 0 ÞðtÞeixSt ¼
Z

CB

ds
2pi

K̂fgðsÞK̂gf 0 ðsÞ
sþ ixS þ k2K̂ðsÞ

eðsþixSÞt; ðA:4Þ
whose van Hove limit proceeds like in (A.2).

(iv) Notice first that the contribution of ~N xx0 to Eq. (A.1d) through the function

Ufg(t,t 0), which represents the effect of the local perturbation LB for qW in (4.8),
decays out in van Hove’s limit, since the van Hove limit of this contribution is a gen-
eralization of (iii) but with a vanishing prefactor k2 in (A.1d). Therefore, the main
contribution comes from the mixing state through Uð0Þfg ðt � t0Þ defined in (6.13): by
noting that

1

k2
Uð0Þfg ðt � t0ÞeixSðt�t0Þ

¼ 1

k2

Z 1

0

dxf �xgx½1þ NðxÞ�e�iðx�xSÞðt�t0Þ

¼
Z 1

�xS=k
2

d~xf �
k2 ~xþxS

gk2 ~xþxS
½1þ Nðk2 ~xþ xSÞ�e�i~xðs�s0Þ



672 K. Yuasa et al. / Annals of Physics 322 (2007) 657–676
!k!0
Z 1

�1
d~xf �xS

gxS
½1þ NðxSÞ�e�i~xðs�s0Þ

¼ 2pf �xS
gxS
½1þ NðxSÞ�dðs� s0Þ; ðA:5Þ
Eq. (A.1d) is deduced via
1

k2

Z s

0

ds0
Z s

0

ds00ðKfg � GÞððs� s0Þ=k2ÞeixSðs�s0Þ=k2

Uð0Þgg ððs0 � s00Þ=k2ÞeixSðs0�s00Þ=k2

� ðG� � K�f 0gÞððs� s00Þ=k2Þe�ixSðs�s00Þ=k2

!k!0
K̂fgð�ixS þ 0þÞ½K̂f 0gð�ixS þ 0þÞ��CðxSÞ½1þ NðxSÞ�

Z s

0

ds0e�CðxSÞs0 : ðA:6Þ

(v) While the contribution of ~N xx0 decays out in van Hove’s limit, which is shown by
generalizing (ii) and (iii), that of N

ð0Þ
xx0 ,

Z 1

0

dxJ �b;x½1þ NðxÞ�gx

Z
CB

ds
2pi

K̂fgðsÞ
sþ ixS þ k2K̂ðsÞ

eðsþixÞs=k2

sþ ix

 !�

¼
Z 1

0

dxJ �b;x½1þ NðxÞ�gx

Z
CB

d~s
2pi

K̂fgðk2~s� ixÞ
k2~s� iðx� xSÞ þ k2K̂ðk2~s� ixÞ

e~ss

~s

 !�
;

ðA:7Þ
yields (A.1e).
The prototypes (i)–(v) lead to the van Hove limits of the components (6.2).

Appendix B. Solution to the model with the counter-rotating interaction

We summarize the exact solution to the model with the counter-rotating interaction
(7.2).

B.1. Heisenberg operators

The exact solution to the Heisenberg equations of motion for a(t) = eiHtae�iHt and
bxðtÞ ¼ eiHtbxe�iHt reads

aðtÞ ¼ ½F ðtÞ þ k2 �F ðtÞ�aþ k2 �F ðtÞay þ k
Z t

0

dt0F ðt � t0Þ½Bðt0Þ � Byðt0Þ�; ðB:1aÞ

bxðtÞ ¼ e�ixtbx � k
Z t

0

dt0e�ixðt�t0Þgx½aðt0Þ þ ayðt0Þ�; ðB:1bÞ

where B(t) is defined in (3.5) and

F ðtÞ ¼
Z

CB

ds
2pi

s� ixS

s2 þ x2
S þ 2k2xSL̂ðsÞ

est; ðB:2aÞ
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�F ðtÞ ¼ �
Z

CB

ds
2pi

iL̂ðsÞ
s2 þ x2

S þ 2k2xSL̂ðsÞ
est ðB:2bÞ

with

L̂ðsÞ ¼ �
Z 1

0

dxjgxj
2 2x

s2 þ x2
: ðB:3Þ

Note that F(0+) = 1, _F ð0þÞ ¼ �ixS and �F ð0þÞ ¼ 0, _�F ð0þÞ ¼ 0.

B.2. Characteristic functional

The characteristic functional of the state of the total system, q(t), is given by (7.2),
which is composed of the functions

AaaðtÞ ¼
1

2
½1� jF ðtÞ þ k2 �F ðtÞj2 � k4j�F ðtÞj2�

þ k2

Z t

0

dt0
Z t

0

dt00F ðt � t0ÞReUb
ggðt0; t00ÞF �ðt � t00Þ; ðB:4aÞ

J ybAbbðtÞJ b ¼UJbJbðt; tÞ �
1

2
k2½jðKJbg � F ÞðtÞj2 þ jðK�Jbg � F ÞðtÞj2�

þ 2k2Im

Z t

0

dt0ðKJbg � ImF Þðt � t0ÞUb
gJb
ðt0; tÞ

þ 4k4

Z t

0

dt0
Z t

0

dt00ðKJbg � ImF Þðt � t0Þ

�ReUb
ggðt0; t00ÞðImF � K�JbgÞðt � t00Þ;

ðB:4bÞ

J ybAbaðtÞ ¼
1

2
kðKJ bg � F ÞðtÞF �ðtÞ þ ik3ðKJbg � ImF ÞðtÞ�F �ðtÞ

þ 1

2
k
Z t

0

dt0Ub
Jbgðt; t0ÞF �ðt � t0Þ ðB:4cÞ

þ 2k3

Z t

0

dt0
Z t

0

dt00ðKJbg � ImF Þðt � t0ÞImUb
ggðt0; t00ÞF �ðt � t00Þ;

�AaaðtÞ ¼
1

2
k2½F ðtÞ þ k2 �F ðtÞ��F �ðtÞ � 1

2
k2

Z t

0

dt0
Z t

0

dt00F �ðt � t0ÞReUb
ggðt0; t00ÞF �ðt � t00Þ;

ðB:5aÞ

J yb �AbbðtÞJ �b¼ �
1

2
k2ðKJbg �F ÞðtÞðKJbg �F �ÞðtÞþ ik2

Z t

0

dt0Ub
Jbgðt; t0ÞðImF �KJbgÞðt� t0Þ

þ2k4

Z t

0

dt0
Z t

0

dt00ðKJbg � ImF Þðt� t0ÞReUb
ggðt0; t00ÞðImF �KJbgÞðt� t00Þ;

ðB:5bÞ

J yb �AbaðtÞ ¼ �
1

2
k3ðKJbg � F ÞðtÞ�F �ðtÞ � 1

2
k
Z t

0

dt0Ub
Jbgðt; t0ÞF ðt � t0Þ

þ ik3

Z t

0

dt0
Z t

0

dt00ðKJbg � ImF Þðt � t0ÞUb
ggðt0; t00ÞF ðt � t00Þ; ðB:5cÞ
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�AabðtÞJ �b ¼
1

2
k½F ðtÞ þ k2 �F ðtÞ�ðKJbg � F �ÞðtÞ

þ ik3

Z t

0

dt0
Z t

0

dt00F ðt � t0ÞUb
ggðt0; t00ÞðKJbg � ImF Þðt � t00Þ; ðB:5dÞ

and

haðtÞ ¼ F ðtÞ þ kðF � KgðN nÞÞðtÞ þ k2 �F ðtÞ; ðB:6aÞ

J ybhbðtÞ ¼ KJbðN nÞðtÞ � kðKJbg � F ÞðtÞ � 2ik2ðKJbg � ImF � KgðN nÞÞðtÞ; ðB:6bÞ
�haðtÞ ¼ �kðF � K�gðN nÞÞðtÞ � k2 �F �ðtÞ; ðB:6cÞ

J yb�hbðtÞ ¼ �kðKJbg � F �ÞðtÞ þ 2ik2ðKJbg � ImF � K�gðN nÞÞðtÞ; ðB:6dÞ
where

Ub
fgðt; t0Þ ¼

Z 1

0

dx
Z 1

0

dx0f �xe�ixtð1þ 2N Þxx0e
ix0t0gx0 : ðB:7Þ
B.3. van Hove’s limit

In addition to the prototypes (A.1), the following limits are necessary for the van Hove
limit of the characteristic functional (7.2): by taking the weak-coupling limit k fi 0 keeping
s = k2t finite, we have

F ðtÞeixSt ¼
Z

CB

d~s
2pi

k2~s� 2ixS

k2~s2 � 2ixS~sþ 2xSL̂ðk2~s� ixSÞ
e~ss

�!k!0
Z

CB

d~s
2pi

1

~sþ iL̂ð�ixS þ 0þÞ
e~ss ¼ e�CðxSÞs=2e�i½DðxSÞ��DðxSÞ�s;

ðB:8aÞ

F ðtÞe�ixSt ¼
Z

CB

d~s
2pi

k2~s

k2~s2 þ 2ixS~sþ 2xSL̂ðk2~sþ ixSÞ
e~ss�!k!0

0; ðB:8bÞ

k2 �F ðtÞe	ixSt ¼ �k2

Z
CB

d~s
2pi

iL̂ðk2~s
 ixSÞ
k2~s2 
 2ixS~sþ 2xSL̂ðk2~s
 ixSÞ

e~ss�!k!0
0; ðB:8cÞ

where

	iL̂ð
ixS þ 0þÞ ¼ 1
2
CðxSÞ 	 i½DðxSÞ � �DðxSÞ� ðB:9Þ

with C(x) and D(x) in (6.4), and

�DðxÞ ¼
Z 1

0

dx0

2p
Cðx0Þ
xþ x0

: ðB:10Þ

Then, the van Hove limits of the components (B.4)–(B.6) of the characteristic functional
(7.2) yield (7.4).
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