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Abstract

A clustering procedure is introduced based on the Hausdorff distance as a similarity measure between clusters of

elements. The method is applied to the financial time series of the Dow Jones industrial average (DJIA) index to find

companies that share a similar behavior. Comparisons are made with other linkage algorithms.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Clustering consists in grouping a set of objects in classes according to their degree of ‘‘similarity’’ [1]. This
intuitive concept can be defined in a number of different ways, leading in general to different partitions. For
this reason, it is clear that a clustering procedure can be profoundly influenced by the strategy adopted by the
observer and his/her own ideas and preconceptions about the data set. In this article we will focus on a linkage

algorithm that consists in merging, at each step, the two clusters with the smallest dissimilarity, starting from
clusters made up of a single element and ending up in a single cluster collecting all data. Our objective will be
to cluster the financial time series of the stocks belonging to the Dow Jones industrial average (DJIA) index.

From a mathematical point of view, given a set of objects S � fsg, an allocation function
m :S! f1; 2; . . . ; kg, is defined so that mðsÞ is the class label and k the total number of clusters (which we
assume to be finite for simplicity). The aim of a clustering procedure is to select, among all possible allocation
functions, the one performing the best partition of the set S into subsets Ga � fs 2SjmðsÞ ¼ ag; ða ¼ 1; . . . ; kÞ,
relying on some measure of similarity. The operational meaning of similarity will be specified in the following and
will be based on the Hausdorff distance, to be introduced in the next section.
e front matter r 2007 Elsevier B.V. All rights reserved.
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Clustering algorithms can be classified in different ways according to the criteria used to implement them
[2]. The so-called ‘‘hierarchical’’ methods yield nested partitions, represented by dendrograms [3], in which any
cluster can be further divided in order to observe its underlying structure. Linkage algorithms, in particular,
are hierarchical. Other non-hierarchical (or ‘‘partitional’’) methods are also possible [4–6], but will not be
discussed here.

2. Hausdorff clustering

In order to cluster a given data set we will use a distance function introduced by Hausdorff. Given a metric
space ðS; dÞ, with metric d, the distance between a point a 2S and a subset B � S is naturally given by

~dða;BÞ ¼ inf
b2B

dða; bÞ (1)

(all subsets are henceforth considered to be non-empty and compact). Given a subset A �S, let us define the
function

~dðA;BÞ ¼ sup
a2A

~dða;BÞ ¼ sup
a2A

inf
b2B

dða; bÞ (2)

that measures the largest among all distances ~dða;BÞ, with a 2 A. This function is not symmetric,
~dðA;BÞa ~dðB;AÞ, and therefore is not a bona fide distance. The Hausdorff distance [7] between two sets
A;B �S is defined as the largest between the two numbers:

dHðA;BÞ ¼ maxf ~dðA;BÞ; ~dðB;AÞg, (3)

namely,

dHðA;BÞ ¼ max sup
a2A

inf
b2B

dða; bÞ; sup
b2B

inf
a2A

dða; bÞ
� �

(4)

that is clearly symmetric.
In words, the Hausdorff distance between A and B is the smallest positive number r, such that every point of

A is within distance r of some point of B, and every point of B is within distance r of some point of A. The
geometrical meaning of the Hausdorff distance is best understood by looking at an example, such as that in
Fig. 1. We emphasize that the Hausdorff metric relies on the metric d on S.

If the data set is finite and consists of N elements, all distances can be arranged in a N �N matrix dij and
Eq. (4) reads

dHðA;BÞ ¼ max max
i2A

min
j2B

dij ;max
j2B

min
i2A

dij

� �
, (5)
Fig. 1. Hausdorff distance between two sets A and B (black thick segments). r1 ¼ ~dðB;AÞ, r2 ¼ ~dðA;BÞ. The Hausdorff distance is equal to

the larger radius r2.
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which is a very handy expression, as it amounts to finding the minimum distance in each row (column) of the
distance matrix, then the maximum among the minima. The two numbers are finally compared and the largest
one is the Hausdorff distance. This sorting algorithm is easily implemented in a computer.

We shall take the Hausdorff distance as the (inverse) similarity measure. This distance naturally translates in
a linkage algorithm: at the first level each element is a cluster and the Hausdorff distance between any pair of
points reads

dHðfig; fjgÞ ¼ dij (6)

and coincides with the underlying metric. The two elements of S at the shortest distance are then joined
together in a single cluster. The Hausdorff distance matrix is recomputed, considering the two joined elements
as a single set. This iterative process goes on until all points belong to a single final cluster.
3. Comparison with single and complete linkage

It is interesting to notice that the partitions obtained by the Haudorff linkage algorithm are intermediate
between those obtained by the more commonly used ‘‘single’’ and ‘‘complete’’ linkage procedures: if A and B

are two non empty compact subsets of S, the single and complete linkage algorithms make use of the
following similarity indexes

dSðA;BÞ ¼ inf
a2A;b2B

dða; bÞ, ð7Þ

dCðA;BÞ ¼ sup
a2A;b2B

dða; bÞ, ð8Þ

respectively, that are to be compared with (4). In terms of the distance matrix dij of a finite data set, they are
given by

dSðA;BÞ ¼ min
i2A;j2B

dij ; dCðA;BÞ ¼ max
i2A;j2B

dij, (9)

instead of (5).
In order to compare these different algorithms, it is useful to recall the mathematical definition of distance.

Given a set X, a distance (or a metric) d is a non-negative application

d : X�X�!R, (10)

endowed with the following properties, valid 8x; y 2 X:

dðx; yÞ ¼ 0 () x ¼ y, ð11Þ

dðx; yÞ ¼ dðy;xÞ, ð12Þ

dðx; yÞpdðx; zÞ þ dðy; zÞ 8z 2 X. ð13Þ

Incidentally, notice that symmetry (12), as well as non-negativity, are not independent assumptions, but easily
follow from (11) and the triangular inequality (13).

It is not difficult to prove from the very definition (4) that the Hausdorff distance between compact and
non-empty sets satisfies (11)–(13). On the other hand, (7) and (8) are not distances: the former does not satisfy
the triangular inequality (13), while the latter does not fulfill the basic requirement (11), dCðA;AÞa0, for any
compact set containing more than one point: in this sense, it performs a sort of coarse graining over the data
set. The Hausdorff function, being a distance in a strict mathematical sense, enables us to rest on sound
mathematical ground.

The Hausdorff distance is not commonly used in the context of clustering (see Ref. [2, Chapter 4, for a
discussion]). It is a useful tool in the analysis of complex sets, with complicated (and even fractal-like)
structures. It is in such a case that one expects that Hausdorff behaves better than the other methods, since it
relies on rigorous mathematical concepts.
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4. Application to financial data

We now apply the Hausdorff linkage algorithm to a topic of growing interest: the analysis of financial time
series. In particular, we focus on the N ¼ 30 shares composing the DJIA index, collecting the daily closure
prices of its stocks for a period of 5 years (1998–2002). We chose this index for two reasons. First, because
these data are easily accessible. The second, and more important reason is the ‘‘quality’’ (in the sense of
reliability) of prices. The DJIA index, indeed, aggregates the shares of some of the more valuable and
capitalized world corporations, so that their prices are highly contributed by market makers. This means that
we always expect to find, even in the worst possible scenario, a financial intermediator (market maker) ready
to quote both bid and offer prices for these assets. For this reason, these shares are very frequently traded. In
financial terminology, they are said to be ‘‘liquid’’.

Fig. 2 displays the typical behavior of a stock value (IBM) for the investigated time period. The companies
of the DJIA index are reported in Appendix A, together with the corresponding industries. We will look at the
temporal series of the daily logarithm closure price differences

Y iðtÞ � ln PiðtÞ � ln Piðt� 1Þ, (14)

where PiðtÞ is the closure price of the ith share at day t. Both Pi and Y i are very irregular functions of time. In
order to quantify the degree of similarity between two time series and use our linkage algorithm we adopt the
following metric function, that quantifies the synchronicity in their time evolution [8–10]

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cijÞ

p
, (15)

where cij are the correlation coefficients computed over the investigated time period:

cij ¼
hY iY ji � hY iihY jiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðhY 2
i i � hY ii

2ÞðhY 2
j i � hY ji

2Þ

q (16)

and the brackets denote the average over the time interval of interest (one year in our case). Table 1 displays a
part of the N �N matrix of the correlation coefficients (year 1998). It is worth stressing that almost all
correlation coefficients are positive, with values not too close to 1, thus confirming that, in many cases, stocks
belonging to the same market do not move independently from each other, but rather share a similar temporal
behavior. The distance (15) is a proper metric in the ‘‘parent’’ space, ranging from 0 for perfectly correlated
series ðcij ¼ þ1Þ to 2 for anticorrelated stocks ðcij ¼ �1Þ. The representative points lie therefore on an
hypersphere.

The Hausdorff clustering algorithm used in this article inherits the concept of similarity from the distance d

in (15) (that is defined at the level of couples of elements—i.e., time series) and lifts it to the level of sets. The
elements in one set are more similar among themselves (in the sense that their Hausdorff distance is smaller)
and are globally less similar to those belonging to other sets. In this way, the intuitive notion of similarity is
mathematically extended to sets in a rigorous fashion.
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Fig. 2. Time evolution of the closure price of a stock value (IBM), for the period 1998–2002.
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Table 1

A part of the matrix of the correlation coefficients cij (16) for the temporal series of the daily logarithm price differences of the stocks

composing the DJIA index (year 1998)

AA AXP BA CAT C

AA 1 0.37004 0.22458 0.3568 0.3508

AXP 1 0.35461 0.41916 0.61247

BA 1 0.32852 0.26917

CAT 1 0.33937

C 1

The acronyms (tickers) are explained in Appendix A.
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5. Comparison of the methods and first results

We now compare the Hausdorff and single-linkage procedures, the latter being often proposed in
the context of financial data analysis. A typical benchtest for clustering procedures is the construction
of a tree.

The dendrograms and trees generated by the distances relative to year 1998 are shown in Fig. 3. The trees
are obtained from the dendrograms according to the following procedure. At each step (corresponding to a
given distance—abscissa on the dendrogram) the linkage algorithm merges together two clusters (or two
points or a point and a cluster). A link is then added into the tree, between the two stocks in each cluster that
are at the shortest distance. We proceed until the last stock is linked, namely we stop at the leftmost level of
the dendrogram. We used this procedure both for the single and the Hausdorff linkages, obtaining the trees in
Fig. 3. Notice that the tree obtained by using the single-linkage algorithm coincides with the minimum
spanning tree [8].

The two trees show similarities but also interesting differences. The dendrogram relative to the single-
linkage algorithm in Fig. 3(a) suffers from the well-known ‘‘chaining effect’’, that is clearly visible and consists
in successively linking single elements to the closest element of a set, irrespectively of the other elements
making up the set itself. The dendrogram obtained by Hausdorff in Fig. 3(b) displays a richer structure, with
inner subclusters that are subsequently merged into larger clusters. The chaining effect in Fig. 3(a) yields a less
structured, ‘‘star-like’’ tree in Fig. 3(c).

One notices the formation of identical subtrees centered around GE in both cases: {AXP, GM, JPM, C,
UTX, BA, HON, AA, EK}, {KO, XOM, SBC}, {MSFT, INTC, IBM} and {HD, WMT}. Another common
feature is the subtree of four elements: {CAT, DD, IP, MMM}. The presence of a common large subtree is
found also in the other years investigated. The remaining companies are sparsely linked to the biggest subtree
and at different points in the two trees. In the Hausdorff tree, they are linked to companies sharing the same
industrial area, such as KO and PG (Consumer non-Cyclical), MRK and JNJ (Healthcare) and SBC and T
(Services). Although the single-linkage procedure also perceives these relationships, the link is ‘‘mediated’’ by
the Conglomerate GE and is therefore less direct. In addition, we notice the presence of the technological
cluster {IBM, INTC, MSFT} and the financial cluster {AXP, JPM, C} in both trees.

This preliminary analysis, besides clarifying how one can obtain a tree from the Hausdorff algorithm,
displays also the ‘‘topology’’ of the links between the elements of the data set. The separation of the stocks in
clusters also corresponds to a large extent to the relevant economic sectors. This observation will be the object
of the following section, in which the Hausdorff algorithm is further analyzed.

6. Results and discussion

Figs. 4 and 5 show the results of our analysis based on the Hausdorff distance. Rather than showing the
dendrograms, we prefer to give a pictorial representation of the evolution of the stocks: in Figs. 4 and 3(d) we
show the Hausdorff trees, while in Fig. 5 we use bubbles to represent clusters and arrows to represent the
movements of the stocks. Some innermost subclusters are indicated with a dashed bubble and full (dashed)
arrows denote future (past) movements. A small ‘‘exploding’’ star represents a bubble/cluster that disappears.
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Fig. 3. Comparison between dendrograms and trees. Dendrograms emerging from the single linkage (a) and the Hausdorff algorithm (b).

In (a), the single-linkage procedure displays the well-known chaining effect. (c) Minimum spanning tree based on the single linkage and (d)

tree emerging from the Hausdorff linkage. The chaining effect in (a) is reflected in a less structured, ‘‘star-like’’ tree in (c). The acronyms

(tickers) are explained in Appendix A. All figures refer to year 1998.

N. Basalto et al. / Physica A 379 (2007) 635–644640
The clusters shown in Fig. 5 have been obtained by ‘‘cutting’’ the corresponding dendrograms at n ¼ 9
clusters.

It is very interesting and challenging to try and analyze, from a mere economic viewpoint, some of the
movements in the graphs, in order to catch some a posteriori hints about the dynamics of the stocks. Both in
Figs. 4 and 5 one clearly recognizes that some of the clusters correspond to homogeneous groups of companies
belonging to the same industry: this is the case of the financial services firms {AXP, JPM C}, retail companies
{HD, WMT}, companies dealing with basic materials {AA, IP, DD}, the technological core {IBM, INTC,
MSFT, HPQ} and the health care firms {JNJ, MRK}. However, one obtains a somewhat more detailed
structure in Fig. 5, that is obtained directly from the relative dendrogram, rather than in Fig. 4, where the
elements are merged into a tree, neglecting some more detailed information contained in the underlying
Euclidean distance. In addition, the representation of Fig. 5 is more suitable to display the temporal evolution
of the cluster structure.
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Fig. 4. Hausdorff trees for the years 1999–2002. The acronyms (tickers) are explained in Appendix A.
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Let us henceforth focus on Fig. 5. One observes a large super-cluster made up of 10–15 stocks
(financial, conglomerates, services, capital goods), containing some homogenous subclusters, which is
more or less stable during the whole 5-year period investigated. Some interesting ‘‘paths’’ can be outlined,
such as the migration from this cluster of the high-tech companies {IBM, INTC, MSFT} between 1998
and 1999. As is well known, 1999 is the year when the high-tech bubble started to grow up. At the end of
these two years, they end up forming a separated cluster with HPQ, that remains stable for all the following
period.
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Fig. 5. Clusters obtained by analyzing the daily logarithm closure price difference time series during 1998–2002. The innermost subclusters

are indicated with a dashed bubble. Dashed arrows ¼ past; full arrows ¼ future. The position of the points representing the stocks is not

directly related to the distance matrix (15) and has no effective ‘‘spatial’’ meaning: the pictorial representation simply reflects the

aggregation of points and subclusters into larger clusters. Bottom right: acronyms (tickers) of the stocks and related industries

(C ¼ Cyclical; NC ¼ Non�Cyclical; Intl ¼ International).
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We emphasize that these remarks are not an input of our analysis: our clustering algorithm is purely
mathematical, and no genuinely ‘‘economical’’ information (e.g., on industrial homogeneity) was used at the
outset. In this sense the position and movements of the stocks in the figures are implied from the market itself.

The definition of the mutual positioning of companies can have an immediate pertinence in a matter of great
interest for financial institutions: the portfolio optimization. In a few words (and without entering into
complex matters), portfolio theory suggests that in order to minimize the risk involved in a financial
investment, one should diversify among different assets by choosing those stocks whose price time evolutions
are as diverse as possible (it is never safe to put all the eggs into a single basket). Moreover, this strategy must
be continuously updated, by changing weights and components, in order to follow the market evolution. In
the framework we presented, by investigating the shares’ behavior and tracking the evolution of their mutual
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interactions, a first, crude portfolio-optimization rule that emerges would be: choose stocks belonging to
clusters that are as ‘‘distant’’ as possible from each other. Portfolio optimization being a complex matter, our
findings should be compared and combined with other techniques [11–13], in order to define powerful
strategies, hinging on diversified analytical tools, and analyze the dynamics and taxonomy of market
correlations.

In conclusion, we have introduced a novel clustering procedure based on the Hausdorff distance
between sets. This genuinely mathematical method was used to investigate the time evolution of the stocks
belonging to the DJIA index. We found the resulting partitions through the 5-year period investigated to be
significant from an economical viewpoint and suited to a meaningful a posteriori analysis and interpretation.
We believe that this technique is able to extract relevant information from the raw market data and yield
meaningful hints for the investigation of the mutual time evolution of the stocks. For the same reasons this
procedure could be implemented as the first step towards an evolved portfolio selection and optimization
procedure.
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Appendix A. Dow Jones stock market companies
AA
 Alcoa Inc.—basic materials

AXP
 American Express Co.—financial

BA
 Boeing—capital goods

C
 Citigroup—financial

CAT
 Caterpillar—capital goods

DD
 DuPont—basic materials

DIS
 Walt Disney—services

EK
 Eastman Kodak—consumer cyclical

GE
 General Electrics—conglomerates

GM
 General Motors—consumer cyclical

HD
 Home Depot—services

HON
 Honeywell International—capital goods

HPQ
 Hewlett-Packard—technology

IBM
 International Business Machine—technology

INTC
 Intel Corporation—technology

IP
 International Paper—basic materials

JNJ
 Johnson & Johnson—healthcare

JPM
 JP Morgan Chase—financial

KO
 Coca Cola Inc.—consumer non-cyclical

MCD
 McDonalds Corp.—services

MMM
 Minnesota Mining—conglomerates

MO
 Philip Morris—consumer non-cyclical

MRK
 Merck & Co.—healthcare

MSFT
 Microsoft—technology

PG
 Procter & Gamble—consumer non-cyclical

SBC
 SBC Communications—services

T
 AT&T Gamble—services

UTX
 United Technology—conglomerates

WMT
 Wal—Mart Stores—services

XOM
 Exxon Mobil—energy
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