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I. INTRODUCTION

Clustering is the classification of objects into different
groups according to their degree of similarity �1�. A number
of criteria can be used to define this intuitive �and central�
concept, leading in general to different partitions. Due to this
arbitrariness, clustering is an inherently ill-posed problem, as
a given data set can be partitioned in many different ways
without any particular reason to prefer one solution to an-
other. It is clear that a clustering technique can be profoundly
influenced by the strategy adopted by the observer and his or
her own ideas and preconceptions on the problem.

Clustering algorithms can be classified in two main cat-
egories �2�: hierarchical and partitive. Hierarchical methods
yield nested partitions, in which any cluster can be further
divided in order to observe its underlying structure. Typical
examples are the agglomerative and divisive algorithms that
produce dendrograms �3�. On the other hand, partitional
methods provide one definite partition.

In addition, two different approaches can be adopted:
parametric and nonparametric clustering. Parametric algo-
rithms are adopted when some a priori knowledge about the
clusters is available and this information is used to make
some assumptions on the underlying structure of the data.
Vice versa, the nonparametric approach to clustering may
represent the optimal strategy when there is no prior knowl-
edge about the data. These and other clustering techniques
are reviewed in �4–6�.

From the mathematical point of view, given a set of ob-
jects S��s�, an allocation function m :s�S→ �1,2 , . . . ,k�,
must be defined so that m�s� is the class label and k is the
total number of clusters �which we assume to be finite for
simplicity�; k may be chosen a priori or computed within the
algorithm. The aim of a clustering procedure is to select,
among all possible allocation functions, the one performing
the best partition of the set S into subsets G���s�S :m�s�
=�� ��=1, . . . ,k�, relying on some measure of similarity.
The space of any clustering solution is the set M of all
possible allocation functions.

In this paper we will focus on a class of clustering tech-
niques called linkage algorithms. Linkage algorithms are hi-
erarchical nonparametric methods that merge, at each step,
the two clusters with the smallest dissimilarity, starting from
clusters made of a single element, ending up in one cluster
collecting all data. Notice that, in general, a similarity mea-
sure need not be a distance in the mathematical sense; on the
other hand, if one aims at clustering in a parameter space, a
distance could be the best choice because it does not intro-
duce any arbitrariness. We will analyze the so-called single,
average, and complete linkage methods, which are examples
of commonly used linkage algorithms that do not rely upon a
mathematical definition of distance, and will introduce a
linkage method based on a suitable metric in the space of the
partitions of the given data set �7�. We shall make use of a
distance introduced by Hausdorff and will call the corre-
sponding linkage algorithm Hausdorff linkage. It is worth
stressing that alternative philosophies are also possible, in
which the clustering algorithm is governed by purely topo-
logical notions and unveils, e.g., efficient collective dynam-
ics in animal behavior �8�. A comparison among these meth-
ods belongs to the realm of statistical mechanics and is
beyond the scope of this paper. See �9� for an excellent dis-
cussion.

We will focus on finite sets and clusters, although we will
keep our analysis on the metric features of the relevant
spaces as general as possible. We will start in Sec. II by
reviewing and clarifying some mathematical concepts con-
cerning distance and linkage methods, focusing on the
single, average, and complete linkage algorithms in Sec. III.
The Hausdorff distance and the related clustering procedure
will be introduced in Sec. IV. Section V is devoted to the
comparison of the different methods on some data sets, in-
cluding both a toy problem and a case study on financial time
series. Some conclusions are drawn in Sec. VI.

II. PRELIMINARES

A. Distances and pseudodistances

We start by recalling the mathematical definition of dis-
tance. Given a set S, a distance �or a metric� � is a non-
negative function*ester.pantaleo@ba.infn.it
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�: S � S → R+ �1�

on R+= �0,��, endowed with the following properties, valid
∀ x ,y�S:

��x,y� = 0 ⇔ x = y , �2�

��x,y� = ��y,x� , �3�

��x,y� � ��x,z� + ��y,z�, ∀ z � S . �4�

Incidentally, notice that symmetry �3�, as well as non-
negativity, are not independent assumptions, but easily fol-
low from Eq. �2� and the triangular inequality �4�. If the
triangular inequality is written as

��x,y� � ��x,z� + ��z,y�, ∀ z � S , �5�

as is often the case, symmetry �3� must be independently
postulated. We will henceforth denote a metric space by
�S ,��.

A function �1� is a pseudometric �10� if property �2� is
weakened

x = y ⇒ ��x,y� = 0. �6�

In such a case, distinct elements of the set S can be at a null
distance. A set endowed with a �pseudo�metric is called a
�pseudo�metric space.

B. Linkage algorithms

Linkage algorithms are hierarchical methods, yielding a
clustering structure that is usually displayed in the form of a
tree or dendrogram �3�. We will adopt an agglomerative al-
gorithm, where the clusters are linked through an iterative
process, whose successive steps are the following. Given a
data set S, made up of n elements, at the first level �leaves of
the dendrogram� the number of classes is equal to the num-
ber of elements. We assume �without loss of generality� that
S is a metric space �11�. At the first iteration the two closest
elements are clustered together, reducing the number of
classes to n−1 �if more than two elements are at the closest
distance, we pick a random couple among them�. At the sec-
ond iteration one has to tackle the subtler problem of defin-
ing a distance between the remaining elements of S and the
first cluster formed. When this is done, the distances are
recomputed and the two closest objects are joined. At the
following iterations one has to tackle the much more subtle
problem of defining a distance among classes. Clearly, this
can be done in a variety of different ways and entails further
elements of arbitrariness. Assume that this procedure can be
carried out consistently. After n−1 steps, all the points are
grouped together in one cluster, corresponding to the whole
data set. The agglomerative procedure is reversed in a
straightforward way in the so-called divisive approach: start-
ing from one single cluster, this is iteratively divided into
smaller and smaller ones, until single elements are obtained.

The most commonly used algorithms of this type are the
“single,” the “average,” and the “complete” linkage, that dif-
fer in the definition of “distance” between subsets of points.

In the next section we will briefly review these three algo-
rithms.

III. SINGLE, AVERAGE, AND COMPLETE LINKAGE

A. “Distances”

Linkage algorithms differ from each other for the different
similarity criteria used to build the clusters. An optimal cri-
terium would rely on a metric d defined on the subsets of the
parent space S as follows:

d: K�S� � K�S� → R+, �7�

where K�S� is the collection of all the nonempty compact
subsets of S. �We restrict the metric to the above class of
subsets in order to avoid some pathologies �see later�.� Such
a metric can be defined in a natural way by using the original
metric � defined on S. If A and B are two nonempty compact
subsets of S, the single and complete linkage Ansätze make
use of the following “distances”

ds�A,B� = inf
a�A,b�B

��a,b� , �8�

dc�A,B� = sup
a�A,b�B

��a,b� . �9�

On the other hand, the “distance” upon which the average
linkage Ansätz relies needs additional structure on S. Given
a regular positive Borel measure � on S, such that ��X�
�� for all X�K�S�, one defines

da�A,B� =
1

��A���B��A
�

B

��a,b�d��a�d��b� , �10�

for A ,B�K�S� �12�.
However, it is easy to check that none of the above func-

tions is a bona fide distance in the mathematical sense. Let us
discuss the different characteristics of �8�–�10�.

The function �8� is non-negative and symmetric, so Eq.
�3� is valid. Notice that the pseudometric property is satis-
fied,

A = B ⇒ ds�A,B� = 0, �11�

although the converse is not true �so that property �2� is not
valid�: consider for instance, two sets A and B such that
A�B��: in this case ds�A ,B�=0, as this is, by definition,
the distance � of a common element from itself. Finally, the
triangular inequality �4� is not verified, as can be easily in-
ferred by looking at the counterexample in Fig. 1, for which

ds�A,B� 	 ds�A,C� + ds�B,C� . �12�

The function ds is therefore neither a metric nor a pseudo-
metric. As we shall see in Sec. III C, this problem gives rise
to the chaining effect.

The function �9� is obviously non-negative and symmet-
ric, so Eq. �3� is valid. Moreover, the triangular inequality �4�
is satisfied as follows:
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dc�A,B� = sup
a�A,b�B

��a,b� � sup
a�A,b�B,c�C

���a,c� + ��b,c��

� sup
a�A,b�B,c�C

��a,c� + sup
a�A,b�B,c�C

��b,c�

= sup
a�A,c�C

��a,c� + sup
b�B,c�C

��b,c�

= dc�A,C� + dc�B,C� . �13�

Yet, property �2� is not valid in general, as for a set A made
up of more than one element, the distance of A from itself
equals the distance between its farthest objects.

dc�A,A� � 0. �14�

This is graphically displayed in Fig. 2 and shows that Eq. �9�
is not even a pseudodistance �13�.

Intuitively, this is not an important issue for “small” sets,
but it becomes an increasingly serious problem for “larger”
sets. Clearly, the notions of small and large must be properly
defined: for a compact metric space of size R, we may say
that a subset of size r is small if r
R �say by at least one
order of magnitude� �14�. This situation will directly concern
us in the following sections.

We finally look at the function �10�, which is also non-
negative and symmetric, so Eq. �3� is valid. Moreover, the
triangular inequality �4� is satisfied: indeed, from Eq. �5�,
∀ a�A ,c�C, integrating over B,

��B���a,c� � �
B

��a,b�d��b� + �
B

��b,c�d��b� , �15�

so that

��a,c� �
	B��a,b�d��b� + 	B��b,c�d��b�

��B�
, �16�

and

	A	C��a,c�
��A���C�

�
	A	B��a,b�
��A���B�

+
	B	C��b,c�
��B���C�

. �17�

In conclusion,

da�A,C� � da�A,B� + da�B,C� .

However, like in the preceding case �complete linkage�,
property �2� is not valid, in general, as for a set A of positive
measure, the distance of A from itself is, in general, strictly
positive,

da�A,A� � 0. �18�

It is clear that the average linkage is “in between” the single
and complete, although it is more similar, in spirit, to the
latter �whose features it largely shares�.

B. Finite sets

We will explicitly look at the practical case in which Eqs.
�8�–�10� are evaluated on finite sets. It is therefore conve-
nient to specialize the formulas of the preceding section to
such a situation. Let A= �ai�i=1,. . .,I and B= �bj� j=1,. . .,J be two
finite sets and

�ij = ��ai,bj� , �19�

the distance between any two elements of A and B. More-
over, let � be the counting measure so that ��A�= 
A
= I. The
�ij’s can be arranged in a I�J distance matrix. Equations
�8�, �10�, and �9� then read

ds�A,B� = min
i�A

min
j�B

�ij , �20�

da�A,B� =
1

IJ
�
i�A

�
j�B

�ij , �21�

dc�A,B� = max
i�A

max
j�B

�ij , �22�

for the single, average, and complete linkage algorithms, re-
spectively. In practice, this amounts to determining the
smaller and the larger value among the elements of the dis-
tance matrix, for the single and complete linkage algorithm,
respectively, and the sum of all the elements for the average
algorithm, all tasks that can be performed in a polynomial
time. These formulas will be applied to the following
examples.

C. Comments

It is worth commenting on the features of the three clus-
tering Ansätze introduced, emphasizing their limits and posi-
tive aspects. The single linkage algorithm tends to yield elon-
gated clusters, which are sometimes difficult to understand
and poorly significant �3�: this is known as the chaining ef-
fect. On the contrary, the average and complete linkage have
the advantage of clustering “compact” clusters and yield well
localized classes. In general, the partitions obtained using
them are more significant. Their major disadvantage is that
they do not set equal to zero the distance of a “compact” set

A B

C
ds(A,C)

ds(A,B)

ds(B,C)

FIG. 1. Three sets A, B, C, containing each two elements, for
which ds does not satisfy the triangular inequality: ds�A ,B�
	ds�A ,C�+ds�B ,C�.

A

dc(A,A)

FIG. 2. For a set A containing more than one element,
dc�A ,A��0 and neither Eq. �2� nor Eq. �6� are valid.
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from itself �see Eqs. �14� and �18�, and Fig. 2�, performing
de facto a coarse graining. In a few words, da and dc look at
the clustered data points with a “minimal resolution” �that is
also, unfortunately, cluster dependent� and are unable to �i�
recognize the complexity of a finely structured cluster and
�ii� extract “nested” or “concentric” clusters, such as those
displayed in Fig. 1 of Ref. �15�. Notice that, by contrast, such
nested clusters are very efficiently detected by the single
linkage algorithm. For the same reason, this procedure suf-
fers from the so-called “chaining effect,” that will be scruti-
nized in the following sections.

As already emphasized, average linkage is in some sense
in between single and complete linkage �although it is closer
to the latter�. It is often reputed to be the best linkage algo-
rithm; however, it is not a distance, as it does not satisfy
property �2�, as previously noticed. In the next section we
shall introduce a procedure that makes use of an underlying
bona fide distance. This will have some advantages, also
from a conceptual viewpoint, as it enables one to rest on firm
mathematical background.

IV. HAUSDORFF DISTANCE AND HAUSDORFF LINKAGE

In the light of the discussion of the preceding section, it
appears convenient to approach the clustering problem from
a “neutral” perspective, by looking for a linkage algorithm
based on a well-defined mathematical similarity criterium. In
order to do this, we will use a distance function introduced
by Hausdorff �16�.

The Hausdorff distance has been used in the literature for
image matching �17,18� and partitional clustering algorithms
�19�. Application to hierarchical clustering algorithms can be
found in �20�, through software implementation together
with other intercluster and intracluster distances, and in �21�,
where the hierarchical clustering of nodes in wireless sensors
networks is analyzed. We shall focus on hierarchical cluster-
ing and analyze this clustering technique from a theoretical
point of view, before comparing it to other methods and
looking at applications.

A. Hausdorff distance

Given a metric space �S ,��, the distance between a point
a�S and a �nonempty and compact� subset B�K�S� is
naturally given by

d̃�a;B� = inf
b�B

��a,b� . �23�

Given a subset A�K�S�, consider the function

d̃�A;B� = sup
a�A

d̃�a;B� = sup
a�A

inf
b�B

��a,b� , �24�

which measures the largest distance d̃�a ;B�, with a�A. Note
that here the strategy is opposite to that used with the single
linkage “distance” �8�, where one considers instead the

smallest distance d̃�a ;B�, with a�A. The function �24� is not

symmetric, d̃�A ;B�� d̃�B ;A�, and therefore is not a bona fide
distance, as it does not satisfy Eq. �3�. The Hausdorff dis-

tance �16� between two sets A ,B�K�S� is defined as the
largest between the two numbers as follows:

dH�A,B� = max�d̃�A;B�, d̃�B;A�� , �25�

namely,

dH�A,B� = max�sup
a�A

inf
b�B

��a,b�,sup
b�B

inf
a�A

��a,b�� , �26�

which is clearly symmetric and satisfies all axioms �2�–�4�.
It is worth discussing a bit more the mathematical features

of dH. This will help us grasp its interesting properties, to-
wards physical applications.

Given a set A�K�S� and a positive real number r	0,
define the open r neighborhood of A as

Nr�A� = �y: d̃�y ;A� � r� . �27�

The Hausdorff distance between two sets A ,B�K�S� can be
reexpressed as

dH�A,B� = inf�r: A � Nr�B� and B � Nr�A�� . �28�

Indeed,

dH�A,B� = inf�r: A � Nr�B�,B � Nr�A��

= inf��r: A � Nr�B�� � �r: B � Nr�A���

= maxˆinf�r: A � Nr�B��, inf�r:B � Nr�A��‰ ,
�29�

and since

inf�r: A � Nr�B�� = sup
x�A

inf�r: x � Nr�B�� = sup
x�A

inf
y�B

��x,y� ,

�30�

and analogously for inf�r :B�Nr�A��, one gets again Eq.
�26�. Stated differently, the Hausdorff distance can also be
defined as the smallest radius r such that Nr�A� contains B
and at the same time Nr�B� contains A.

In other words, the Hausdorff distance between A and B is
the smallest positive number r, such that every point of A is
within the distance r of some point of B, and every point of
B is within the distance r of some point of A. The geometri-
cal meaning of the Hausdorff distance is best understood by
looking at an example, such as that in Fig. 3. We emphasize
that the Hausdorff metric on the subsets of S is defined in
terms of the metric � on the points of S.

The Hausdorff distance enjoys a number of interesting
features that are worth discussing. We have defined dH only
on nonempty compact sets for the following reasons. Con-
sider, for example, the real line. Then, by adopting the con-
vention inf���=� �22�, one gets ∀ x ,dH�� ,x�=�, which is
not allowed by any definition of metric. This suggests that
we should restrict our attention to nonempty sets. Moreover,
dH(�0� , �0,��)=�, which is again not allowed. We then re-
strict the use of dH only to bounded sets. Finally, the Haus-
dorff distance between two not equal sets could vanish
�which would make dH a pseudometric �see Eq. �6���: for
instance, dH(�0,1� , �0,1�)=0. Therefore we will restrict the
application of dH only to closed sets.
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More generally, it is easy to prove the following.
Theorem. The Hausdorff function dH is a metric on the set

K�S�. Moreover, if �S ,�� is a complete metric space, then
the space (K�S� ,dH) is also complete.

Although of an abstract nature, this is of physical signifi-
cance, as it enables one to be confident about the metric
properties of K�S� even for fine-structured clusters. Notice
that the property of completeness could not even be con-
ceived for the “distances” da and dc used for the average and
complete linkage in the last section. In conclusion,

dH: K�S� � K�S� → R+ �31�

is a complete metric. In the cases of interest, S will be a
complete metric space, e.g., a Euclidean space.

We close this section with three remarks. First, if the data
set is finite and consists of N elements, all distances can be
arranged in a N�N matrix �ij and Eq. �26� reads

dH�A,B� = max�max
i�A

min
j�B

�ij,max
j�B

min
i�A

�ij� , �32�

which is a very handy expression, as it amounts to finding
the minimum distance in each row �column� of the distance
matrix, then the maximum among the minima. The two num-
bers are finally compared and the largest one is the Hausdorff
distance. This sorting algorithm is efficient and can be easily
implemented.

Second, ∀ A ,B�K�S�,

ds�A,B� � dH�A,B� � dc�A,B� , �33�

ds�A,B� � da�A,B� � dc�A,B� . �34�

These are simple consequences of Eqs. �26� and �8�–�10� �or
Eqs. �32� and �20�–�22� in the discrete case�. In some sense,
dc overestimates the distance between two given sets, essen-
tially because it includes in such a distance the very “size”
�14� of the set �see Fig. 2�. The same observation is valid for
da, although the average �10� partially compensates for this
drawback. On the other hand, ds underestimates the distance
between two given sets.

Third, by looking at Eqs. �33� and �34� one sees that da
and dH have a similar behavior. Moreover, there is no order
relation between them. Both cases are possible, da�dH and
da	dH: see Fig. 4. In general, da performs better when da
�distance between the “centers of mass” =��xA ,xB�, where
xA=��A�−1	Aad��a�. By contrast, for sets that are entangled
or intertwined, da, being not a distance, starts suffering from
the drawbacks that derive from Eq. �18�. Clearly, dH, being
always a mathematical well-defined distance, can discrimi-
nate even sets that are very entangled.

As we shall see, these observations have important con-
sequences when one clusters complex and/or large sets.

B. Hausdorff linkage

We shall take the Hausdorff distance as our dissimilarity
measure. This distance naturally translates in a linkage algo-
rithm: at the first level each element is a cluster, the Haus-
dorff distance between any pair of points reads

dH��i�,�j�� = �ij , �35�

and coincides with the underlying metric. The two elements
of S at the shortest distance are then joined together in a
single cluster. The Hausdorff distance matrix is recomputed,
considering the two joined elements as a single set. This
iterative process goes on until all points belong to a single
final cluster.

Clearly, when evaluating distances among single elements
�points�, the four procedures dH, ds, da, and dc yield the same
result. The output of the single linkage algorithm will clearly
differ very quickly from the other three, due to the draw-
backs of the chaining effect. On the other hand, the differ-
ences among Hausdorff, average, and complete linkage will
become apparent only later in the clustering process. This is
a consequence of several factors. First of all, the functions dH
and dc yield the same value when evaluated on a single ele-
ment �a� and a composite set B. Indeed, from Eq. �26�,

dH��a�,B� = max� sup
x��a�

inf
y�B

��x,y�,sup
y�B

inf
x��a�

��x,y��
= max� inf

y�B
��a,y�,sup

y�B
��a,y��

= sup
y�B

��a,y� = dc��a�,B� . �36�

A

B

r1

r2

dH(A,B)=r2

FIG. 3. �Color online� Hausdorff distance between two sets A �a
square� and B �a rectangle�. The open neighborhoods Nr1

�A� and

Nr2
�B� are shaded, r1= d̃�B ;A�, r2= d̃�A ;B�. The Hausdorff distance

is r2.

A

A

B

Bda

dH

da

dH

da(A, B) < dH(A, B) da(A, B) > dH(A, B)

FIG. 4. Comparison between Hausdorff and average. �a�
da�A ,B��dH�A ,B�; �b� da�A ,B�	dH�A ,B�.
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As a consequence of this property, at the lowest levels the
Hausdorff linkage will yield a partition that is very similar to
that obtained by the complete linkage algorithm. As the clus-
tering procedure goes on, the two methods will differ from
each other, because of their different criteria in evaluating
distances, leading to different aggregations of more complex
classes. It is at this point that the output of the complete
linkage becomes less reliable, as a consequence of Eqs. �14�
and �33�. As discussed after Eq. �14�, we expect this problem
to become serious for large sets, of size comparable to that of
the parent space.

By contrast, it is easy to see that given a set composed of
a single element �a� and a generic finite set B,

da��a�,B� =
1


B
 �b�B

��a,b� � dH��a�,B� = dc��a�,B� .

�37�

We expect therefore the partitions obtained by the average
linkage algorithm to start forming more “slowly” than in the
other two cases �Hausdorff and complete�, by virtue of the
above property �that entails a greater difficulty in discrimi-
nating single points from clusters�.

In general, the Hausdorff and average linkage algorithm
will yield intermediate results between those obtained by the
other two procedures and their performances will tend to be
similar �and difficult to discriminate�. We shall now compare
the four clustering methods, first on an artificial set of points
in a two-dimensional Euclidean space, then on set of finan-
cial time series.

A final comment is in order. Given a distance matrix, any
clustering procedure will yield a tree and an ultrametric, en-
tailing a loss of information on the data set. However, this
appears necessary and is inherent in any clustering proce-
dure.

V. APPLICATIONS

A. Two-dimensional data set

Let us analyze the effect of the single, average, complete,
and Hausdorff linkage algorithms on the data set shown in
Fig. 5. This is a discrete set of points in the plane, resembling
a pair of “glasses” �each one made up of 31 points� con-
nected by a short horizontal “bar” �5 points� and two “pu-
pils” �each one made up of 2 points�, for a total of N=71
points.

The objective of this example is twofold. First, it shows
how difficult it can be to discriminate between average, com-
plete, and Hausdorff linkage: while the single linkage will
obviously suffer from the chaining effect �as will cluster
points at the opposite sides of the figure�, the other three
procedures will perform in a similar fashion at the beginning,
yielding different clusters only when the classes become
more complex. Second, the example will clarify that the
Hausdorff linkage is the only algorithm, among the four ana-
lyzed, that is able to analyze a particular structure in the set
of Fig. 5. At the same time, not surprisingly, we shall see that

0.511.5

single

d

(a)

01234

average

d

(b)

0246

complete

d

(c)

01234

hausdorff

d

(d)

FIG. 6. �Color online� Dendrograms generated by the �a� single,
�b� average, �c� complete, and �d� Hausdorff linkage, for the data set
of Fig. 5. The pupils are easily recognized because they are always
clustered at the smallest distance. Clustering of the remaining part
of the “lenses” is more involved and significantly procedure
dependent.

�2 0 2 4 6
�2

�1

0

1

FIG. 5. A two-dimensional toy sample: a pair of glasses �each
one made up of 31 points� connected by a short horizontal “bar” �5
points� and two pupils �each one made up of 2 points�, for a total of
N=71 points. In the figure the points are represented by crosses.
The axes are in arbitrary units.
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a discrimination between Hausdorff and average is delicate.
The dendrograms generated by the four algorithms are

shown in Fig. 6 and their close scrutiny unearths interesting
details. The chaining effect of the single linkage is apparent.
This can be an advantage if one wants to bring to light the
presence of a “continuous” line of points; it is a drawback in
a parameter space because data characterized by opposite
values of the parameter on the abscissa in Fig. 5 are clustered
together. As anticipated, a discrimination between the Haus-
dorff, average, and complete algorithms is more difficult.
However, as discussed after Eq. �14�, the differences should
become apparent for “large” sets, of size comparable to that
of the parent space: for a parent space made up of N=71
�approximately linearly distributed� points, we expect this
effect to show up for sets made up of more than 7 points, as
one can see in Fig. 6.

It is interesting to understand how different algorithms
yield different discrimination of the “pupils.” Single, Haus-
dorff, average, and complete linkage discriminate the pupils
with increasing difficulty: starting from the “top” of the den-
drogram �where only a single cluster is present�, one has to
cut the dendrograms at levels 3, 5, 6, and 8, respectively. In
this respect, single linkage performs best �as was to be ex-
pected�, Hausdorff a bit better than average, while complete
is the worst. Moreover, as we shall see later, Hausdorff is
best at discriminating the central bar.

A hierachical algorithm like the one discussed in this pa-
per generates n−1 partitions of the initial set. Clearly, in
order to get a significant partition, one must decide where to
cut the dendrogram. A proper way to cut the dendrograms
could be to search for a stable partition among the whole
hierarchy yielded by the algorithms, in correspondence to an
approximately constant value of the cluster entropy in a cer-
tain range of the dissimilarity measure d �23�,

S�d� = − �
k=1

Nd

Pd�k�ln Pd�k� , �38�

where Pd�k� is the fraction of elements belonging to cluster
k, and Nd is the number of clusters at level d in the dendro-
gram. The single, average, complete, and Hausdorff entro-
pies corresponding to the dendrograms in Fig. 6 are shown in

Fig. 7 as a function of d. We emphasize that, for the case at
hand, the data set was intentionally chosen so that one cannot
expect an obvious partition into “sensible” clusters. For this
very reason, the entropies in Fig. 7 display no “plateau.” The
optimal cut is then chosen at a level in which the partition
consists of six subsets �except for the single linkage proce-
dure, where the maximum number of subsets in a partition is
three�, according to a visual optimization of the clustering
solution. Figure 8 shows the selected partitions: while the
single linkage yields a clear chaining effect, average, com-
plete, and Hausdorff methods share the positive aspect of
clustering rather “compact” sets. Moreover, all other clusters
being roughly similar, the average and Hausdorff procedure
are also able to discriminate the two-points pupils in Fig. 5:
in this respect they share the positive spin offs of the single
linkage algorithm. On the other hand, the complete linkage
algorithm clusters each pupil together with a part of its near-
est “glass.”

0 2 4 6 8
0

1

2

3

4

5
S

d

single

average

hausdorff

complete

FIG. 7. Cluster entropies of the dendrograms of Fig. 6 vs dis-
tance. Dashed line: single; dot-dashed line: average; continuous
line: Hausdorff; dotted line: complete.
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FIG. 8. �Color online� Clustering results for the �a� single, �b�
average, �c� complete, and �d� Hausdorff linkage. All dendrograms
�except that obtained by the single linkage algorithm� were cut
when 6 clusters were present. Objects belonging to the same cluster
share the same symbol, which can be a circle, a triangle, a cross, a
diamond, a square, or a star: for example, the complete algorithm
�c� groups the left pupil with 13 points belonging to its nearest glass
�all circles�. The axes are in arbitrary units.
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Finally, we note that Hausdorff is the only algorithm that
is in some sense able to discriminate the central bar: while
the single linkage “chains” all points �except the pupils�,
both complete and average tend to group the central bar with
points belonging to both lenses �at the lower levels of the
dendrograms�, then split the central bar in two parts, that are
eventually separately grouped with the left and right
“glasses.” Although no procedure seems to be able to dis-
criminate the central bar, Hausdorff performs a bit better than
the other methods, in that the central bar is associated to the
left glass. Since this association is arbitrary and depends on
the initial numbering of the points when the algorithm is
implemented, it is clear that a different initial labeling would
have led to the central bar being clustered with the right glass
�24�. The intersection between the clusters obtained using
different initial labeling is then able to isolate the bar. By
contrast, there is no way of discriminating the central bar if
one makes use of the complete or the average clustering
Ansätz. Clearly, these differences are subtle and a thorough
analysis would require the study of the “robustness� of the
different algorithms when “noise” effects are present �e.g., in
the coordinates of the data points�. This study will not be
undertaken here.

B. Financial data

As a further application of the Hausdorff algorithm we
consider financial time series. The aspects concerning the
financial features of this method were introduced and dis-
cussed in �7�. Here we focus on the mathematical features of
the dendrograms, on a quantitative basis, by �i� quantifying
the difference between dendrograms according to the number
of nodes that share the same descendants, and �ii� discussing
a typical phenomenon of some linkage procedures, known as
“reversal” �25�. In particular, we focus on the N=30 shares
composing the Dow Jones industrial average �DJIA� index,
collecting the daily closure prices of its stocks for a period of
five years �1998–2002�. The companies of the DJIA stock
market are reported in Table I, together with the correspond-
ing industrial areas.

We consider the temporal series of the logarithm of the
ratio of two consecutive closure prices

X�t� � ln
P�t�

P�t − 1�
, �39�

where P�t� is the closure price of a stock at day t. Both P and
X are very irregular functions of time, as one can see in Fig.
9, that displays the typical behavior of a stock value �MSFT
�see Table I for stock names corresponding to the ticker sym-
bols�� for the investigated time period. In order to use the
linkage algorithm, we quantify the degree of similarity be-
tween two time series X and Y by means of the correlation
coefficients computed over the investigated time period as
follows:

��X,Y� =
cov�X,Y�

�X�Y
=

E��X − �X��Y − �Y��
�X�Y

, �40�

where E is the expectation value over the time interval of
interest �one year in our case�, �X=E�X� and �X

=
E�X2�−�X
2 . Figure 10�a� shows the correlation matrix

��X ,Y� computed for the year 1998: each element is dis-
played in a gray scale ranging from black �minimum value,
zero� to white �maximum value, one�. It is worth stressing
that, although, in principle, � can take negative values, all
correlation coefficients in Fig. 10�a� are positive, with values
not too close to 1, thus confirming that stocks belonging to
the same market do not move independently from each other,
but rather share a similar temporal behavior.

The metric function we adopted to quantify the time syn-
chronicity between two stocks is the following �26–29�:

d�X,Y� = 
2�1 − ��X,Y�� . �41�

The distance �41� is a proper metric in the parent space,
ranging from 0 for perfectly correlated series ���X ,Y�= +1�
to 2 for anticorrelated stocks ���X ,Y�=−1�. The representa-

TABLE I. DJIA stocks classified by tickers, names, and indus-
trial categories.

Ticker Stock name Industrial category

AA Alcoa Inc. Basic materials

AXP American Express Co. Financial

BA Boeing Capital goods

C Citigroup Financial

CAT Caterpillar Capital goods

DD DuPont Basic materials

DIS Walt Disney Services

EK Eastman Kodak Consumer cycl.

GE General Electrics Conglomerates

GM General Motors Consumer cycl.

HD Home Depot Services

HON Honeywell International Capital goods

HPQ Hewlett-Packard Technology

IBM Int’l Business Machine Technology

INTC Intel Corporation Technology

IP Internationall Paper Basic materials

JNJ Johnson & Johnson Healthcare

JPM JP Morgan Chase Financial

KO Coca Cola Inc. Consumer non-cycl.

MCD McDonalds Corp. Services

MMM Minnesota Mining Conglomerates

MO Philip Morris Consumer non-cycl.

MRK Merck & Co. Healthcare

MSFT Microsoft Technology

PG Procter & Gamble Consumer non-cycl.

SBC SBC Communications Services

T AT&T Gamble Services

UTX United Technology Conglomerates

WMT Wal-Mart Stores Services

XOM Exxon Mobil Energy
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tive points lie on a hypersphere and d�X ,Y� measures the
Euclidean �and not the geodesic� distance between X and Y.
Figure 10�b� shows the distance matrix d�X ,Y� computed for
the year 1998: each element is displayed in a gray scale
ranging from black �d=0� to white �d=
2�. The tree struc-
ture obtained for this set was already scrutinized and dis-
cussed in Ref. �7�. We shall focus here on the features of the
dendrograms.

Although our analysis pertains to the period from 1998 to
2002, for the sake of illustration, Fig. 11 only shows the
dendrograms obtained by clustering the stocks yearly from
2000 to 2002, with the single, average, complete, and Haus-
dorff linkage. Some considerations are in order. As expected,
the single linkage algorithm suffers from the chaining effect
�3�, which yields elongated clusters: different points merge

into a large cluster almost one at a time during the iterative
procedure, with the result of obtaining a poorly defined tree
structure, as it can be clearly observed in Fig. 11 �panels �a�,
�e�, and �i��. Wherever one would choose to cut the dendro-
gram, no meaningful partition would emerge out of the hier-
archical tree. On the other hand, the dendrograms obtained
by means of the average, complete, and Hausdorff algo-
rithms show clear inner structures, corresponding to the
branches of the hierarchical tree. One recognizes the clusters
corresponding to homogeneous �from the industrial view-
point� groups of companies, belonging to the same industrial
area: this is the case of the money center banks �C, JPM
AXP�, retail companies �HD, WMT�, companies dealing
with basic materials �AA, IP, DD�, and the technological
core �IBM, INTC, MSFT�.

The classification of stocks in terms of their economic
homogeneity as well as the presence of superclusters and
homogeneous subgroups was already discussed in �7� and
will not be analyzed here. However, there are characteristic
features of the dendrograms that deserve additional attention.
An interesting phenomenon, consisting of reversals in the
dendrograms �25�, sometimes appears in the Hausdorff clus-
tering, as shown in Fig. 11�n�, the dendrogram obtained by
clustering the financial time series in 2002. This pattern is
mathematically spelled out in the Appendix, where its sig-
nificance is elucidated in terms of an elementary example
�see Fig. 12�. We take this phenomenon as an indicator of the
potentialities of a clustering algorithm based on the Haus-
dorff distance, that could be exploited in a nonhierarchical
algorithm, allowing reversals and hierarchy breaking.

It is interesting to discuss the features of the dendrograms
on a more quantitative basis. The difference between dendro-
grams can be quantified by counting the number of nodes
that share the same descendants. Table II shows these num-
bers for different couples of dendrograms and different years.
It is apparent that the performance of the single linkage al-
gorithm is very different from the other three methods. This
is clearly reflected in the figures of Table II. By contrast, the
other three methods yield results that are similar.

Most of the nodes with common descendants share a set
of descendants consisting of a couple of elements. In general,
the single linkage dendrogram shares with the other dendro-
grams only nodes having a low number of descendants. The
chaining effect is responsible for this difference: at the inner
levels in the dendrogram, all linkage algorithms generate
similar clusters because the distance between one-element
clusters is the distance of the underlying metric �as one can
see, for instance, in Eq. �35��; at higher levels in the dendro-
gram, the single linkage tends to link single elements to
larger clusters in a chain; therefore it yields less clusters of
two elements than other algorithms. As one can see, the
single and the Hausdorff dendrogram, as well as the single
and the complete dendrogram have almost the same number
of nodes sharing common descendants; on the other hand the
single and the average dendrogram have a higher number of
nodes sharing the same descendants, as a consequence of
property �37�. Among common subsets of descendants,
which mainly consist of two elements sets, there are larger
subsets that derive from the union of smaller common sub-
sets.
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FIG. 9. �a� Time evolution of the closure price P�t� and �b� the
logarithm of the ratio of consecutive closure prices X�t� �see Eq.
�39�� of a stock value �MSFT�, for the period 1998–2002.
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FIG. 10. �a� Correlation matrix ��X ,Y� computed for the year
1998 and �b� distance matrix d�X ,Y� computed for the year 1998.
Numerical values are displayed in a gray scale ranging from black
�minimum value� to white �maximum value�.
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The complete linkage algorithm has the larger number of
common nodes, twice together with the average, three times
together with the Hausdorff linkage. It never happens that the
average and Hausdorff linkage have the maximum number of
common nodes. The significance of this finding is of difficult
interpretation. In general, the complete linkage algorithm
tends to create more nodes and therefore more common

nodes. Moreover, there are probably remarkable differences
between the average and Hausdorff linkage algorithms, but
these differences are not easy to bring to light, as they in-
volve complicated internal structures of the dendrograms.
These open problems require additional investigation.

We also counted the number of nodes, by excluding those
nodes that result from joining a set and a single element, in
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FIG. 11. �Color online� Dendrograms obtained by clustering the stocks for different years: �a� single, year 2000; �b� average, year 2000;
�c� complete, year 2000; �d� Hausdorff, year 2000; �e� single, year 2001; �f� average, year 2001; �g� complete, year 2001; �h� Hausdorff, year
2001; �i� single, year 2002; �l� average, year 2002; �m� complete, year 2002; �n� Hausdorff, year 2002. The acronyms are explained in Table
I. Some reversals can be clearly observed in one of the dendrograms pertaining to the year 2002, obtained by clustering the stocks with the
Hausdorff linkage �panel �n��. A mathematical explanation of this phenomenon is given in the Appendix.
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order to avoid the consequences of Eq. �36�. The results are
displayed in Table III and should be interpreted with care, as
the exclusion of nodes at the lowest levels in the dendro-
grams introduces an arbitrary bias, also as a consequence of
Eqs. �36� and �37�. One notices again that the single linkage
performs differently. On the other hand, the differences
among average, Hausdorff, and complete linkage become
less significant and year dependent. We also notice that the

year 2002 displays no common nodes: this feature was al-
ready present, in embryo, in Table II.

VI. CONCLUSIONS

Clustering is a common practice in the analysis of com-
plex data and reflects a human compulsion towards classify-
ing objects or physical phenomena. This can be a difficult
task when the phenomena are complicated and the underly-
ing correlations are difficult to bring to light. We have intro-
duced and analyzed a clustering procedure based on a bona
fide distance introduced by Hausdorff. The method, that re-
lies on an underlying distance among the elements that make
up the “parent” set, has been compared with the single, av-
erage, and complete linkage procedures, which only rely on
an underlying dissimilarity measure �not a distance�. We first
looked at a toy problem, in which the Hausdorff method has
advantages in comparison with the other ones. We then clus-
tered the financial time series of the DJIA stock market, ob-
serving the formation of clusters of “homogeneous” compa-
nies and scrutinizing the features of the algorithms. The
results are significant from an economical point of view.

An important application of the method introduced here is
certainly in portfolio optimization �30–34�, where the key
issue is to select one �or a few� stocks that are representative
of a given cluster, characterized by economic homogeneity,
reducing maintenance costs and optimizing risk. Among the
possible future developments, one should test the stability of
the method against noise effects �35,36� and endeavor to
understand the practical consequences of hierarchy breaking
due to the reversals discussed in the previous section.

APPENDIX

We explain here the phenomenon of the reversals ob-
served in the Hausdorff dendrogram of Fig. 11�n� and argue
that the Hausdorff hierachical clustering does not exploit all
the potentialities of the Hausdorff distance.

Let us consider the three compact sets of the Euclidean
plane shown in Fig. 12. Set A is a segment, B is another
segment, and C is a polygonal “U.” They are arranged in
such a way that

dH�A,B� � dH�A,C� and dH�A,B� � dH�B,C� .

�A1�

Therefore, the Hausdorff linkage algorithm starts off by link-
ing A and B at a distance dH�A ,B� into a cluster D=A�B.

A B

C

dH(A,B)>dH(A∪B,C)

dH(A,B)

dH(A,C)

dH(A∪B,C)

A

B

C

dH(A∪B,C)dH(A,B)

FIG. 12. �Color online� Example of a reversal in the Hausdorff
linkage. Given three sets A �a segment�, B �another segment�, and C
�a “U”� �upper panel�, the Hausdorff linkage algorithm links A and
B at a distance dH�A ,B�, then links A�B and C at a distance
dH�A�B ,C��dH�A ,B� �lower panel�. Set C is Hausdorff nearer to
A�B than it is to A and B separately. The corresponding dendro-
gram is drawn below.

TABLE II. Number of nodes sharing the same descendants, in
dendrograms pertaining to different couples of linkage algorithms.

1998 1999 2000 2001 2002

Single—average 8 9 14 13 6

Single—Hausdorff 8 8 11 11 4

Single—complete 8 8 11 10 4

Average—Hausdorff 15 13 16 15 10

Average—complete 17 17 17 14 12

Hausdorff—complete 18 15 16 18 13

TABLE III. Number of nodes sharing the same descendants,
which are not the result of the joining of a set and a single element.

1998 1999 2000 2001 2002

Single—average 1 2 2 0 0

Single—Hausdorff 1 1 2 0 0

Single—complete 1 1 2 0 0

Average—Hausdorff 2 2 2 2 0

Average—complete 3 3 2 1 0

Hausdorff—complete 2 2 1 4 0
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But now it happens that the Hausdorff distance between C
and cluster D is smaller than the Hausdorff distance between
A and B, namely,

dH�D,C� = dH�A � B,C� � dH�A,B� . �A2�

Therefore, set C is nearer to D=A�B than it is to A and B
separately,

dH�A � B,C� � dH�A,C�, dH�B,C� , �A3�

and the corresponding dendrogram exhibits a reversal.
It can therefore happen that two sets, after their aggrega-

tion, become Hausdorff closer to a third set than they were
separately. This explains �from a mathematical viewpoint�
the phenomenon of the reversals observed in Fig. 11�n�.

Therefore, reversals are a direct consequence of the very
definition of the Hausdorff distance. The existence of rever-

sals implies that dH cannot be used as the Hausdorff hierar-
chy’s aggregation index. Indeed, an aggregation index is a
positive function f defined on the hierarchy Y satisfying �i�
f�y�=0 if and only if y is reduced to a single element of S
and �ii� f�y�� f�y�� if y�y�. Equation �A3� is at variance
with condition �ii�. On the other hand, the complete, average,
and single hierarchical algorithm generate a hierarchy in-
dexed through dc, da, and ds, respectively. Nonetheless, the
Hausdorff hierarchy can be indexed through a proper choice
of the aggregation index f . This will be clarified in a forth-
coming paper. From a more intuitive �physical� perspective,
condition �A3� can become valid when the sets are rather
intertwined, and can be taken as an indication that, although
always mathematically consistent, the clustering procedure
itself at this level of the dendrogram becomes delicate, in
particular, for inherently complex problems, such as that of
clustering stock market companies.
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