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We compute the entropy of entanglement of two blocks of L spins at a distance d in the ground state of an
Ising chain in an external transverse magnetic field. We numerically study the von Neumann entropy for
different values of the transverse field. At the critical point we obtain analytical results for blocks of size L
=1 and 2. In the general case, the critical entropy is shown to be additive when d→�. Finally, based on simple
arguments, we derive an expression for the entropy at the critical point as a function of both L and d. This
formula is in excellent agreement with numerical results.
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I. INTRODUCTION

A comprehension of the features of entanglement in sys-
tems with many degrees of freedom, such as quantum spin
chains, is currently one of the most challenging problems, at
the borderline of quantum-information science �1� and statis-
tical physics. In the last few years several measures of en-
tanglement have been proposed �2–5� and calculated �ana-
lytically in the simplest cases, otherwise numerically� for the
ground states of many-body systems �6�. States out of equi-
librium have also been investigated, see �7�.

Despite accurate investigations and different proposals,
there is still no consensus on the correct characterization of
the multipartite entanglement of the ground state of a many-
body system. We will consider here the entanglement en-
tropy, a measure that can sometimes be tackled by analytic
investigations and for which quantum field theoretical meth-
ods can be employed. The entanglement entropy is just the
von Neumann entropy associated with the reduced density
matrix, that is the entropy of a subsystem of the chain, and
was explicitly evaluated for quantum spin chains �4,8–12�.

One of the most striking features of the entanglement en-
tropy is its universal behavior at and close to a quantum
phase transition. Indeed, it is found that entropy in noncriti-
cal systems generally tends to saturate towards a finite value
as the size of the subsystem increases, but this value �loga-
rithmically� diverges with the size of the subsystem as the
system approaches a quantum critical point. Close to a quan-
tum critical point, where the correlation length � is much
larger than the lattice spacing, correlations are described by a
�1+1�-dimensional quantum field theory and at the critical
point, where � diverges, the field theory is also a conformal
field theory �13�. In the latter case, the behavior of entropy
calculated by analytical and numerical techniques for several
spin systems is confirmed by the predictions of the corre-
sponding field theory.

In this work we extend the characterization of the en-
tanglement entropy to a more general subsystem, in which
the correlations between two disjoint blocks of spins and the
rest of the chain are studied as a function of the distance d
between the blocks and their common size L. This entropy of

entanglement will be denoted S�L ,d� and will be analyzed by
analytical and numerical methods.

The physical system we shall consider is the Ising model
in a transverse magnetic field, since it fulfills a convenient
combination of requirements. It is solvable, its ground state
can be computed by using well-known analytical and nu-
merical techniques �8� and, at the same time, it successfully
describes a rich spectrum of physical phenomena that in-
clude the ordered and disordered magnetic phases, connected
by a quantum phase transition �14�.

We will analytically compute the entropy of entanglement
at the quantum critical point �QCP� for blocks of L=1 and 2
spins and will tackle the problem numerically for larger val-
ues of L. We will first study the behavior of the entropy as a
function of the magnetic field �, then at the QCP, �=1, as a
function of the distance d between the blocks and their size
L. We will investigate the limits d→0 and d→�. Our results
will include as a particular case �d=0� the logarithmic be-
havior of the entropy of a single block of L spins at criticality
SL= 1

6 log L+K, where K is a constant �4,8–12,15–17�. We
will also show the additivity of S�L ,d� at the critical point as
d→�. Finally, we will plot S�L ,d� as a function of both L
and d, getting an accurate idea of the features of the entropy
at the QCP.

This paper is divided in six sections. In Sec. II we review
previous works on spin chains, following �4,8,18–21�, where
the ground state of the Ising model is computed: the explicit
expressions obtained will be used in the following sections in
order to obtain the reduced density matrix �L and the Von
Neumann entropy SL of L contiguous spins. In Sec. III we
extend the definition of the correlation matrix given in �4,8�
to a bipartition of two blocks of L spins separated by a ge-
neric distance d. We define here the entropy S�L ,d�, describ-
ing the entanglement of the two blocks with the rest of the
chain. By making use of the newly defined reduced density
matrix �L,d, in Sec. IV, we analytically compute the entropy
for blocks of one and two spins at the critical point. In Sec.
V we carry out numerical computations of S�L ,d� for several
sizes of the blocks. Finally, we plot the entropy as a function
of the size L of the blocks and their reciprocal distance d, in
order to get a general idea of the features of the entropy of
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entanglement at the critical point. Our results are summa-
rized and discussed in Sec. VI. In the Appendixes we in-
cluded, for self-consistency, additional material and explicit
calculations.

II. GROUND STATE OF THE ISING MODEL

The Ising chain in a tranverse field consists of 2N+1
spins with nearest-neighbor interactions and an external
magnetic field, described by the Hamiltonian

HI = − J �
−N�i�N

���i
z + �i

x�i+1
x � . �1�

Here i labels the spins �we take an odd number of spins for
simplicity�, J�0, and we consider open boundary condi-
tions, �N+1

x =0. �i
� ��=x ,y ,z� are the Pauli matrices acting

on spin i. The determination of the ground state proceeds
with the Jordan-Wigner transformation in terms of Dirac or
Majorana fermionic operators �18–21�. Here it will be con-
venient to consider Majorana fermions, whose operators are
defined by

ǎ2l−1 � ��
m�l

�m
z 	�l

x, ǎ2l � ��
m�l

�m
z 	�l

y , �2�

with −N� l�N. They are Hermitian and obey anticommuta-
tion relations,

ǎm
† = ǎm, 
ǎm, ǎn� = 2	mn, �3�

and their expectation values in the ground state �
0


�
0�ǎmǎn�
0
 = �ǎmǎn
 = 	mn + i�mn
A , �4�

with −2N−1�m, n�2N, completely characterize �
0
. Con-
sider now a block of L contiguos spins labeled by i with

k � i � k + L − 1, �5�

with k�−N and k+L−1�N. The expectation values of the
Majorana operators of the block are encoded in the
2L�2L submatrix

��L
A�mn = − i��ǎmǎn
 − 	mn� , �6�

with 2k−1�m, n�2k+2L−2.
We are interested in the thermodynamic limit of an infi-

nite chain, N→�. In such a limit, the ground state becomes
translation invariant, and all correlations inherit such an in-
variance: �ǎ2mǎ2n
= �ǎ2m−1ǎ2n−1
=0, ∀m, n with m�n, while
�ǎ2m−1ǎ2n
= igm−n depend only on the difference m−n. There-
fore the block correlation matrix �L

A becomes independent of
k and reads

�L
A =�


0 
−1 . . . 
−L+1


1 
0 ]

] � ]


L−1 . . . . . . 
0

� , �7�

with


l = � 0 − i�ǎ2l−1ǎ0

− i�ǎ2lǎ−1
 0

	 = � 0 gl

− g−l 0
	 , �8�

where the real coefficients gl are given, for an infinite chain,
by

gl =
1

2�
�

0

2�

d�ei�l �cos � − �� + i sin �

��cos � − ��2 + sin2 �
. �9�

Thus �L
A is a real, skew-symmetic 2L�2L matrix, i.e.,

��L
A�T=−�L

A, since all the blocks 
l have the property
�
l�T=−
−l.

III. ENTROPY OF TWO BLOCKS OF SPINS

The entropy of a single block of L contiguous spins in the
critical regime can be obtained by very accurate numerical
results �4,8� and analytical conformal field theory calcula-
tions �9,10�. Given the ground state �
0
, one finds the re-
duced density matrix

�L = Tr¬L
�
0
�
0�� , �10�

where the trace is over all spins that do not belong to the
block, and its entropy

SL = − Tr
�L log �L� . �11�

For definiteness, in this paper we will fix the base of loga-
rithms to 2. The calculations of Refs. �4,8�, yielding an ex-
pression of the reduced density matrix �L and the entangle-
ment entropy SL of L adjacent spins in the ground state �
0

are reviewed in Appendix A. The key point is the following:
the block entropy �11� is the sum of L terms

SL = �
l=1

L

H�1 + �l

2
	 , �12�

where

H�x� = − x log x − �1 − x�log�1 − x� �13�

is the Shannon entropy of a bit, and �i�l, with 1� l�L, are
the pairs of �purely imaginary� eigenvalues of the block cor-
relation matrix �L

A of Eq. �7�.
In the continuous limit

SL =
1

6
log L + K�L� , �14�

where 1 /6 derives from the central charge c=1 /2 of a free
massless fermionic field and

L d L

FIG. 1. �Color online� Two blocks of L adjacent spins at a dis-
tance d. The state �L,d is obtained from the ground state �
0
 of the
spin chain by tracing out the spins that do not belong to the blocks.
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K�L� = K + O� 1

L
	, L → � , �15�

K being a constant. In this section we want to extend this
approach and construct the density matrix �L,d of a sub-
system of two blocks of L adjacent spins situated at a dis-
tance d, studying their entanglement with the rest of the
chain. See Fig. 1. To this aim, one starts by computing the
matrix �L

A of a single block of adjacent spins �7� and then
traces out the central d spins as follows.

We define the 4L�4L correlation matrix �L,d
A of two

blocks, each of L spins, situated at a distance d �d, like L, are
expressed in units of the distance between adjacent spins,
and are therefore dimensionless�

�L,d
A = � A0

�L� A−L−d
�L�

AL+d
�L� A0

�L�
	 = � �L

A A−L−d
�L�

AL+d
�L� �L

A
	 , �16�

where Ax
�L�=Ax

�L,L� with

Ax
�L,M� =�


x 
x−1 . . . 
x−M+1


x+1 
x . . . 
x−M+2

] � ]


x+L−1 
x+L−2 . . . 
x−M+L

� . �17�

The matrix Ax
�L�= �−A−x

�L��T is a Toeplitz matrix, and �L,d
A has

the property

�L,0
A = �2L

A , �18�

i.e., when the distance between the two blocks is zero, �L,d
A

becomes equal to the matrix �7� of a single block of size 2L.
The matrix �L,d

A in Eq. �16� is obtained by tracing out the d
rows and d columns that are labeled with L�x�L+d in the
�2L+d�� �2L+d� matrix �2L+d

A ,

�2L+d
A =�

A0
�L� A−L

�L,d� A−L−d
�L�

AL
�d,L� A0

�d� A−d
�d,L�

AL+d
�L� Ad

�L,d� A0
�L�
� . �19�

For example, let us consider the case of two blocks of L=2
spins at a distance d=3. In this case the 7�7 matrix �2L+d

A

=�7
A reads

�7
A =�


0 
−1 
−2 
−3 
−4 
−5 
−6


1 
0 
−1 
−2 . . . 
−5


2 
1 � ]


3 
2 � ]


4 ] ]


5 � ]


6 . . . . . . . . . 
0

� �20�

and we have to cancel the columns whose first element is
labeled by −2, −3, and −4 and the rows whose first element
is labeled by 2, 3, and 4, obtaining

�2,3
A =�


0 
−1 
−5 
−6


1 
0 
−4 
−5


5 
4 
0 
−1


6 
5 
1 
0

� , �21�

that is again a real skew-symmetrix matrix.
The entanglement of the two blocks of spins reads

S�L,d� = − Tr��L,d log �L,d� , �22�

where �L,d is the density matrix of two blocks of L adjacent
spins at a distance d. Exactly as for a single block, the above
entropy can be given an explicit expression in terms of the
eigenvalues �i�l, with 1� l�2L, of �L,d

A , analogous to Eq.
�12�,

S�L,d� = �
l=1

2L

H�1 + �l

2
	 , �23�

with H given by Eq. �13�. Before investigating the behavior
of Eq. �22�, it is instructive to look first at some simple
examples.

IV. ANALYTICAL RESULTS

A. Entanglement of two single spins

We consider the Ising chain in a critical transverse mag-
netic field �c=1. At �=�c, the coefficients gl of the reduced
correlation matrix �L,d

A , defined in Sec. III, and given by Eq.
�9�, can be computed analytically, yielding

gl =
1

2�
�

0

2�

d�ei�liei�/2 = −
1

��l +
1

2
	 . �24�

In order to compute the entanglement entropy S�L ,d� of
two single spins at a distance d, we have to calculate the
eigenvalues of the correlation matrix �L,d

A , where L=1 and
d�0. Equation �16� reads

�1,d
A = � 
0 
−�1+d�


1+d 
0
	

=�
0 g0 0 g−l

− g0 0 − gl 0

0 gl 0 g0

− g−l 0 − g0 0
�

=�
0

− 2

�
0

− 2

��− 2l + 1�
2

�
0

2

��2l + 1�
0

0
− 2

��2l + 1�
0

− 2

�

2

��− 2l + 1�
0

2

�
0

� ,

�25�
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where l=d+1. The eigenvalues are the solutions to the char-
acteristic equation

det��L,d
A − �� = 0. �26�

For L=1, there are four eigenvalues �i�1 and �i�2, with

�1,2 =
2

�

��4l2 − 1�2 + 4l2 � 1

4l2 − 1
. �27�

The eigenvalues of the reduced density matrix �L,d are
�1��k� /2 and the von Neumann entropy reads

S�1,d� = H�1 + �1

2
	 + H�1 + �2

2
	 , �28�

where H is given by Eq. �13�.
It is interesting to consider the cases d=0 and d�1. In the

former case we have �1,2=2��13�1� / �3��, hence

S�1,0� = H��13 + 2

3�
	 + H��13

3�
	

= −
1

2
log� 1

16
+

16 − 7�2

9�4 	
−

�13

3�
log�1 +

8�13�

16 − 4�13� + 3�2	
−

1

3�
log�1 +

8�

3�2 − 4� − 16
	 . �29�

In the latter case, since the eigenvalues �1,2=2 /�+O�1 /d2�
coincide in the limit d→ +�, we have

S�1,d� = 2H�� + 2

2�
	 + O� 1

d2	
=

2

�
log�� − 2

� + 2
	 + log� 4�2

�2 − 4
	 + O� 1

d2	 . �30�

More on this phenomenon later.

B. Entanglement of two blocks of L=2 spins

If L=2, we have to compute the eigenvalues of

�2,d
A =�


0 
−1 
−�2+d� 
−�3+d�


1 
0 
−�1+d� 
−�2+d�


�2+d� 
�1+d� 
0 
−1


�3+d� 
�2+d� 
1 
0

�
=�


0 
−1 
−�1+l� 
−�2+l�


1 
0 
−l 
−�1+l�


�1+l� 
l 
0 
−1


�2+l� 
�1+l� 
1 
0

� , �31�

with l=d+1. The characteristic equation �26� is of eighth
degree, but can be reduced to a quartic equation in t=�2,

t4 + pt3 + qt2 + rt + s = 0, �32�

which has an exact solution. The coefficients p, q, r, and s
are functions of the distance d and are explicitly written in
Appendix B.

The matrix �L,d
A will have the eight eigenvalues ��k

= � i�k, with k=1,2 ,3 ,4, two for each �negative� root of t.
The eigenvalues of the reduced density matrix �2,d are
�1��k� /2 and the entropy reads

S�L,d� = �
k=1

4

H�1 + �k

2
	 , �33�

with H given by Eq. �13�.
In Fig. 2 we plot the eigenvalues �k versus the distance d.

Note that the eigenvalues quickly saturate at a distance
d�5 between the blocks. This means that the entanglement
between the two L=2 blocks reaches its asymptotic value for
d�5.

The asymptotic values of the eigenvalues are solutions to
the equation obtained by taking the limit d→� of Eq. �32�.
One gets

�1��� = �3��� =
2

�

�13 + 1

3
,

�2��� = �4��� =
2

�

�13 − 1

3
, �34�

in agreement with Fig. 2. Note that they coincide with Eq.
�27� evaluated at l=1, i.e., with the eigenvalues of the re-
duced density matrix of two spins at a distance d= l−1=0.
Therefore for d→� the eigenvalues coalesce into pairs and
the spectrum of two blocks �of two spins� coincides with the
spectrum �with degeneracy 2� of a single block. This phe-
nomenon, which implies the asymptotic additivity of block
entropy, is independent of the blocks dimension L and will
be discussed in full generality in Sec. V B 2.

0 5 10 15 20

�1

�0.5

0

0.5

1

νk

d

FIG. 2. Eigenvalues of the reduced density matrix of two blocks
of L=2 spins versus their distance d at the critical point �c=1. Note
that the �k’s reach a saturation value at d�5. Here and in the
following figures, d is expressed in units of the distance between
adjacent spins, and is therefore dimensionless.
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V. ENTROPY OF TWO BLOCKS OF SPINS

In this section we look at the entanglement entropy
S�L ,d� of two blocks of spins when the magnetic field varies.
At the critical point, �c=1, we will find an expression for
S�L ,d� in terms of the entropy SL of a single block, given in
Eqs. �11�–�14�, and investigate its limits d→0, d→�. We
will combine numerical estimates with analytical methods.

A. Entropy versus �

We start by evaluating the entanglement entropy S�L ,d�
versus the magnetic field �. The entanglement between two

single spins at a distance d and the remaining part of the
chain was investigated in Refs. �23–25� as a function of the
magnetic field �. A generalization to a comb of m spins,
spaced d sites apart can be found in �26�. We now generalize
these results to the case of two arbitrary blocks of L spins at
a distance d.

In general, the presence of a gap between the blocks
yields a larger entropy for all values of the magnetic field �.
Let us start examining the situation at zero magnetic field. At
�=0, from Eq. �9� one gets that gl=	l,−1. Therefore, since

l=0 for l� �1 and 
�1=��= ��1� i�2� /2, Eqs. �16� and
�17� greatly simplify. In particular, for any L�1, the off-
diagonal blocks in Eq. �16� read, for d=0,

AL
�L� = − �A−L

�L��T = �0 0 . . . 
+1

] � ]

0 0 . . . 0
� �35�

and yield a tridiagonal block matrix

�L,0
A = �2L

A =�
0 
−1 0 . . . 0


+1 0 
−1 . . . 0

] ] � ]

0 0 0 . . . 0
� , �36�

while, for any d�0, AL+d
�L� =−�A−L−d

�L� �T=0 and one gets

�L,d
A = �L

A
� �L

A. �37�

Thus at d=0, the characteristic polynomial is

det��L,0
A − �� = det��2L

A − �� = �2��2 + 1�2L−1, �38�

hence �1=0 and �l=1 for 2� l�2L, so that

S�L,0� = H�1

2
	 + �

l=2

2L

H�1� = H�1

2
	 = log 2 = 1. �39�

On the other hand, for d�1, one gets

det��L,d
A − �� = det��L

A − ��2 = �4��2 + 1�2L−2, �40�

hence �1=�2=0 and �l=1 for 3� l�2L and

S�L,d� = 2S�L,0� = 2H�1

2
	 = 2. �41�

This is intuitively clear: at zero transverse field S�L ,d� fol-
lows exactly an area law �27� and in one dimension the pres-
ence of a gap doubles the area of the boundary, doubling the
entropy. See Fig. 3. For nonzero values of the magnetic field,
there are corrections to the area law, due to correlations be-
tween the two blocks. An entropy increase is still natural, but
it turns out to be smaller than the factor of 2 that one would
naively expect for a doubled boundary. We will show that the
factor of 2 can be recovered in the limit of large gap d: this
is the phenomenon of asymptotic additivity of entropy men-
tioned at the end of Sec. IV B. See Sec. V B.

We show the results of some numerical investigations in
Fig. 3. Let us first look at the case of small L��2–3�. For
d�0 entropy is not maximum at the critical point �=1, but
rather for some ��1. On the other hand, for bigger L, the

� � � � � � � �

�
�
�
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� � � � � � �

�

�

�
�
�
�
�
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FIG. 3. �Color online� Entropy of the reduced density matrix for
blocks of �a� L=2, �b� L=3, �c� L=8, and �d� L=15 spins versus the
external magnetic field � for several distances d between the blocks.
Circles: d=0, squares: d=10, and diamonds: d=50. Squares and
diamonds are indistinguishable in �a� and �b�, and are barely distin-
guishable in �c� and �d� only around the critical value �=1.
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maximum entropy is always reached at the critical point
�=1 and its value grows with the size L of the blocks.

One also notices that, far from criticality, the entropy has
a very weak dependence on the value of the gap d�1, and
thus an area law is a very good approximation. The largest
deviations are at the critical point, when the correlation
length diverges. At fixed L, the ordinate of the cusp at �=1 is
always an increasing function of d. We now turn to the study
of the critical case and endeavor to find some interesting
analytical expressions.

B. Critical chain

1. Blocks of contiguous spins (d\0)

In the limit d→0, the entropy of entanglement �22� must
reproduce the single-block result �11� as a particular case:

S�L,0� = S2L. �42�

This is a simple consistency check and was numerically veri-
fied when the magnetic field is critical, �c=1. As a by-
product, this enables us to obtain the value of the constant K
via the logarithmic fit

S�L,0� =
1

6
log 2L + K + O� 1

L
	 . �43�

We obtain

K = 0.690 413, �44�

with an error �9�10−6, corroborating the results in �4�. An
accurate fit enables us to give a precise estimate of the cor-
rections in 1 /L, but more on this later.

2. Asymptotic additivity of entropy (d\�)

The plot in Fig. 4 shows that in the limit d→� the two-
block entropy is accurately fitted by

S�L,�� =
1

3
log L + 2K�L� = 2SL. �45�

Entropy becomes therefore additive at large distances d. The
physical meaning of this result is that the entanglement en-
tropy of two separated blocks of L spins becomes twice the
entropy of a single block L when the distance between the

blocks approaches �, i.e., it becomes much larger than the
size of a block. Therefore, at the critical point, the quantum
correlations between two finite blocks of spins saturate at a
certain distance. We now explain this result, which turns out
to be valid for every value of the magnetic field �.

Note that from Eq. �9� one gets

lim
l→�

gl = 0 �46�

by the Riemann-Lesbegue lemma. Thus from Eq. �8�

lim
l→�


l = 0, �47�

and from Eq. �17�

lim
x→�

Ax
�L� = 0, ∀ L . �48�

Ax
�L� accounts for the residual correlation of two blocks of

spin at a distance x.
Therefore the limit of the reduced correlation matrix of

two blocks �16� reads

�L,�
A = lim

d→+�
�L,d

A

= lim
d→+�

� A0
�L� A−L−d

�L�

AL+d
�L� A0

�L�
	

= �A0
�L� 0

0 A0
�L�
	

= �L
A

� �L
A, �49�

for all L. The two blocks become independent and the limit-
ing spectrum of �L,d

A is given by the spectrum of a single
block �L

A, with degeneracy 2. As a consequence, the entropy
�23� becomes additive in the limit

S�L,�� = �
l=1

2L

H�1 + �l��L,�
A �

2
	 = 2�

l=1

L

H�1 + �l��L
A�

2
	 = 2SL,

�50�

where �i�l��L,d
A � with 1� l�2L denote the eigenvalues of

�L,d
A and �i�m��L

A� with 1�m�L denote the eigenvalues of
�L

A. We stress again that these results are valid for all values
of the magnetic field �. See the introductory comments in
Sec. V A. The area law discussed there is restored for suffi-
ciently large d when the correlations between the two blocks
are negligible and the two boundaries become “indepen-
dent.”

3. General behavior of S(L ,d) at the critical point

We now turn to the problem of describing the entangle-
ment of two blocks of L spin at an arbitrary distance d with
the remaining part of the critical Ising chain. In order to find
a function of L and d we make two assumptions: we require
that the entropy be a function of all the scales of the prob-
lem; moreover, the dependence must be logarithmic.

Let therefore

20 40 60 80 100
L

1.5

2.0

2.5

3.0

3.5

S�L,��

FIG. 4. �Color online� Saturation value of the critical block
entropy ��=1�. The numerical values of S�L ,�� are fitted by
1
3 log L+2K�L�.
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S�L,d� =
1

6
�2 log�L − �� − 2 log�L + d� + log�2L + d − ��

+ log�d + �� + �� , �51�

with 0���1 and ��R. See Fig. 1. The quantity � fixes
the position of the end of each block, �=0 corresponding to
the central point between two adjacent spins, while �=1 to
the position of the last �or first� spin. Clearly, � detects
granularity in the chain and the corrections due to � will be
important for small values of L and/or d. We obtain

S�L,0� =
1

6
log�2L − �� +

1

3
log�1 −

�

L
	 +

1

6
�log � + ��

�
1

6
log�2L� +

1

6
�log � + ��, L → � , �52�

hence

log � + � = 6K . �53�

On the other hand,

S�L, + �� =
1

6
�2 log�L − �� + �� �

1

3
log�L� +

1

6
�, L → � ,

�54�

hence

� = 12K . �55�

In conclusion,

S�L,d� =
1

6
�2 log�L − �� − 2 log�L + d� + log�2L + d − ��

+ log�d + �� − 2 log �� , �56�

with

� = 2−6K = 0.056 622 6. �57�

Notice that there are no free parameters. Moreover, in the
realm of validity of CFT, when d ,L�1, one gets

S�L,d� �
1

6
�2 log L − 2 log�L + d� + log�2L + d� + log d� + K

�58�

that agrees with the results of Calabrese and Cardy �10�
when one adds a missing addendum in their formula �3.32�.

From Eq. �56� we get

S�L,0� =
1

6
log�2L� + K�L� , �59�

where

K�L� = −
1

6
log � +

1

6
log�1 −

�

2L
	 +

1

3
log�1 −

�

L
	 � K

−
5

12

�

L
−

3

16

�2

L2 −
17

144

�3

L3 , L → � . �60�

This formula is in excellent agreement with numerical re-
sults. It provides the explicit expression in Eq. �15� and was
used in Eqs. �43� and �44� and Fig. 4. See also the discussion
at the end of Sec. V B 1.

The global behavior of

S�L,d� =
1

6
�2 log�L − �� − 2 log�L + d�

+ log�2L + d − �� + log�d + ���

=
1

6
�2 log L − 2 log�L + d� + log�2L + d� + log d�

+ K�L� , �61�

with � and K�L� given by Eqs. �57� and �60�, respectively, is
displayed in Fig. 5. The fit is accurate up to one part in 103

for small L ��10� and one part in 106 for L�10. Notice the
logarithmic L dependence for d=0 and the saturation effect
for L /d�1. A section of Fig. 5 is displayed in Fig. 6. In
particular, the inset shows the asymptotic behavior of the
entropy and its saturation.

S

10

20

30

L
50

100

150

d

1

2

3

FIG. 5. �Color online� Critical entropy ��=1� between two
blocks of L spins at a distance d and the remaning part of the
�infinite� chain.
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d1.5

2.0

2.5

3.0

S

0 20 40 60 80 100 120 140
d1.5

2.0

2.5

3.0

S

FIG. 6. �Color online� Critical entropy ��=1� between two
blocks of L=30 spins and the remaning part of the chain versus d.
Inset: L=30 with 0�d�140.
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4. Behavior of the critical entropy for small d

In Figs. 5 and 6 one notices for all values of L a sharp
entropy increase at small values of d from d=0 to 1. This
corresponds to the two ordinates of the cusps in Fig. 3. Let
us endeavor to interpret this phenomenon on the basis of the
formulas derived in this section. Equation �56� yields

�S = S�L,1� − S�L,0�

=
1

6
�− 2 log

L + 1

L
+ log

2L + 1 − �

2L − �
+ log

1 + �

�
	

�
L�11

6
log

1 + �

�
� −

1

6
log � = K , �62�

where we used Eq. �57� in the last equalities. This agrees
very well with Fig. 6 and explains why �S is largely inde-
pendent of L in Fig. 5. More to this, the final result in Eq.
�62� yields a suggestive interpretation of the fitting parameter
� in Eq. �57� and of the constant K: they turn out to be
related to the entropy increase �S associated with the open-
ing of a d=1 gap �one qubit� in an interval of 2L contiguous
spins. It is therefore not surprising that K=−�1 /6�log �, be-
ing O��S�, is also necessarily of order 1.

VI. CONCLUSIONS

We provided an analytic and numerical treatment of the
entanglement entropy of two disjoint blocks of spins as a
function of their length and distance in the quantum Ising
model with a transverse magnetic field. We gave an analytic
expression of the entropy at the critical point, for two blocks
of 1 and 2 spins at a generic distance. We showed that the
presence of a gap always yields an entropy increase. At criti-
cality, due to a logarithmic correction to the area law, this
increase is less than a factor of 2 for all values of d, and
becomes 2 for large d, when asymptotic additivity takes
place. We also showed that, interestingly, the entropy of the
two blocks can be written in terms of the entropy of a single
block of spins, that, at the quantum phase transition, grows
logarithmically with the size of the block. We have also
given an accurate idea of the general features of the entropy
of two blocks as a function of their size and distance.

The behavior of the entanglement in a critical spin chain
agrees with well-known results in conformal field theory,
where the geometric entropy �analogous to the spin block
entropy, but defined in the continuum� can be computed for
�1+1�-dimensional theories �15,16�. The translation of field
theoretical methods and ideas in the language of quantum
information will hopefully enable us to make use of addi-
tional results for an arbitrary number of disjoint intervals
�10,22�. This would of great interest from the point of view
of multipartite entanglement. The study of the statistical dis-
tribution of bipartite entanglement for different bipartitions
�28� is a useful tool for the analysis of multipartite entangle-
ment. A deeper comprehension of the dependence of entropy
on distances and sizes of blocks of spins could yield infor-
mation about the role of quantum phase transitions in the
generation of multipartite entangled states �29,30�.

ACKNOWLEDGMENTS

We thank Matteo Paris for interesting discussions. This
work was partly supported by the European Community
through the Integrated Project EuroSQIP.

APPENDIX A: COMPUTATION OF SL

We review here the computation of the entropy of the
reduced density matrix �L�Tr¬L�
0
�
0� for L adjacent
spins �4,8�. In the limit of infinite chain �N→��, a given
finite section of the chain is fully translational invariant and
�L describes the state of any block of L contiguous spins.
The density matrix �L can be reconstructed from the re-
stricted 2L�2L correlation matrix �L

A of Eq. �7�. In particu-
lar, a direct way to compute the spectrum of �L and its en-
tropy SL from �L

A is the following.
The matrix �L

A can be put into a block-diagonal form by
an orthogonal transformation and its eigenvalues are purely
imaginary and come in pairs, �i�l, and ��l��1, with
1� l�L. Let V�SO�2L� be the special orthogonal matrix
such that �L

C=V�L
AVT is block diagonal,

�L
C = �

l=1

L

�l� 0 1

− 1 0
� . �A1�

Then, V defines a new set of Majorana operators, čm
† = čm,

čm � �
n=1

2L

Vm,nǎn, �A2�

that satisfy the same anticommutation relations as the ǎn’s
and have correlation matrix �L

C. The structure of �L
C implies

that mode č2l−1 is only correlated to mode č2l. In the lan-
guage of fermionic operators, one gets L spinless fermionic
modes

ĉl �
č2l−1 + ič2l

2
,


ĉl, ĉm� = 0, 
ĉl
†, ĉm� = 	mn, �A3�

that, by construction, fulfill

�ĉlĉm
 = 0, �ĉl
†ĉm
 = 	lm

1 + �l

2
. �A4�

Thus the L �nonlocal� fermionic modes are uncorrelated, so
that the reduced density matrix can be written as a product

�L = �1 � ¯ � �L. �A5�

Now, the density matrix �l, 1� l�L, has eigenvalues
�1��l� /2 and entanglement entropy

S��l� = H�1 + �l

2
	 , �A6�

where H is the Shannon entropy of a bit �13�. Therefore the
spectrum of �L results from the product of the spectra of the
density matrices �l, and the entropy of �L is the sum of the
entropies of the L uncorrelated modes,
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SL = �
l=1

L

H�1 + �l

2
	 . �A7�

This is Eq. �12� of the text. Summarizing, for arbitrary values
of the magnetic field � and in the thermodynamic limit,
N→�, the block entropy SL of the ground state of the Ising
model is given by the sum �A7�, where �i�l are the pairs of
imaginary eigenvalues of the block correlation matrix �L

A of
Eq. �7�.

APPENDIX B: EIGENVALUES OF �2,d
A

The coefficients in Eq. �32� are functions of the distance d
between the blocks and read

p�d� =
26�3 + 2d�4�5 + 2d�4

�2A
�5303 +

24 314B

3
+

41 528B2

9

+
10 144B3

9
+

896B4

9
� ,

q�d� =
212�3 + 2d�2�5 + 2d�2

�4A
�203 297 + 391 466B

+
2 841 841B2

9
+

3 652 160B3

27
+

2 617 216B4

81

+
329 984B5

81
+

17 152B6

81
� ,

r�d� =
222�2 + d�4

�6A
�12 271 +

68 116B

3
+

158 795B2

9

+
198 074B3

27
+

139 000B4

81
+

17 312B5

81
+

896B6

81
� ,

s�d� =
232

34�8A
�1 + d�4�2 + d�8�3 + d�4, �B1�

where A= �1+2d�2�3+2d�6�5+2d�6�7+2d�2 and B=d�4+d�.
We obtain �2 by solving Eq. �32�. The eight eigenvalues of
�2,d

A will be ��k= � i�k, with 0��k�1, for k=1,2 ,3 ,4.
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