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4 Dipartimento di Fisica Teorica, Università di Trieste, Strada Costiera 11, 34014 Trieste, Italy
5 INFN, Sezione di Trieste, Trieste, Italy
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Abstract

We characterize the multipartite entanglement of a system of n qubits in terms
of the distribution function of the bipartite purity over all balanced bipartitions.
We search for those (maximally multipartite entangled) states whose purity
is minimum for all bipartitions and recast this optimization problem into a
problem of statistical mechanics.

PACS numbers: 03.67.Mn, 03.65.Ud, 89.75.−k, 03.67.−a

(Some figures in this article are in colour only in the electronic version)

Entanglement is a consequence of the quantal superposition principle and therefore of the
linearity of Hilbert spaces, and embodies the impossibility of factorizing a given state of a
total quantum system in terms of the states of its constituents. The notion of entanglement
plays a central role in the development of novel resources and techniques in computing,
communication and information processing. There is a widespread literature about the
characterization, quantification and properties of bipartite entanglement, i.e. the entanglement
of two subsystems [1, 2]. The landscape of multipartite entanglement is less understood but
very widely investigated [3–6]. The main difficulty is that there is no unique way of quantifying
it: more so, different definitions often do not agree with each other, because they adopt different
strategies and capture different features of this inherently quantum phenomenon.

It would be desirable to understand how to properly characterize multipartite
entanglement, e.g. by identifying a few key properties that can account for its overall
features. The quantification and evaluation of global entanglement measures bears serious
computational difficulties, because states endowed with large entanglement typically involve
exponentially many coefficients. Multipartite entanglement has therefore the typical features
of a complex phenomenon, and for this reason we shall follow a precept derived from the study
of complex systems, that relies on the idea that complicated phenomena cannot be summarized
by a single (or a few) number(s) [7]. We note that in the context of quantum entanglement this
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idea was alluded to in [8]. In this spirit, entanglement can be analyzed in terms of a function:
the probability density of the purity of a subsystem over all bipartitions of the total system
[9, 10]. A state has a large multipartite entanglement if it has a large and well-distributed
bipartite entanglement. In other words, states with large multipartite entanglement are
characterized by a narrow distribution of bipartite entanglement, centered around a large
average.

In this paper we shall explore these ideas even further and endeavor to give a statistical
mechanical characterization of multipartite entanglement, by recasting the problem in terms
of a cost function that will represent the (inverse) global entanglement of a quantum system.
We will establish a direct connection between the study of multipartite entanglement and the
tools of classical statistical mechanics.

We shall consider an ensemble of n spin-1/2 particles (qubits), whose Hilbert space
H = (C2)⊗n has dimension N = 2n. We divide this set in two parts, A and Ā, made up of nA

and nĀ qubits respectively (nA + nĀ = n). The total Hilbert space is split in the tensor product
H = HA ⊗ HĀ, with dimensions NA = 2nA and NĀ = 2nĀ respectively (NANĀ = N). We
also assume with no loss of generality nA � nĀ. We shall consider only pure states and shall
not discuss additional phenomena such as bound entanglement [11, 12]. Let

|ψ〉 =
N−1∑
j=0

zj |j 〉, zj ∈ C,

N−1∑
j=0

|zj |2 = 1, (1)

where the computational base {|j 〉} is expressed in terms of the eigenstates of the third Pauli
matrices acting on each site. These yield binary sequences belonging to {0, 1}n, whose decimal
representation are the indices j . For each bipartition (A, Ā) we define a bijection j ↔ (jA, jĀ),
where the integers jA ∈ [0, NA −1] and jĀ ∈ [0, NĀ −1] are the decimal representation of the
subsequences of portion A and Ā, respectively. This reflects the factorization |j 〉 = |jA〉⊗|jĀ〉.
As bipartite entanglement measure (at fixed bipartition (A, Ā)) we take the purity of subsystem
A, which is conveniently expressed in terms of the reduced density operators, ρA = trĀ ρ

(ρ = |ψ〉〈ψ | being the total density operator)

πA = trA ρ2
A = trĀ ρ2

Ā
=

∑
jA,lA,jĀ,lĀ

zjA,jĀ
z̄lA,jĀ

zlA,lĀ z̄jA,lĀ . (2)

Purity ranges in [1/NA, 1] and is 1 if and only if ρA and ρĀ are projectors, that is, if the state
is (bi)separable, |ψ〉 = |ψA〉 ⊗ |ψĀ〉. Otherwise |ψ〉 is entangled. πA saturates its minimum
1/NA if and only if the reduced density operator of the smaller partition is proportional to
the identity matrix ρA = 1/NA. The latter is the case of states |ψ〉 endowed with maximum
bipartite entanglement, at fixed bipartition (A, Ā). The distribution function of purity over
all bipartitions, p(πA), yields a probability density function characterization of multipartite
entanglement: its average measures the mean entanglement of the state when the bipartitions
are varied, while its variance quantifies how uniformly bipartite entanglement is distributed
among all possible bipartitions.

The coefficients zj in (1) belong to the set

C =
{

(z0, z1, . . . , zN−1) ∈ C
N

∣∣∣∣∣
∑

k

|zk|2 = 1

}
. (3)

Note that C corresponds to the set of normalized vectors S = {ψ ∈ H|‖ψ‖ = 1} and is left
invariant under the natural action of the unitary group U(H). A typical state is obtained by a
uniform sampling of S. Typical states can be (efficiently) generated by a chaotic dynamics
[13, 14].
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Figure 1. Probability density function p(πA) of a typical state over balanced bipartitions. For
large n, the average is 2/NA and the standard deviation

√
2/N2

A (NA 	 √
N). Our objective is to

characterize those ‘maximally multipartite entangled states’ whose average purity is minimum.

In the limit of large N,πA’s have a bell-shaped distribution over the bipartitions with
mean and variance

μ = 〈πA〉 = NA + NĀ

N + 1
, (4)

σ 2 = 〈(πA − μ)2〉 = 2
(
N2

A − 1
)(

N2
Ā

− 1
)

(N + 1)2(N + 2)(N + 3)
, (5)

respectively [9, 10, 15–20]. The brackets 〈· · ·〉 denote the average with respect to the unitarily
invariant measure over pure states

dμC(z) =
∏
k

dzk dz̄kδ

(
1 −

∑
k

|zk|2
)

, (6)

induced by the Haar measure over U(H) through the mapping |ψ〉 = ∑
zj |j 〉 = U |ψ0〉, for a

given state |ψ0〉 [18].
It is interesting to note that, for balanced bipartitions nA = 
n/2�, the average and

standard deviation of the distribution simplify to μ 	 2/NA, σ 	 √
2/N2

A, the approximation
becoming quickly very accurate as the number of qubits increases. The behavior of the
probability density function p(πA) is sketched in figure 1. It is worth emphasizing that the
typical states are very entangled, but are far from the minimum (on average) by a factor 2;
moreover, their distribution function is very narrow (a signature of a good multipartition of
entanglement), but has a nonvanishing standard deviation. It is then natural to ask: is it possible
to find states that perform better? The answer to this question is positive [21]: there exist
‘maximally multipartite entangled states’ (MMES) such that their distribution function (over
balanced bipartitions) is a Dirac delta function. For n = 2, 3, 5, 6 the delta is centered on the
smallest possible value: p(πA) = δ(πA −1/NA). For n = 2 MMES are Bell states up to local
unitary transformations, while for n = 3 MMES are equivalent to the GHZ states [22]. For
n = 4 one numerically obtains p(πA) = δ(πA −C4), with C4 = 1/3 > 1/4 = 1/NA (but still
C4 < 1/2 = 2/NA) [21, 23–25]. For n = 7 one finds states such that p(πA) 	 δ(πA − C7),
with C7 	 0.136 � 1/8 = 1/NA. ‘Perfect’ MMES (that saturate the minimum purity 1/NA)
do not exist for n � 8 [26]. This will be presently viewed as a symptom of frustration and is
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a new and intriguing feature of the multipartite scenario, as opposed to the bipartite case. We
shall now endeavor to outline a strategy that enables one to characterize MMES.

The search for MMES can be recast in terms of an optimization problem. Look at the
average purity as a cost function (‘potential of multipartite entanglement’ [21])

H = E[πA] ≡
(

n

nA

)−1 ∑
|A|=nA

πA, (7)

where E denotes the expectation value and the sum is over balanced bipartitions nA = 
n/2�.
Since we are focusing on balanced bipartitions, and any bipartition can be brought into any
other bipartition by applying a permutation of the qubits, the sum over balanced bipartitions
in (7) is equivalent to a sum over the permutations of the qubits. H in equation (7) is related
to the linear entropy considered in [26–28].

The above minimization problem has proved to be of formidable difficulty, mainly for
the presence of frustration: the requirement that purity saturates its minimum 1/NA can be
satisfied for some but not for all balanced bipartitions. In other words, not all terms in the
summation (7) can be 1/NA. In order to study this problem, we will recast it in classical
statistical mechanical terms: instead of searching for the minimum of H, one can look at the
free energy of a suitable classical system at a fictitious temperature and recover the original
problem in the zero temperature limit.

We follow the standard ensemble approach of statistical mechanics and introduce an
ensemble {mj } of M vectors (states), where mj is the number of vectors with purity H = εj .
One seeks the distribution that maximizes the number of states � = M!

/∏
j mj ! under the

constraints that
∑

j mj = M and
∑

j mjεj = ME. For M → ∞, the above optimization
problem yields the canonical ensemble and its partition function

Z(β) =
∫

dμC(z) e−βH(z), (8)

where the Lagrange multiplier β, that plays the role of an inverse temperature, fixes the
average value of purity E. Note that the partition function (8) can be given a base-independent
expression

Z(β) =
∫

dμC(z) e−βH(z) = cN

∫
dμH(U) exp(−βE[trA(trĀ U |ψ0〉〈ψ0|U †)2]), (9)

where μH denotes the Haar measure over U(H), |ψ0〉 is any given vector and the (unimportant)
constant cN = μC(CN)/μH(U(H)) is proportional to the ratio between the area of the (N −1)-
dimensional sphere (3) and the volume of the unitary group.

The average over bipartitions in (7) entails a complicated dependence on the indices j

in equations (1)–(2). This hinders one from finding a closed expression for the partition
function and makes the application of a standard saddle-point method or the calculation
of the quenched average rather involved. Nonetheless, by applying the standard tools of
statistical mechanics, one can discuss several aspects and analyze interesting limits. For
β → 0 equation (8) yields the distribution of the typical states (6). Note that this is valid
both for β → 0±. For β → +∞, only those configurations that minimize the Hamiltonian
survive, namely the MMES. Remarkably, there is a physically appealing interpretation even
for negative temperatures: for β → −∞, those configurations are selected that maximize the
Hamiltonian, that is separable states. These preliminary findings are summarized in table 1.
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Table 1. High, low and negative temperature limits.

β → +∞ H = E0 (min) MMES
β → 0 H 	 μ Typical states
β → −∞ H = 1 (max) Separable states

By manipulating the partition function we can write the energy distribution function at
arbitrary β in terms of its high-temperature limit

Pβ(E) = 1

Z(β)

∫
dμC(z)δ (H − E) e−βH = e−βEP0(E)∫ 1

E0
dE e−βEP0(E)

, (10)

where E ∈ [E0, 1], E0 being the minimum of the potential of multipartite entanglement H
in (7). We know that 1/NA � E0(NA) � μ � 2/NA, and thus limNA→∞ E0(NA) = 0 . By
multiplying and dividing the last equation by |β| eβ and β eβE0 , respectively, we find

P−∞(E) = δ(E − 1), P+∞(E) = δ(E − E0). (11)

These limits are the counterparts of those discussed for the partition function and are reflected
in the asymptotic behavior of the average energy as function of β

〈H 〉β = 1

Z(β)

∫
dμC(z)H e−βH =

∫ 1

E0

dEEPβ(E) = − ∂

∂β
ln Z(β). (12)

Indeed,

〈H 〉−∞ = 1, 〈H 〉+∞ = E0. (13)

Moreover ∂
∂β

〈H 〉β = −〈H 2〉β + 〈H 〉2
β ≡ −�H 2

β � 0, which is nonpositive. Thus the average
energy is a non-increasing function of β and has at least one inflexion point as function of β.
From a qualitative point of view, one expects the behavior sketched in figure 2: for β → 0,
the distribution is Gaussian (typical states); when β → +∞ the distribution tends to become
more concentrated around E0. This picture will be substantiated in the following.

In general, the high-temperature expansion of the average energy reads

〈H 〉β =
∞∑

m=1

(−β)m−1

(m − 1)!
κ

(m)
0 (H), (14)

κ
(m)
β (H) = (−)m−1 ∂m−1

∂βm−1
〈H 〉β, (15)

where κ
(m)
β (H) are the cumulants of H. So far, the analysis is valid at fixed N = 2n. Let us

now briefly discuss the limit N → ∞. The first cumulant is nothing but the average purity μ

defined in (4). The second cumulant σ̄ 2 = �H 2
0 = κ

(2)
0 (H) can also be computed exactly. A

detailed calculation, to be presented elsewhere, yields

σ̄ 2 = κ
(2)
0 (H) ∼ 3

√
2N−4+log2 3 	 O(N−2.42). (16)

The presence of an irrational exponent is a rather rare feature and an interesting phenomenon
in itself. We note that if πA’s in sum (7) were independent Gaussian random variables, one
would get σ̄ 2 ∼ σ 2/N = O(N−3), where σ is defined in equation (5) (the number of balanced
bipartitions being of order N.) This shows that different bipartitions ‘interfere’, yielding a
highly nontrivial average. In fact, it can be shown that the correlations decrease exponentially
with the distance between bipartitions.
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Figure 2. Qualitative sketch of equation (10), at fixed NA, in arbitrary units. The energy density
function is distributed around μ with standard deviation σ̄ at β = 0 (inset) and moves toward
E0 when β → +∞. From right to left, β changes in constant steps. The probability density
rigidly shifts with β, for β � N7/2−log2 3. See equation (19) and following discussion. Note that
E0 = O(N−1/2).

Higher order cumulants at β = 0 can be shown to tend to zero faster than the others.
Since the Gaussian is the only probability distribution with a finite number of non-vanishing
cumulants (the first and the second one), one can therefore assume a Gaussian approximation
for the energy distribution at infinite temperature, by neglecting all the cumulants but the first
two

P0(E) ∼ 1√
2πσ̄ 2

exp

(
− (E − μ)2

2σ̄ 2

)
, (17)

where μ and σ̄ are defined in (4) and (16), respectively. Finally, by applying (10) we can
compute the energy distribution at arbitrary temperature

Pβ(E) ∼ 1√
2πσ̄ 2

exp

(
− (E − μ + βσ̄ 2)2

2σ̄ 2

)
. (18)

Thus from definition (15) of cumulants, 〈H 〉β as a function of β would have a vanishing
curvature, in contradiction with the qualitative sketch mentioned after equation (12).
Equation (18) can be written as

Pβ(E) = P0(E + βσ̄ 2), (19)

an expression valid also for non-Gaussian distributions that are well concentrated around their
mean μ. As a matter of fact, equations (18) and (19) are valid only when β is not too large. In
fact, they hold true as far as μ − βσ̄ 2 − σ̄ � 0, i.e. β � μ/σ̄ 2 = O(N7/2−log2 3) 	 O(N1.92).
Up to this value the probability density rigidly shifts with β, as is apparent in figure 2. For
larger values of β the lower tail of the distribution starts ‘feeling’ the wall at E0. The large-β
asymptotic form of Pβ(E) depends on the behavior of P0(E → E0): one easily obtains

Pβ(E) ∼ β�+1

�!
(E − E0)

� e−β(E−E0), (20)

where � is the order of the first nonvanishing derivative of P0(E) at E0. (Figure 2 displays the
case � = 0.) Note that the only relic of P0(E) in (20) is � and Pβ→+∞(E) yields the second
equation in (11). The analysis for β → −∞ is analogous and yields the first equation in (11).
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In conclusion, we have built a statistical theory around an optimization problem,
whose solutions are the maximally multipartite entangled states, that appear as minimal
energy configurations. The approach we propose borrows methods from classical statistical
mechanics in order to investigate the multipartite entanglement scenario. The introduction
of a temperature is a familiar expedient in statistical mechanics, for instance in the study
of optimization problems with simulated annealing and tempering. One obtains here an
interesting picture for all real values of β that fixes, with an uncertainty that becomes smaller
for larger systems, the value of the purity of the subsystem under consideration, thus identifying
an ‘isoentangled’ submanifold of states. A strategy similar to that adopted here was used in
[29] for the simpler case of bipartite entanglement at a fixed bipartition, where the purity
exhibits a phase transition. We have seen that the multipartite version of the problem is
much more complicated, but it would be of great interest to understand whether the phase
transition that occurs in the bipartite situation, when there is no average over the bipartitions,
has a counterpart in the multipartite scenario. This would help elucidate the relation between
multipartite entanglement, complexity and the presence of frustration.
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