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Abstract

Lévy flights, also known as «-stable Lévy processes or heavy-tailed statistics, are becoming a
commonly used tool in optics. Nonetheless, the different parametrizations and the absence of
any analytic expression for the distribution functions (apart from some exceptions) makes it
difficult to efficiently simulate such processes. We review and compare three algorithms for
the generation of sequences of symmetric stable Lévy random variables.

PACS numbers: 05.10.—a, 07.05.Tp

1. Introduction

In recent years, two seemingly unrelated fields have
exchanged ideas and concepts: laser manipulation of atoms
on the one hand, non-Gaussian statistics and anomalous
diffusion processes on the other hand [1]. In addition, it
has been demonstrated that a disordered optical material
can be engineered, in which light waves perform a Lévy
flight [2]. Non-Gaussian, heavy-tailed statistics is becoming
a commonly used tool in several physical applications.

Lévy flights or anomalous diffusion processes are known
in the mathematical literature under the name of «-stable
Lévy processes. They have infinite variance (except for
the Gaussian case o =2) and possess scale-invariance and
self-similarity properties. In this paper, we shall first define
(a-stable) Lévy processes (section 2), then describe some
algorithms that can be used to generate symmetric o-stable
Lévy random numbers and therefore Lévy flights (section 3),
and finally compare the performances of these algorithms
(section 4).

2. Definition of symmetric c-stable Lévy processes

A Lévy process (I;);>o is a cadlag (right continuous with
left finite limits, from the French ‘continue a droite, limitée
a gauche’), stochastically continuous (i.e. discontinuities
occur at random times) stochastic process with independent
and stationary increments, such that /o =0 almost surely
(a.s.—namely happening with probability one) [3]. We will
study symmetric «-stable Lévy processes. These processes are
parametrized by two parameters: «, called index of stability,
and o, or equivalently y = 0%, called scale factor.
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A symmetric «-stable random variable (r.v.) [ is defined
by its characteristic function [4]

a0 (2) = E [exp(iz])] = exp(—o®|2|*), ey

where [E[-] denotes the expectation, z€ R, o >0 and
o € (0,2]. Note that there are different options for the
characteristic functions; see [5] for other parameterizations.
The probability density function (pdf) of a symmetric
a-stable r.v. is then given by the inverse Fourier transform

of (1)
1 +00
La,y(l) = E /

1 o0
— / exp(—yz®) cos(zl) dz.
T Jo

Do (z)e ¥ dz

@)

Except for a few special cases [@ = %, o= %, o =1 (Cauchy

distribution) and o =2 (Gaussian distribution with mean 0
and variance 2y )] there is no closed expression for the pdf (2)
or its cumulative distribution function (cdf),

!
Fa,y(l) :/

Symmetric Lévy stable r.v.’s have many interesting properties.
Firstly, symmetry

Lg .y (x)dx. 3)

Loy (=1) = La,, () “

is a consequence of
Py 6 (—2) = Pa,o (2). ®)
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Secondly, from (1) it follows that if [ ~ Ly, (ie. [ is
distributed according to the pdf L, ,,) and ¢ > 0, then

cl~ Ly ye. 6)
Indeed,
E [eXP(iZCl)] =Dy 5 (c7) = Py 00 (2). @)

This explains why the parameter y is called scale factor.
Therefore, in order to generate a symmetric Lévy stable r.v.
I ~ L, with a characteristic parameter « and a generic y, it
suffices to write an algorithm that generates a symmetric Lévy
stable r.v. [ ~ L, with the same « and a scale factor y =1,
since

1=1y'/ (8)

in the sense of distributions.

Thirdly, the sum [V +- .. +1™ of n independent copies
of / has the same distribution as [ multiplied by the constant
nl/e:

n
n'/e] = Z 19, )
i=1
where the equality is in the sense of distributions. Indeed,
by recalling that the characteristic function of n independent
random variables is the product of their characteristic
functions,

E [exp (iz 3 z<f>)] = E [exp(iz)]" = @y o (z).  (10)

Property (9), well known for Gaussian r.v.’s (o = 2), is called
stability under addition, and is very useful for implementing
recursive algorithms for the generation of «-stable Lévy
random numbers.

A symmetric «-stable Lévy process is a stochastic
process (/;);>0 with independent increments distributed
according to a symmetric «-stable distribution

lt - ls ~ sz,\tfs\a (11)

such that [ =0 a.s.

From this definition it follows that symmetric «-stable
Lévy processes are self-similar processes, i.e. their
distributions are invariant under a suitable scaling of
time and amplitude, [, = ctl,, where H =1/« is called the
Hurst exponent. Indeed

MU =)~ Lycy—y- (12)

leg —leg ~ Loz,clt—s\’

The Brownian motion or Wiener process is the symmetric
two-stable Lévy process: it is self-similar with the Hurst
exponent %

3. Simulation of symmetric c-stable Lévy processes

The generation of random numbers is a widely investigated
computational problem. Many efforts have been devoted to
the generation of uniformly and Gaussian distributed r.v.’s
and many computationally efficient and high-quality methods
have been developed for this purpose. For a general r.v., the
most commonly used methods to generate random numbers
can be classified into four basic categories: cdf inversion,
rejection, transformation and recursive methods. Let us briefly
review them.

1. Let f be the desired pdf and F' the corresponding cdf.
The cdf inversion method generates an r.v. [ with pdf f by
using an r.v. ¥ uniformly distributed in [0, 1] and making
use of the fact that the transformation / = F~!(u) yields
an r.v. [ with cdf F. This method can be used if the inverse
function F~! exists, i.e. when [ is a continuous random
variable with a strictly increasing cdf.

2. The rejection method is an algorithm for generating r.v.’s
with arbitrary distribution. A version of this method is
the following. Let f be a bounded pdf with a bounded
support, C the set of points under the curve of f
(subgraph of f) and Z a finite-area domain containing
the subgraph of f: Z D C. Random points are extracted
uniformly from Z, they are accepted if they belong to C
and their x-components are the desired random numbers
with pdf f. This method uses an auxiliary r.v. and is often
time consuming, because it extracts random numbers and
rejects values that do not satisfy a specific relation.

3. The transformation method directly transforms uniform
or Gaussian random numbers into numbers that
are distributed according to the desired distribution.
The transformation strongly depends on the desired
distribution.

4. The recursive method makes use of linear combinations
of previously generated random numbers that simulate
the desired distribution, to yield new outputs. In our case,
this is done according to (9).

We shall now briefly review four methods for the
generation of symmetric Lévy stable distributed r.v.’s: a
rejection (R) algorithm [6], two transformation methods, due
to Chambers, Mallows and Stuck (CMS) [7] and Mantegna
(M) [8], respectively, and a recursive method used in [8].

3.1. The R, CMS, M and recursive algorithms

The R algorithm generates two uniform r.v.’s [ and u, the
first belonging to the interval [—M, M], with M > 0 the
truncation level, and the second to the interval between 0 and
the maximum of the symmetric Lévy stable pdf L, ,. The
symmetric stable Lévy pdf is approximated with a piecewise
constant pdf f, , normalized to 1 in the interval [-M, M][6]:
on each interval of length § one assigns to f,, a constant
value evaluated from (2) by numerical integration. Then,
if u< fo,(), | is accepted; otherwise, it is rejected and
another couple of numbers is generated. A more efficient
algorithm can be designed if u is chosen to have a pdf with
a profile similar to the symmetric Lévy stable pdf rather than
to a uniform distribution, thus reducing the probability of
rejection.

The CMS algorithm [7] is a transformation method
that simulates the generation of a symmetric Lévy stable
distributed r.v. / with characteristic exponent « and scale
factor y, by applying a nonlinear transformation to two
uniformly distributed r.v.’s.*

The M algorithm [8] is a transformation method that
generates an r.v. that simulates a Lévy stable-distributed r.v.
I with characteristic exponent o and scale factor y =1,

4 Another version of the CMS algorithm can generate asymmetric Lévy
stable r.v.’s, see [7].
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Table 1. Performance evaluation for « = 0.8 and y = 1. We set
8 =0.04 and M = 20 for the R algorithm. The best performance for
every recursion algorithm is indicated in boldface.

Method Speed F® F9 P, P
R 1.17x 107 0.51 0.12 - -

CMS1 624 %1072  0.28 0.06 82% 90%
CMS5 1.22x 1072 029 0.023 78% 87%
CMS10 6.11 x 107> 045 0.15 80%  89%
CMS100 5.85x107* 025 0.096 74% 92%
M1 251 x 1072 2.7 1.6 61% 94%
M5 494 %1073 1.2 0.34 62%  86%
M10 2.53x107* 045 0.15 70%  93%
M100 260x107* 03 008 76% 94%

by applying a nonlinear transformation to two Gaussian
distributed stochastic variables. This algorithm is efficient for
0.75 < o < 1.95 and can be extended outside this interval.

The recursive algorithm for symmetric stable Lévy r.v.’s
relies on the stability property (9) of Lévy stable r.v.’s: linear
combinations of Lévy stable processes are themselves Lévy
stable distributed. One can check that the degree of accuracy
of the M algorithm can be enhanced [8] if one uses n
intermediate independent r.v.’s (the optimal n depends on the
value of «, and can vary between 1 and 100). We applied this
method also to CMS-generated r.v.’s, but not to R-generated
r.v.’s because it can become inefficient due to its slowness (see
table 1).

4. Simulations

By using the software Mathematica we implemented the
rejection algorithm R, the recursive CMS algorithm with
recursive number n (CMSn) and the recursive M algorithm
with recursive number n (Mn), both for n € {1, 5, 10, 100}.
Table 1 displays the results of our analysis on the distribution
of random numbers generated through the different algorithms
for « =0.8 and y =1 (for the rejection algorithm, we set
8 =0.04 and M = 20).

Column 2 shows the algorithmic speed (i.e. the number
of generated samples per second) relative to Mathematica’s
uniform random numbers generator speed. The relative speed
does not depend on the cardinality of the sample for all the
algorithms investigated, as one could expect, except for the R
algorithm (where we took a sample of cardinality 1000).

Columns 3 and 4 display the distance between the
target and the simulated distribution computed according to
the formula F® = |p® — Mg]‘z,|/a;fg), where u® is the kth
moment of the target distribution calculated by numerical
integration, ,u;];; the average value (over 100 samples of

cardinality 2'5) of the kth moment of the distribution of

random numbers generated by a specific algorithm and o;lk;

the corresponding standard deviation. Only the case of even k
is of interest, since odd moments vanish (see property (4)) and
the algorithms are symmetric. In columns 3 and 4 we report

5 For this analysis, we simulated a truncated distribution defined to be 0
for |l > M and (2) otherwise, normalized to 1. Note that for recursion
algorithms, in order for (9) to be valid, the rejection of random numbers |/| >
M =20 was done after the recursion. The motivation beyond the truncation
is that the R algorithm can only simulate a pdf defined on a finite interval.

F® and F®, respectively. Clearly, an exhaustive analysis
would require the evaluation of all even-k moments, but this
task will be left for future work. On the same sample, we
evaluated the percentage of samples passing the x? test at a
0.1 confidence level (P,2—column 5).

Finally, in column 6 we report Pgs, the percentage
of samples simulating symmetric «-stable Lévy random
numbers of cardinality 100 that passed the variance stabilized
Kolmogorov—Smirnov test [9, 10] at a 0.1 confidence level.
Note that the tails are included in this case.

5. Conclusions

We described how to simulate symmetric Lévy flights with
given o and y: one starts from [y =0 and adds simulated
symmetric Lévy random numbers one at time, according
to (11). For the generation of symmetric Lévy stable random
numbers with y =1, the most efficient algorithms are the
CMS and the M algorithm, which are transformation methods
capable of simulating Lévy random numbers by using uniform
or Gaussian random numbers. For a generic y, equation (8)
must be used. Both CMS and M are significantly slower than
a uniform random number generator, but they turn out to be
nonetheless fast enough (see table 1, column 2). Rejection
algorithms can be even slower because of the unavoidable
probability of rejection. CMS is the fastest algorithm, even
though the M algorithm has a very good performance. On
the other hand, recursion algorithms can be useful when
the performance of the CMS or the M algorithms is low
(which happens for some values of «). In these cases,
the recursion formula can increase the performance of the
algorithms as measured in terms of P, and Pgs (by 97%
for the M algorithm with o = 1.9, by 11% for the CMS
algorithm with o = 1.5). In general, the CMS algorithm has
better percentages P, and Pgs, and recursion versions of
this algorithm in general do not enhance the performance.
Nevertheless, in some cases, the M recursion algorithm yields
the best performance for some 7.
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