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Abstract
The evolution of a quantum system subjected to infinitely many measurements
in a finite time interval is confined in a proper subspace of the Hilbert
space. This phenomenon is called ‘quantum Zeno effect’: a particle under
intensive observation which does not evolve. This effect is at variance with the
classical evolution, which obviously is not affected by any observations. By
a semiclassical analysis, we will show that the quantum Zeno effect vanishes
at all orders, when the Planck constant tends to zero, and thus it is a purely
quantum phenomenon without classical analog, at the same level of tunneling.

PACS numbers: 03.65.Sq, 03.65.Xp

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In this communication, we study the classical limit of the quantum Zeno effect in its simplest
formulation, namely a free particle subjected to position measurements. The presence of any
smooth and bounded potential does not affect our results.

Therefore, let us consider a free quantum particle in Rn. Its states are described by vectors
in the Hilbert space H = L2(Rn) and the Schrödinger operator is H = −h̄2!/2m with the
domain being the Sobolev space D(H) = H 2(Rn). Let P = χ# be the orthogonal projection
onto a compact set # ⊂ Rn with regular boundary. Here χ# denotes the characteristic function
of the set # (χ#(x) equals 1 for x ∈ # and 0 otherwise). P is the observable associated to
a measurement that ascertains whether or not the particle is in the spatial region #. If one
performs N measurements on the particle at regular time intervals of length t/N , at the end of
this procedure the state of the system is, up to a normalization,

ψN(t) = (P U(t/N)P )Nψ, (1)
where ψ is the initial state of the particle and U(t) = e−itH/h̄ is the evolution group generated
by H. Let

VN(t) = (P e−itH/h̄NP )N . (2)
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We are interested in the limit N → +∞ of the product formula VN(t). In [4] it has been
proved that

Theorem 1. There exists a set M ⊂ R of Lebesgue measure zero and a strictly increasing
sequence {N} of positive integers along which we have

lim
N→+∞

VN(t)ψ = e−itH#/h̄Pψ,

for all ψ ∈ H and for all t ∈ R \ M , where H# = −h̄2!#/2m, and !# is the Laplace
operator with Dirichlet boundary condition on ∂#, that is D(H#) = H 2(#) ∩ H 1

0 (#).

The limit in theorem 1 implies that, if it is possible to perform infinitely many position
measurements in the finite time interval [0, t], the probability of finding the particle in the
region # in each of these measurements reads

pN(t) = 〈ψN(t), ψN(t)〉 = ‖VN(t)ψ‖2 → ‖Pψ‖2 = 1, (3)

for N → +∞. This peculiar quantum behavior was named quantum Zeno effect by Misra
and Sudarshan [10]. Since then, the quantum Zeno effect has received constant attention
by physicists and mathematicians. For an up-to-date review of the main mathematical and
physical aspects, see [5] and references therein.

The effect has been observed experimentally in a variety of systems, on experiments
involving photons [8], nuclear spins [12], ions [2], optical pumping [11], photons in a cavity
[1], ultracold atoms [6] and Bose–Einstein condensates [15]. Moreover, these ideas might lead
to remarkable applications, e.g. in quantum computation and in the control of decoherence.

Of course, the behavior in (3) is at complete variance with that of a classical particle.
Indeed, a free particle with a nonzero initial momentum will eventually escape from the region
# and obviously its motion is not modified by any observations. More precisely, a particle
with initial momentum ξ *= 0 after a time

Tξ = mδ(#)/|ξ | (4)

will be surely found outside #, independently of its initial position x ∈ #, where

δ(#) = sup
x,y∈#

|x − y| (5)

is the diameter of #.
In this paper, we will prove that the quantum Zeno effect is a purely quantum phenomenon,

at the same level of tunneling; namely, it cannot be observed at any finite order in h̄, in the
limit h̄ → 0. Note that, in order to compare classical and quantum dynamics one has to
describe them in the same space. In fact, by the Wigner–Moyal formalism, one can give a
description of quantum mechanics in classical phase space, which is completely equivalent to
the usual description in Hilbert space. Functions τ(x, ξ) on the phase space R2n (classical
observables) are mapped into operators T = OpW(τ) on the Hilbert space L2(Rn) (quantum
observables) via the Weyl quantization map. In particular, the noncommutative product of two
quantum operators T1T2 corresponds to the twisted convolution product (definition recalled
below) τ1)τ2 of the classical observables τ1 and τ2, while the commutator [T1, T2] corresponds
to the Moyal bracket {τ1, τ2}M . The main point here is that both τ1)τ2 and {τ1, τ2}M depend on
the Planck constant h̄. When h̄ → 0 they reduce to commutative multiplication and Poisson
bracket, respectively, thus restoring classical mechanics. Semiclassical analysis deals with
all quantum corrections to classical mechanics at each order in h̄, which are encoded in the
asymptotic power series in h̄ of τ1)τ2 and {τ1, τ2}M .
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In the following, we will analyze (a suitable regularization of) the product formula in (2)
with the above-mentioned tools. Let

ṼN (t) = PN(t) PN

(
N − 1

N
t

)
· · · PN

(
2
N

t

)
PN

(
1
N

t

)
PN(0), (6)

where PN is the multiplication operator by a suitable C∞ mollification of the characteristic
function χ# (see section 3) and PN(s), s ∈ R, is the evolution of PN in the Heisenberg picture.
Our goal is to prove the following.

Theorem 2. Let M ⊂ R, {N} and H# be as in the theorem 1.

(i) lim
N→+∞

ṼN (t)ψ = eitH/h̄ e−itH#/h̄Pψ,

for all ψ ∈ H and for all t ∈ R \M .
(ii) ṼN (t) has a semiclassical symbol *N and

*N(x, ξ ; t) ∼
+∞∑

j=0

h̄j*j,N (x, ξ ; t),

for h̄ → 0 and for all x, ξ ∈ Rn.
(iii) For every ξ ∈ Rn, ξ *= 0, if t > Tξ := mδ(#)/|ξ |, one has

lim
N→+∞

*j,N(x, ξ ; t) = 0,

uniformly in x ∈ Rn and j ∈ N.

Statement (i) of theorem 2 allows one to replace the product formula (2) with its regularized
version (6), which is more suitable to a semiclassical analysis. Note, indeed, that for any
ψ ∈ H, also ψ̃N(t) = ṼN (t)ψ satisfies equation (3) and thus is related to the probability of
finding the particle in # in all N measurements.

Statement (ii) says that the quantum product formula ṼN (t) has a classical counterpart
*N(x, ξ ; t) that admits an asymptotic expansion in h̄, and, finally, statement (iii) asserts that
each term *j,N of the expansion identically vanishes for t > Tξ in the limit N → ∞.

This last statement is the main result of this paper. Its physical meaning is the following:
we consider the asymptotic expansion of the product formula for h̄ → 0. About the zeroth
order, classical, term we have already discussed: given an initial momentum ξ *= 0, at times
t > Tξ we get limN→∞ *0,N (x, ξ ; t) = 0, uniformly in x ∈ #, that is the classical particle,
initially in #, has eventually escaped from that region. Statement (iii) asserts that the same
feature is shared by all quantum corrections, independently of the order in h̄.

2. Weyl’s quantization and Egorov’s theorem

In this section, mainly intended as a setup of the notation, we will briefly recall the tools
needed in the following. For all details and proofs we refer to [3, 7, 13, 14, 16].

Let us start with Weyl’s quantization. Let τ be a function in the Schwartz space S(R2n).
We can define the following operator on L2(Rn):

OpW(τ) =
∫

R2n

ei(ξ ·X+y·p)τ̂ (ξ, y)
dξ dy

(2π)n
, (7)

where X is the position operator Xψ(x) = xψ(x), p = h̄Dx/i the momentum operator, with
Dx the n-dimensional gradient, and the Fourier transform is defined by

τ̂ (ξ, y) =
∫

R2n

τ (x, η) e−i(ξ ·x+η·y) dx dη
(2π)n

. (8)
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It is easy to check that if τ is real then OpW(τ) is a bounded self-adjoint operator. The operator
OpW(τ) is called the (Weyl) quantization of the symbol τ . Physically, it is interpreted as the
quantum observable corresponding to the classical observable τ .

One can prove that, for any ψ ∈ S(Rn),

(OpW(τ)ψ)(x) =
∫

R2n

τ
(x + y

2
, ξ

)
e−iξ ·(y−x)/h̄ψ(y)

dξ dy

(2πh̄)n
. (9)

Equation (9) allows one to extend the quantization map to tempered distributions τ . We also
recall the definition of the twisted convolution product between two symbols τ1 and τ2:

τ1)τ2(x, ξ) =
∫

R4n

τ1(x1, ξ1)τ2(x2, ξ2) e
2i
h̄

[(x−x1)·(ξ−ξ2)−(x−x2)·(ξ−ξ1)] dx1 dξ1 dx2 dξ2

(πh̄)2n
. (10)

The twisted product is the image on the space of symbols of the noncommutative operator
product, namely

OpW(τ1)τ2) = OpW(τ1) OpW(τ2). (11)

The last ingredient we need in our analysis is Egorov’s theorem that tell us how the time
evolution and the Weyl quantization are related. We will focus our attention to the case we are
interested in, i.e. the free Hamiltonian. In this case the Schrödinger operator H = OpW(H) is
the Weyl quantization of the Hamiltonian H(x, ξ) = ξ 2/2m. The time evolution of a classical
bounded observable is τt := τ ◦ φH

t , where

φH
t : R2n → R2n φH

t (x, ξ) =
(

x +
ξ t

m
, ξ

)
(12)

is the Hamiltonian flow. On the other hand, the quantum time evolution of a bounded
observable T = OpW(τ) is

T (t) = eitH/h̄T e−itH/h̄, (13)

which is a solution of the equation

Ṫ (t) = i
h̄

[H, T (t)]. (14)

Let τh̄
t (x, ξ) be the symbol of T (t), namely T (t) = OpW

(
τh̄
t

)
. Equation (14) is mirrored into

the following equation for the symbol τh̄
t on the phase space

τ̇ h̄
t =

{
H, τ h̄

t

}
M

(15)

with the initial condition τh̄
0 = τ , where

{f, g}M = f )g − g)f, (16)

is the Moyal bracket. Solving equation (15) one finds that, since H is quadratic in (x, ξ),

τ h̄
t = τt = τ ◦ φH

t , (17)

namely

T (t) = eitH/h̄T e−itH/h̄ = OpW
(
τh̄
t

)
= OpW

(
τ ◦ φH

t

)
. (18)

Thus, in this case, time evolution and quantization commute. For general nonquadratic
Hamiltonian, the semiclassical Egorov theorem (see [13]) states that (17) holds only at order
0 in h̄.
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Figure 1. ε-neighborhood of the compact set # and mollified characteristic function χ
(N)
# , with

εN = 1/N3.

3. A modified product formula

The projection P can be considered as a pseudodifferential operator whose symbol is the
characteristic function ς(x, ξ) = χ#(x) of the set # × Rn in the phase space. However,
in order to have a sufficiently smooth symbol, instead of the projection P, we consider an
operator 0 ! PN ! 1 as the Weyl quantization of a symbol which is a C∞ mollification of the
characteristic function χ#. Namely, given an ε-neighbourhood of the domain #,

#ε = {x ∈ Rn | d(x,#) < ε}, (19)

with d(x,#) = infy∈# |x − y| (see figure 1), we take

PN = OpW(ϑ(N)), ϑ(N)(x, ξ) = χ
(N)
# (x), (20)

where

χ# ! χ
(N)
# ! χ#1/N3 , χ

(N)
# ∈ C∞(Rn) (21)

is a smoothed approximation of the characteristic function χ# supported in #εN
, with

εN = 1/N3. See figure 1.
Observe now that, since N(PN − P)u → 0 when N → ∞, one has that

N(PN e−itH/h̄NPN − P e−itH/h̄NP )u → 0, (22)

for any u such that u, Pu ∈ H 2(Rn), which is a dense subset of L2(Rn). Therefore, the limit
generators of the two discrete semigroups coincide. By theorem 1 it follows that

Lemma 1. Let M, {N} and H# be as in theorem 1. One has

lim
N→+∞

(PN e−itH/h̄NPN)Nψ = e−itH#/h̄Pψ,

for all ψ ∈ H and for all t ∈ R \ M .

Therefore, in our analysis of the quantum Zeno effect, we can use the sequence {PN } in
place of the projection P. Note that, while the projection P is associated with a yes/no spatial
measurement which ascertains whether or not the particle is in the region #, its smoothed
version PN corresponds to a fuzzy spatial measurement which is not sharp at the boundary of
the region. Thus, the physical meaning of the above statement is that the interference effects
arising from a small smoothing of the projection do not affect the overall phenomenon.

First let us rewrite VN(t) in a more convenient way. By using the evolution of P in the
Heisenberg picture,

P(s) = eisH/h̄P e−isH/h̄, (23)

5
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we obtain

VN(t) = (P e−itH/Nh̄P )N

= e−itH/h̄P (t) P

(
N − 1

N
t

)
· · · P

(
2
N

t

)
P

(
1
N

t

)
P(0). (24)

Now let us substitute in the above equation the projection P with the positive operator PN

given by equation (20) and neglect the final (trivial) unitary evolution in (24). We end up with
the following product formula:

ṼN (t) = PN(t) PN

(
N − 1

N
t

)
· · · PN

(
2
N

t

)
PN

(
1
N

t

)
PN(0). (25)

This is the main object of our investigation.
Note now that from theorem 1 and lemma 1 we immediately get the following.

Corollary 1. One gets

lim
N→+∞

ṼN (t)ψ = eitH/h̄ e−itH#/h̄Pψ,

for all ψ ∈ H and for all t ∈ R \ M .

This is a reformulation of the quantum Zeno effect: the strong limit of the product
formula (25) exists and yields a nontrivial evolution. In particular, note that, for any ψ ∈ H,
also ψ̃N(t) = ṼN (t)ψ satisfies equation (3). Observe that corollary 1 is statement (i) of
theorem 2.

4. Semiclassical analysis of the quantum Zeno effect

Now we have all the ingredients to prove the last statements of theorem 2. Let us focus
on the classical limit of the product formula (25). First we can construct ϑ(N)(x, ξ ; t) =(
ϑ(N) ◦ φH

t

)
(x, ξ), which, since the Hamiltonian is quadratic, coincides with the symbol of

the Heisenberg evolution of PN. Define for all k = 0, . . . , N ,

ϑk(x, ξ) := ϑ(N)

(
x, ξ ; kt

N

)
, (26)

so that the symbol of the operator (25), ṼN (t) = OpW(*N), is given by

*N = ϑN)ϑN−1) · · · )ϑ1)ϑ0. (27)

From equation (10), it is not difficult to show that [13, 16]

φ1)φ2 ∼
+∞∑

j=0

(
ih̄
2

)j 1
j !

(Dx,φ1 · Dξ,φ2 − Dx,φ2 · Dξ,φ1)
jφ1φ2

=
+∞∑

j=0

(
ih̄
2

)j 1
j !

φ1)jφ2, (28)

where

φ1)jφ2 := (Dx,φ1 · Dξ,φ2 − Dx,φ2 · Dξ,φ1)
jφ1φ2. (29)

Here, the subscripts φ1 and φ2 indicate that the differentiation is to be applied only to φ1 or φ2.
By plugging (28) into (27) we finally obtain the desired asymptotic power series in h̄ of

the symbol *N(t) of the product formula ṼN (t) in (25):

*N(x, ξ ; t) ∼
+∞∑

j=0

h̄j *j,N (x, ξ ; t), (30)

6
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where

*j,N := ij

2j j !

∑

j1,...,jN

δj1+···+jN ,j ϑN)jN
(ϑN−1)jN−1(· · · (ϑ1)j1ϑ0) · · ·)), (31)

with δk,l the Kronecker delta. This is statement (ii) of theorem 2.
Observe that *j,N is a function of x and ξ and t, namely, is a function of the initial position

and momentum of the particle and of the total time of the experiment. We want to prove that
at each order j , whatever the initial nonzero momentum, after a certain time the particle is no
longer confined in the region of observation. Precisely, we will prove the last statement of
theorem 2:

Proposition 1. For every ξ ∈ Rn, ξ *= 0, one gets that, for all t > Tξ := mδ(#)/|ξ |,
lim

N→+∞
*j,N(x, ξ ; t) = 0,

uniformly in x ∈ Rn and j ∈ N.

Proof. Let us fix the initial momentum of the particle ξ *= 0.
Consider first the case j = 0,

*0,N = ϑN · · ·ϑ1ϑ0. (32)

By making use of (26) and (20), we get

ϑk(x, ξ) = χ
(N)
#

(
x +

ktξ

Nm

)
, (33)

so that

*0,N (x, ξ ; t) = χ
(N)
# (x + ξ t/m) · · ·χ(N)

# (x + ξ t/(mN))χ
(N)
# (x). (34)

Since by equation (21) χ(N)
# is a mollification of the characteristic function χ#, we get that the

supports satisfy the equation

supp[*0,N (·, ξ ; t)] ⊂ supp[ϑN(·, ξ) ϑ(·, ξ)] = supp
[
χ

(N)
# (· + ξ t/m) χ

(N)
#

]
. (35)

Observe that

supp
[
χ

(N)
# (· + ξ t/m)

]
= supp

[
χ

(N)
#

]
− ξ t/m ⊂ #εN

− ξ t/m (36)

by equation (21). Therefore, the support

supp[*0,N (·, ξ ; t)] ⊂ (#εN
− ξ t/m) (37)

is empty if t > T N
ξ := mδ(#εN

)/|ξ |. See figure 2. Therefore, since T N
ξ → Tξ := mδ(#)/|ξ |,

we have proved that for any t > Tξ

*0,N (·, ξ ; t) ≡ 0, (38)

for sufficiently large N.
Let us consider now j > 0. Observe that

supp[*j,N(·, ξ ; t)] ⊂ supp[*0,N (·, ξ ; t)]; (39)

therefore, also in this case we have that for t > Tξ

*j,N(·, ξ ; t) ≡ 0, (40)

for sufficiently large N. "

Note that this result holds for all N ∈ N and t ∈ R, thus in particular it holds if we restrict
N and t as in the hypothesis of theorem 2.
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x

ξ ϑ(x, ξ)ϑt(x, ξ)

Figure 2. Phase space representation of *0,N (x, ξ). The dashed line denotes the initial momentum
ξ *= 0 of the particle.

5. Concluding remarks

We have shown that the quantum Zeno effect vanishes at all orders in h̄, when h̄ → 0, and thus
it is a purely quantum phenomenon without classical analog. Remark that, typically, quantum
observables have instead non-zero asymptotic expansions in h̄: elementary examples are (see
e.g. [9], sections 50 and 51) the transition probabilities and the Bohr frequency condition.
In the first case, the asymptotic expansion yields the quantum corrections to the classical
observable evolved along the classical motion, and in the second case all quantum corrections
to the classical frequencies. The quantum Zeno effect is at variance with the above examples.
As such, it represents the counterpart of quantum tunneling through a confining barrier: in
the quantum realm the first yields perfect localization, while the latter yields leakage and also
the tunnelling amplitude vanishes to all orders in h̄, and conversely in the classical realm.
However, the analogy we have drawn is not yet totally symmetric. Indeed, quantum tunneling
is known to be of order e−1/h̄. In this respect it would be very interesting to know whether the
quantum Zeno effect is also exponentially vanishing.
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