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If frequent measurements ascertain whether a quantum system is still in a given
subspace, it remains in that subspace and a quantum Zeno effect takes place. The
limiting time evolution within the projected subspace is called quantum Zeno dy-
namics. This phenomenon is related to the limit of a product formula obtained by
intertwining the time evolution group with an orthogonal projection. By introduc-
ing a novel product formula, we will give a characterization of the quantum Zeno
effect for finite-rank projections in terms of a spectral decay property of the Hamil-
tonian in the range of the projections. Moreover, we will also characterize its
limiting quantum Zeno dynamics and exhibit its �not necessarily bounded from
below� generator as a generalized mean value Hamiltonian. © 2010 American In-
stitute of Physics. �doi:10.1063/1.3290971�

I. INTRODUCTION

Frequent measurements can slow down the evolution of a quantum system and eventually
hinder any transition to states different from the initial one. This phenomenon, first considered by
Beskow and Nilsson1 in their study of the decay of unstable systems, was named quantum Zeno
effect �QZE� by Misra and Sudarshan,12 who suggested a parallelism with the paradox of the
arrow by the philosopher Zeno of Elea.

Since then, QZE has received constant attention by physicists and mathematicians, who ex-
plored different facets of the phenomenon. The whole field is very active. For an up-to-date review
of the main mathematical and physical aspects, see Ref. 6 and references therein.

QZE has been observed experimentally in a variety of systems, on experiments involving
photons, nuclear spins, ions, optical pumping, photons in a cavity, ultracold atoms, and Bose–
Einstein condensates. In all the abovementioned implementations, the quantum system is forced to
remain in its initial state through a measurement associated with a one-dimensional projection. No
experiment has been performed so far in order to check the multidimensional QZE and the
quantum Zeno dynamics �QZD�, that is, the effective limiting dynamics inside the measured
subspace. However, these ideas might lead to remarkable applications, e.g., in quantum computa-
tion and in the control of decoherence.

From the mathematical point of view, QZD is related to the limit of a product formula
obtained by intertwining the dynamical time evolution group with the orthogonal projection as-
sociated with the measurements performed on the system. It can be viewed as a generalization of
Trotter–Kato product formulas2,10,16,17 to more singular objects in which one semigroup is replaced
by a projection.

Since the seminal paper by Misra and Sudarshan,12 the main object of interest has been the
limit of the QZD product formula. Its structure has been thoroughly investigated and has been well
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characterized under quite general hypotheses. In particular, by assuming that the Hamiltonian is
bounded from below and the limit is strongly continuous, one obtains a unitary group within the
projected subspace.3,12

On the other hand, the much more difficult question of the existence of this limit, for infinite
dimensional projections and unbounded Hamiltonian, is still open. Since this product formula and
its properties are of great importance in the study of quantum dynamical semigroups and have
remarkable consequences both in mathematical physics and operator theory, there have been many
investigations from different perspectives and motivations. See, for example, Refs. 5, 7–9, 11, 14,
and 15.

In 2005, Exner and Ichinose4 proved the existence of a QZD when the Hamiltonian is positive
and the domain of its square root has a dense intersection with the range HP of the projection.
However, this result was proved in the Lloc

2 �R ,HP� topology, instead of the more natural strong
operator topology. As a corollary of the main result, they solved the problem in the norm operator
topology when the projections are finite dimensional.

The first main result that we present in this paper is a complete characterization of the
multidimensional QZE for Hamiltonians that are not necessarily bounded from below, through the
introduction of a novel product formula directly related to the QZE. We show that the existence of
the limit is related to a falloff property of the spectral measure of the Hamiltonian in the range of
the projection.

Then, we also exhibit a characterization of the QZD in terms of the abovementioned energy
fall-off property and of the existence of a mean value Hamiltonian in a generalized sense.

This paper is organized as follows. In Sec. II we discuss the relation between the QZE and its
limiting dynamics, in particular, we recall the product formula related to the QZD. Then, we
introduce a new product formula that is directly related to the QZE and present our first theorem
on the characterization of the existence of its limit. Finally, in the second theorem, we will give a
characterization of the related QZD. Moreover, we consider an example that explains the differ-
ences between the conditions that imply the QZD and the QZE. The proofs of the theorems are
postponed to Sec. III.

II. QZE VERSUS QZD: RESULTS

Consider a quantum system Q, whose states are described by density operators that are
positive operators with unit trace, in a complex separable Hilbert space H. The time evolution of
the system is governed by a unitary group U�t�=exp�−itH�, where H is a time-independent
self-adjoint Hamiltonian. Consider also an orthogonal projection P that describes the measurement
process that is performed on Q. This kind of measurement ascertains whether the system is in the
subspace HPªPH. Assume that the initial density operator �0 of the system has support in HP,
namely,

�0 = P�0P, tr��0P� = 1.

The state of the system at time � is

���� = U����0U����

and after a measurement, if the outcome is positive, it becomes

P����P

p���
=

V����0V����

p���
,

where V���= PU���P and p���=tr�V����0V�����. Observe that, since P is not assumed to commute
with the Hamiltonian, when �P ,H��0, the unitary evolution drives the system outside HP, and
p��� is, in general, smaller than unity.

If we perform a series of P-observations on Q at time � j = jt /N, j� �1, . . . ,N�, its state after N
positive measurements is, up to a normalization,
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�N�t� = VN�t��0VN�t��,

where VN�t�= �PU�t /N�P�N and the survival probability in HP reads as

pN�t� = tr�VN�t��0VN�t��� . �1�

Our interest is focused on the following question: under what conditions

pN�t� → 1 for N → + �? �2�

Misra and Sudarshan12 baptized this problem QZE: repeated P-observations in succession inhibit
transitions outside the observed subspace HP. That is, rephrasing the Greek philosopher Zeno, the
observed quantum arrow does not move.

Since the seminal paper, Ref. 12, the main object of interest has been the limit of the following
product formula:

VN�t� = �PU�t/N�P�N �3�

and, in particular, whether UZ�t�=limN VN�t� exists and is given by a unitary group in HP. The
existence of a unitary limit is tantamount to the presence of a QZD. If this is the case, one
immediately gets

lim
N→�

pN�t� = tr�UZ�t��0UZ�t��� = tr�P�0� = 1

by the cyclic property of the trace. Namely, QZD implies QZE.
The following theorem, due to Exner and Ichinose,4 about the existence of the limit of the

QZD product formula �3� when P is a finite rank projection and H is positive, provides a sufficient
condition for the QZE. For a simple proof of this result, see Ref. 5.

Theorem 1: �Reference 4� Let H be a complex Hilbert space and H a positive self-adjoint
operator with dense domain D�H��H. Let P be an orthogonal finite-rank projection onto
HP= PH. If HP�D�H1/2�, where D�H1/2� is the domain of the square root of H, then

lim
N→+�

VN�t� = P exp�− it�H1/2P���H1/2P��

uniformly for t in finite intervals of R.
The hypothesis HP�D�H1/2� on the pair Hamiltonian-projection can be regarded as a condi-

tion on the spectral measure of H over the range of P in the following way: for every ��H, one
gets

�H�P� ª �H1/2P�,H1/2P�� = 	
�0,+��

�d�P�,P�
HP�� � + � , �4�

where �P�
H� is the projection-valued measure associated with H.

Therefore, the above result can be summarized as follows: whenever a positive Hamiltonian
has a finite mean value �H� on vector states in the range of P, frequently P-observations force the
state of the system to remain in the subspace HP and the limiting dynamics in this space is given
by the unitary group UZ�t�= P exp�−it�H1/2P���H1/2P��. As a consequence, finite-energy states
exhibit a QZE. One can ask if the sufficient condition �4� is also necessary for the QZE. We will
show that the answer to this question is negative. Indeed, the QZE implies a condition weaker than
�4� on the spectral measure of H.

The first result of this paper is a characterization of the multidimensional QZE. In order to
achieve our goal, we look at the problem from a different perspective. Instead of considering the
product formula �3�, let us move back our attention to Eqs. �1� and �2�. By invoking the cyclic
property of the trace, we will study the limit of the following product formula:
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ZN�t� = VN�t��VN�t� . �5�

One gets that the QZE �2� takes place if and only if

ZN�t� → P for N → + � . �6�

We will call �5� QZE product formula, as opposed to the QZD product formula �3�.
The next theorem is on the equivalence between the QZE and a certain fall-off condition on

the spectral measure associated to the Hamiltonian, which is weaker than �4�. Let us denote, as
usual, with o�s� an operator-valued function defined in a neighborhood of 0 and such that

o�s�
 /s=0, for s→0. Let us also use the notation Ac=R \A for any subset A�R.

Theorem 2: Consider a self-adjoint operator H and an orthogonal finite-rank projection P in
a complex Hilbert space H. Let �P�

H� be the projection-valued spectral measure of H and
�U�t�=e−itH�t�R the one-parameter unitary group generated by H. Consider the product formula
ZN�t�=VN�t��VN�t�, where VN�t�= �PU�t /N�P�N with t�R and N�N�. The following statements
are equivalent:

�1�

PP�− �,��c
H P = o� 1

�
� for � → + � ,

�2�

d

ds
Z1�s�s=0 = 0,

�3�

lim
N→+�

ZN�t� = P

uniformly for t in finite intervals of R.

Two comments are now in order. First, by taking the matrix element of condition 1, one
obtains that for any ��H

��,PP�− �,��c
H P�� = 	

�− �,��c
d�P�,P�

HP�� = o� 1

�
� ,

that is,

�	
�− �,��c

d�P�,P�
HP�� → 0 for � → + � . �7�

Let us compare �7� with condition �4�. Under the hypotheses of Theorem 1, namely, H	0 and
HP�D�H1/2�, one gets

�	
�− �,��c

d�P�,P�
HP�� = �	

��,+��
d�P�,P�

HP�� 
 	
��,+��

�d�P�,P�
HP�� → 0

when �→+�. Therefore, condition �7� is implied by �4�, but it is weaker than the latter.
Second, when the measurement projection is one dimensional, we can write

P=��� , ·�= ���� for some ��H and 
�
=1. Physically, this projection checks whether the
system is in the pure state �. In this case, we get

V�s� = PU�s�P = A�s�P , �8�

where
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s � R � A�s� = ��,U�s��� = ��,e−iHs��

is the survival probability amplitude in the state �. Its associated probability is

s � R � p�s� = A�s�2,

and represents the probability of finding at time s in state � a system that started in � at time 0.
Note that the survival amplitude can be rewritten as

A�s� = 	
R

e−is�d��
H��� ,

where ��
H���= �� , P�

H��, for every Borel set ��R, is the spectral measure of H at �. Therefore,
A�s� is nothing but the Fourier transform of the spectral measure ��

H, i.e., a characteristic function,
in probabilistic jargon.

Since VN�t�= �V�t /N��N, the QZE product formula �5� reads as

ZN�t� = VN�t��VN�t� = �p�t/N��NP .

Thus for one-dimensional projections the occurrence of the QZE �6� is equivalent to the limit of
the survival probability

�p�t/N��N → 1 for N → + � . �9�

Physically, �9� asserts that the system stays frozen in the initial state.
The following proposition, stated for a generic Borel probability measure on R, gives a

characterization of the limit �9� in terms of the falloff property of the spectral measure ��
H for large

energy values. The proof makes use of the equivalent condition of vanishing derivative of the
survival probability at s=0. Interestingly enough, the first step in the proof of our main Theorem
2 is Proposition 1 �which is a special case of the former!�.

Proposition 1: Let � be a Borel measure on R with ��R�=1. Define for every s�R

A�s� = 	
R

e−is�d����

and

p�s� = A�s�2.

Then, the following assertions are equivalent:

�1�

���− �,��c� = o� 1

�
� for � → + � ,

�2�

p��0� = 0,

�3�

lim
N→+�

�p�t/N��N = 1

uniformly for t in finite intervals of R.

Remark 1: Let � be a Borel measure on R with ��R�=1. Suppose that � satisfies one of the
conditions of Proposition 1. Observe that for all s�R
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p��s� = A��s�A�s� + A�s�A��s� ,

Therefore,

p��0� = 2 Re A��0� = lim
s→0

2�Re A�s� − 1

s
� = lim

s→0

2

s
	

R
�cos��s� − 1�d���� .

Then, the real part of A��0� that can be rewritten as

Re A��0� = − lim
s→0

2

s
	

R
sin2��s

2
�d���� ,

must be equal to 0, while there are no constraints on the imaginary part of A��0� given by

Im A��0� = − lim
s→0
	

R

sin��s�
s

d���� .

We will show that it can also diverge. �

Example 1: Let a�1. We consider as � the following probability measure:

��E� = a log a	
E��a,+��

1 + log �

�2 log2 �
d� �10�

for every Borel set E�R.
Physically, one can implement the above example with a free particle in n dimension sub-

jected to a suitable one-dimensional projective measurement. Indeed, consider the free Hamil-
tonian of a particle �with mass m=1 /2� H=− with domain H2�Rn��L2�Rn�. Consider a projec-
tion P=��� , ·�= ���� over the �radially symmetric� wave function ��L2�Rn�, whose Fourier
transform reads for p�Rn, p�a1/2�1 as

�̂�p� =�2a log a

Sn−1

�1 + logp2

pn/2+1logp2
,

and �̂�p�=0 otherwise, where Sn−1 is the area of the unit sphere. The wave packet ��x� for
n=1 is plotted in Fig. 1. By using Fourier transform, it is not difficult to show that the spectral

�10 �5 0 5 10

�0.2

0.0

0.2

0.4

0.6

0.8

x

Ψ
�x
�

FIG. 1. �Color online� Wave packet ��x� with the fall-off property 1 of Proposition 1, but with infinite mean energy.
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measure of the free Hamiltonian at state � yields exactly the measure ��
H=� in �10�, which

satisfies the hypothesis of Theorem 1, because ��R�=1 and

lim
�→+�

����− �,��c� = lim
�→+�

�a log a	
�

+� 1 + log �

�2 log2 �
d� = lim

�→+�

a log a

log �
= 0.

However, observe that

	
R

�d���� = a log a	
a

+� 1 + log �

� log2 �
d� = a log a	

log a

+� 1 + z

z2 dz = + � .

Therefore, despite the fact that � does not belong to D�H1/2�=H1�Rn� and thus has infinite energy,
by a Zeno limit, one can freeze its dynamics in the initial state.

Now we show that in this case Im A� diverges. In fact, Im A has a cusp at the origin. Observe
that

lim
s→0+

	
R

sin��s�
s

d���� = lim
s→0+

	
�
1/s

sin��s�
s

d���� + lim
s→0+

	
��1/s

sin��s�
s

d���� . �11�

The second limit on the right hand side of �11� vanishes because

0 
 	
��1/s

sin��s�
s

d���� 

1

s
	

��1/s
d���� → 0,

while the first limit equals +� because

sin 1	
�
1/s

�d���� 
 	
�
1/s

sin��s�
s

d����

and

lim
s→0+

	
�
1/s

�d���� = 	
R

�d���� = + � .

Thus,

lim
s→0+

Im A��s� = − lim
s→0+

	
R

sin��s�
s

d���� = − � .

Similarly, one can prove that

lim
s→0−

Im A��t� = + � .

�

Note that in Theorem 2 there is no mention to a lower bound of the Hamiltonian. Boundedness
from below is something of red herring. It has played a crucial role in QZD; in fact, it has been
always advocated in the literature, and indeed the limiting �Zeno� Hamiltonian which engenders
the effective dynamics in Theorem 1 is nothing but the Friedrich’s extension of the operator PHP.
However, if one is concerned with the QZE per se, such hypothesis is quite unnatural. Therefore,
one can wonder whether lower boundedness is really a physical requirement for QZD, or rather it
is just a—very convenient—technical hypothesis. Our second main result answers this question. It
gives a characterization of the QZD in which boundedness from below plays no role.

Theorem 3: Consider a self-adjoint operator H and an orthogonal finite-rank projection P in
a complex Hilbert space H. Let �P�

H� be the projection-valued spectral measure of H and
�U�t�=e−itH�t�R the one-parameter unitary group generated by H. Consider the product formula
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VN�t�= �PU�t /N�P�N with t�R and N�N� and the family of self-adjoint operators
H���=HP�−�,��

H with ��0. The following statements are equivalent:

�1�

PP�− �,��c
H P = o� 1

�
� for � → + � ,

and the limit

HZ = lim
�→+�

PH���P

exists and is bounded,
�2�

d

ds
V�s�s=0 = − iHZ,

�3�

lim
N→+�

VN�t� = Pe−itHZ

uniformly for t in finite intervals of R.

Therefore, the existence of QZD is equivalent to the energy falloff property, which assures the
existence of QZE, and to the existence of a limit mean value Hamiltonian HZ=lim� PH���P.

Remark 2: In the one-dimensional case, when P= ����, by using Eq. �8�, the QZD product
formula �3� reads as

VN�t� = �A�t/N��NP .

In such a case, QZD is trivial and its existence is equivalent to the existence of the numerical limit

lim
N→+�

�A�t/N��N = e−itEZ �12�

with a finite phase EZ�R. This has to be compared with QZE, where one looks at the modulus of
Eq. �12�, and thus the existence of a finite mean energy is not necessary, as shown also in Example
1.

Theorem 3 states that the phase EZ is finite if and only if the limit

HZ = lim
�→+�

��,H�����P

exists and is bounded, and in such a case, one has

EZ = lim
�→+�

��,H����� .

�

From Theorem 3 one immediately gets that if the attention is restricted to positive Hamilto-
nians, the condition given in Theorem 1 on the domain of the square root is both necessary and
sufficient. Indeed, we have the following.

Corollary 1: Let H be a positive self-adjoint operator and P be an orthogonal finite-rank
projection onto HP= PH. Then,

HP � D�H1/2� ⇔ lim
N→+�

VN�t� = P exp�− it�H1/2P���H1/2P�� .
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Proof: One implication is the content of Theorem 1. The other follows by Theorem 3 after
noting that, when H	0,

PH���P = P	
�0,��

�dP�
HP ,

and thus the existence of a bounded limit lim� PH���P implies that 
H1/2P
��. �

Remark 3: By looking at Corollary 1, one might think that the results for positive operators
hold true in the general unbounded case by replacing the condition HP�D�H1/2� with
HP�D�H1/2�. Unfortunately, this is not true. The condition HP�D�H1/2� is stronger than
condition �1� in Theorem 3 and, in fact, is a sufficient condition for QZD, but is not necessary.
Indeed, it is easy to construct a probability Borel measure �� associated with the Hamiltonian H
at some ��H such that

lim
�→+�

	
�−�,��

�d����� � + � ,

while

lim
�→+�

	
�−�,��

�d����� = + � .

Observe that in this case if one considers the projection P= ����, one gets that HP�” D�H1/2�,
despite the fact that the pair projection-Hamiltonian �P ,H� satisfies statement 1 of Theorem 3. �

III. PROOFS OF THE THEOREMS

Let us now turn to the proofs of our characterizations of the QZE and its dynamics, Theorems
2 and 3. First of all let us prove a preliminary lemma that will be useful in the following. We note,
incidentally, that this Tauberian result is interesting in itself and is probably known in the prob-
ability community. However, we will give here a purely analytical proof.

Lemma 1: Let � be a Borel measure on R with ��R�=1. The following assertions are equiva-
lent:

�1�

���− �,��c� = o� 1

�
� for � → + � ,

�2�

1

�k+1	
�−�,��

�k+1d���� = o� 1

�
� for � → + � for every k � N�.

Proof:
�1�⇒ �2�. Let k�N�, then for every ��0, by using an integration by parts formula �see, e.g.,

Ref. 13�, we have that

1

�k	
�−�,��

�k+1d����

=
1

�k��k+1���− �,��� − �− ��k+1���− �,− ���

− �k + 1�	
�−�,��

�k���− �,���d��
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= ����− �,��� + �− 1�k����− �,− ���

−
k + 1

�k 	
�0,��

�k����− �,��� + �− 1�k���− �,− ����d� .

We can write

1

�k	
�−�,��

�k+1d����

= ����− �,��� −
k + 1

�k 	
�0,��

�k���− �,���d�

+ �1 + �− 1�k������− �,− ��� −
k + 1

�k 	
�0,��

�k���− �,− ���d�� . �13�

The second line of �13� reads as

��1 − ���− �,��c�� −
k + 1

�k 	
�0,��

�k�1 − ���− �,��c��d�

= − ����− �,��c� +
k + 1

�k 	
�0,��

�k���− �,��c�d�


 − ����− �,��c� +
k + 1

�
	

�0,��
����− �,��c�d� → 0 for � → + � ,

while in the third line of �13�, which is nonzero only for k even, one gets

����− �,− ��� 
 ����− �,��c� → 0

and

1

�k	
�0,��

�k���− �,− ���d� 

1

�
	

�0,��
����− �,��c�d� → 0.

Therefore, we have that

lim
�→+�

1

�k	
�−�,��

�k+1d���� = 0.

�2�⇒ �1�. Let us choose k=1 and fix ��0. By hypothesis, we have that there exists a real
�0�0 such that for every ���0

1

�
	

�−�,��
�2d���� � � .

Thus, for every ���0,
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�	
�− �,��c

d���� = ��
k=0

+� 	
2k�
��2k+1�

d����


 ��
k=0

+� 	
2k�
��2k+1�

� �

2k�
�2

d����


 �
k=1

+�
1

2k−1

1

2k+1�
	

��2k+1�

�2d����


 2� .

�

Remark 4: Observe that in order to prove that �2�⇒ �1�, it is sufficient that

1

�3	
�−�,��

�2d���� = o� 1

�
� for � → + � .

�

Now we prove Proposition 1 on the characterization of the one-dimensional QZE. We will use
it as the first step in the proof of the multidimensional case, Theorem 2.

A. Proof of Proposition 1

Let us start with the proof of the first equivalence �1�⇔ �2�.
Observe that A is a �uniformly� continuous function and that A�0�=1. Define for every s

�R

z�s� = A�s� − 1

so that z is a continuous function with z�0�=0. Recall that

p��0� = lim
s→0

2
Re�z�s��

s
�14�

and

Re�z�s��
s

=
1

s
	

R
�cos��s� − 1�d���� = −

2

s
	

R
sin2��s

2
�d���� .

We can write

2

s	R
sin2��s

2
�d���� = g�s� + h�s� ,

where

g�s� =
2

s	��2/s
sin2��s

2
�d����

and

h�s� =
2

s	�	2/s
sin2��s

2
�d���� .

Therefore, since g ,h	0, one has that
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lim
s→0

2
Re�z�s��

s
= 0 ⇔ lim

s→0
g�s� = lim

s→0
h�s� = 0. �15�

Observe that, since x2 sin2 1
sin2 x
x2 for x�1,

sin2 1
s
2
	

��2/s
�2d���� 
 g�s� 


s
2
	

��2/s
�2d���� .

Therefore,

lim
s→0

g�s� = 0 ⇔ lim
s→0

s
2
	

��2/s
�2d���� = 0. �16�

�1�⇒ �2�. Using Lemma 1 and �16�, one gets that g�s�→0 for s→0. Moreover,

0 
 h�s� 

2

s
���− 2/s,2/s�c� → 0, s → 0.

�2�⇒ �1�. Observe that using �15�, we have that

p��0� = 0 ⇒ lim
s→0

g�s� = 0.

Thus, by using �16� and Remark 4, we prove the thesis.
Now we prove the second equivalence �2�⇔ �3�.
Observe that

�p�t/N��N − 1 = �
k=0

N−1

�p�t/N��k�p�t/N� − 1� = SN�t�N�p�t/N� − 1� , �17�

where

SN�t� =
1

N
�
k=0

N−1

�p�t/N��k.

�2�⇒ �3�. Since 0
SN�t�
1, we have from �17� that

�p�t/N��N − 1 
 Np�t/N� − 1 → 0, N → + �

uniformly for t in finite intervals of R.
�3�⇒ �2�. We know that �p�t /N��N→1 for N→+� uniformly in t in finite intervals of R.

Observe that, since 0
 p�t /N�
1,

1 	 SN�t� 	 �p�t/N��N → 1

uniformly for t in finite intervals of R. Therefore, from �17�,

lim
N→+�

N�p�t/N� − 1� = 0,

and thus p��0�=0. �

Now that we have gathered all necessary ingredients, let us conclude this section with the
proofs of our main results, Theorems 2 and 3.

B. Proof of Theorem 2

�1�⇒ �2�. From Z1�s�=V�s��V�s�, one gets
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Z1��s� = � d

ds
V�s���V�s� + V�s��� d

ds
V�s�� .

Therefore, for every ��H, we have

��,Z1��0��� =
d

ds
��eisHP�,P�� + �e−isHP�,P���s=0.

If P��0, let us define the probability Borel measure on R

d���� =
1


P�
2d�P�,P�
HP��

and the survival amplitude

A�s� = 	
R

e−is�d���� .

Therefore,

��,Z1��0��� = 2
P�
2 d

ds
Re�A�s��s=0. �18�

By condition �1�, we get that � satisfies condition �1� of Proposition 1. Therefore, the right side of
�18� vanishes and, by the polarization identity, it follows that Z1��0�=0.

�2�⇒ �1�. Let ��H, 
P�
=1, and consider the Borel probability measure

d���� = d�P�,P�
HP�� .

Define for every s�R

A�s� = 	
R

e−is�d���� and p�s� = A�s�2.

Observe that

p��0� = �P�,Z1��0�P�� = 0,

thus, using the equivalence proved in Proposition 1, we have

lim
�→+�

�	
�− �,��c

d���� = lim
�→+�

���,PP�− �,��c
H P�� = 0.

Since HP is a finite dimensional space we have proved Condition 1.
�2�⇒ �3�. Use the telescopic sum,

ZN�t� − P = VN�t��VN�t� − P

= �
k=0

N−1 �V� t

N
���k�V� t

N
��

V� t

N
� − P��V� t

N
��N−1−k

= �
k=0

N−1 �V� t

N
���k�Z1� t

N
� − P��V� t

N
��N−1−k

. �19�

Therefore, since 
V�t /N�

1, one gets
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ZN�t� − P
 
 N
Z1�t/N� − P
 → 0

uniformly for t in finite intervals of R by hypothesis.
�3�⇒ �2�. We want to prove that

lim
N→+�

N�Z1�t/N� − P� = lim
N→+�

N�V�t/N��V�t/N� − P� = 0 �20�

uniformly for t in finite intervals of R. Observe that �19� can be expanded also in this way

ZN�t� − P = N�V� t

N
��

SN�t�V� t

N
� − SN�t�� , �21�

where

SN�t� =
P

N
�
k=0

N−1 �V� t

N
���k�V� t

N
��k

.

Let us first prove that the ergodic sum SN�t� tends to P,

lim
N→+�

SN�t� = P

uniformly for t in finite intervals of R. It is easy to see that for every k	 l	0

�V� t

N
���k�V� t

N
��k


 �V� t

N
���l�V� t

N
��l

,

whence, for every k� �0,1 , . . . ,N−1�,

0 
 P − P�V� t

N
���k�V� t

N
��k


 P − ZN�t� .

Therefore,

0 
 P − SN�t� =
1

N
�
k=0

N−1 �P − P�V� t

N
���k�V� t

N
��k� 
 P − ZN�t� → 0

by hypothesis.
Assume that �20� is not valid. By taking the trace of �21� and by using its cyclic property, we

get

tr�ZN�t� − P� = tr�N�V� t

N
�V� t

N
��

− P�SN�t�� .

Since the ergodic sum SN�t� is a positive operator whose limit is P, the right hand side does not
tend to 0, while the left hand side vanishes by hypothesis, and we get a contradiction. �

C. Proof of Theorem 3

Let us start with the proof of the first equivalence �1�⇔ �2�.
Let Re V�s�= �V�s�+V�s��� /2 and Im V�s�= �V�s�−V�s��� /2i for all s�R. Observe that by

Theorem 2 it follows that

PP�− �,��c
H P = o� 1

�
� ⇔

d

ds
V�s��V�s�s=0 = 2

d

ds
Re V�s�s=0 = 0. �22�

Now we prove that
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HZ = lim
�→+�

PH���P ⇔ −
d

ds
Im V�s�s=0 = HZ. �23�

Let us denote dQ�= PdP�
HP. Observe that

−
d

ds
Im V�s�s=0 = lim

s→0

1

s
P sin�sH�P = lim

s→0
	

R

sin��s�
s

dQ�.

In order to prove �23�, we will prove that

lim
s→0

PH��/s�P −
1

s
P sin�sH�P = 0. �24�

We have that, if s�0

PH��/s�P −
1

s
P sin�sH�P

= 	
�−�/s,�/s�

�dQ� −
1

s
	

R
sin��s�dQ�

= 	
�−�/s,�/s�

��1 −
sin��s�

�s
�dQ� −

1

s
	

�− �/s,�/s�c
sin��s�dQ�.

Therefore, since 1−sin x /x	0, we get

−
�

s
	

�−�/s,�/s�
�1 −

sin��s�
�s

�dQ� −
1

s
	

�− �/s,�/s�c
dQ�


 PH��/s�P −
1

s
P sin�sH�P



�

s
	

�−�/s,�/s�
�1 −

sin��s�
�s

�dQ� +
1

s
	

�− �/s,�/s�c
dQ�.

By noting that

0 

�

s
	

�−�/s,�/s�
�1 −

sin��s�
�s

�dQ� 

�s

6
	

�−�/s,�/s�
�2dQ�

and by using �22� and Lemma 1, we obtain that �24�� holds when s→0+. With the same argument,
one can prove the thesis when s→0−.

�2�⇒ �3�. Observe that


VN�t� − Pe−itHZ
 = 
�V�t/N��N − �Pe−itHZ/N�N


= ��
k=0

N−1

�V�t/N��N−1−k�V�t/N� − Pe−itHZ/N�Pe−iktHZ/N�

 N
V�t/N� − Pe−itHZ/N
 → 0

uniformly for t in finite intervals of R.
�3�⇒ �2�. Let z�0. We will prove that

lim
N→+�

�z − N�V�t/N� − P��−1P = �z + itHZ�−1P

uniformly for t in finite intervals of R. This implies that
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lim
N→+�

N�V�t/N� − P� = − iHZ

uniformly for t in finite intervals of R, and thus

d

ds
V�s�s=0 = − iHZ.

Indeed, observe that

�z − N�V�t/N� − P��−1P =
1

N
�
k=0

+�
V�t/N�k

�1 + z/N�k+1 P = 	
0

+� V�t/N��sN�

�1 + z/N��sN�+1 Pds , �25�

where � · � denotes the integer part function. By the dominated convergence theorem, the right hand
side of �25� converges to

	
0

+�

e−szPe−istHZPds = �z + itHZ�−1P

uniformly for t in finite intervals of R. �
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