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The tomographic picture of quantum mechanics has brought the description of quantum states closer to
that of classical probability and statistics. On the other hand, the geometrical formulation of quantum
mechanics introduces a metric tensor and a symplectic tensor (Hermitian tensor) on the space of pure
states. By putting these two aspects together, we show that the Fisher information metric, both classical
and quantum, can be described by means of the Hermitian tensor on the manifold of pure states.
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1. Introduction

The states of quantum systems are described by wave functions
(state vectors in Hilbert space) or density matrices. The difference
between quantum states can be associated with a distance be-
tween the state vectors or the density matrices. To introduce the
notion of the distance one needs to construct a metric in the set of
states. In classical probability theory the Fisher information met-
ric can be used to characterize the distance between probability
distributions. In quantum information theory the quantum gener-
alization of the metric is also used.

In the past two decades, the tomographic picture of quantum
mechanics has shown that quantum states may be described by
means of genuine probability distributions, called tomograms [1].
This allows the use of methods of classical probability theory to
deal with quantum states. Of course, the converse is also possible
and we can view classical probability theory within the quantum
setting. We shall consider this second possibility to express the
Fisher classical information metric within the quantum paradigm.
In doing this we obtain that the appropriate expression contains
the quantum information metric and reduces to the classical one
when states satisfy suitable conditions.
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More specifically, in classical optics, photometry dominates the
measured quantities. In radiative transfer we must include the di-
rection cosines of light rays as well as the spectrum. But even
the two slit interference demands a phase (or rather phase differ-
ences). This is also true for the description of partial coherence.
Pancharatnam showed that propagation in crystals also requires
the introduction of a phase for the wavefunction. This notion was
amplified by Berry by introducing a path dependent phase. (Al-
ready Dirac, when dealing with the magnetic monopole, had in-
troduced phase dependence on the path.) In all these cases the
primary measurement is of intensities only and he showed that
such a phase is present in general in quantum mechanics. So clas-
sical intensity distribution is insufficient for a complete descrip-
tion. Given a classical (non-negative, normalized) probability we
should introduce a phase.

The main observation is the following: we describe probabil-
ity densities p(x) of random variables with values in X by means
of probability amplitudes, i.e. normalized wave functions v (x) de-
fined on X, by setting p(x) = ¥*(x)¥ (x) = | (x)|?, thus going from
integrable functions to square integrable functions on X [2]. Our
strategy consists of using the available metric tensors on H and
thereof on the space of pure states R(H) and to pull them back
to a submanifold @ of probability densities over X.

We shall find that the Hermitian tensor fields on R(H) when
pulled back to @ will give the Fisher Quantum Information metric
tensor. The aim of this work is to exhibit explicitly the form of this
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metric tensor on the space © starting with the Fubini-study metric
on the space of pure states.

2. The metric tensor on the space of pure states

It is well known that due to the probabilistic interpretation,
states for quantum systems are not vectors |¢) € H but rather
they are rays, elements of the Hilbert manifold R(?), which are
conveniently parametrized as rank-one projection operators, the
projection from H to R(H) being defined by

T |¢r><w|7 (1)

(W)
for |y) # 0. This projection map allows to identify on R(H) a
metric tensor g, usually called the Fubini-Study metric, and a sym-
plectic structure w [3]. Both of them define on R(H) what is
called a Kahlerian structure. The pullback of this tensor to 7 along
the map 7 acquires the following form:

h— (dy|dy)  (dy|y)(yIdy) 2)
(Vi) (Yly)?

as has been shown elsewhere [4]. To work with this tensor on H

instead of R(H) is quite convenient for computational purposes.

Let the Hilbert space H be realized as the space of square in-
tegrable functions over X, namely H = L%(X). Therefore, abstract
vectors |¢) are wave functions ¥ (x), and their scalar product is
(Y1$) = [x v ®)* P (x) dx.

The physical state |4) may depend on unknown parameters
61,6, ...,6n and this can be made explicit using the notation
¥ (x; 0) for the wave function. This will be the setting for what
follows. Having replaced |v) with a wave-function v (x; 8) we can
consider a polar representation by setting

¥ (x;0) = p(x; 0)1/2el**0) 3)

with (y|y) =1, so that p € L1(X) is a probability density.
We should say something about our notation. The probability
density p(x; ) is being used to consider averages of functions

B0():= [ fpix. @)
X

averages of differential forms

Ep(df) ::/dfpdx, (5)
X

and more generally averages of covariant tensors like [ df dg pdx.

For instance, if f depends on parameters (61,62,...,0n) we
think of df as
m
af
df = —df 6
f=Y 70, 40 (6)
k=1
and similarly
m m
af og
dfdg= — —d6b; db. 7
fdg Zzaejagk A6 (7)

k=1 j=1

The advantage of using the abstract notation df is that we do not
have to specify the parameters or their number. Moreover, from
the abstract notation, we would have |dy/) and (x|dy) = dy (%),
showing that the differential should not be understood as taken
with respect to x which identifies an orthonormal basis of im-
proper eigenvectors which are considered to be chosen once and
for all.

Using the polar representation (3) above for i (x) we have
d(lny (x; 0)) = %d(ln p(x;0)) + ida(x; 9), while the normalization
condition implies that (dy|y) = —(y|dyr).

Using expression (2) for h, we obtain for the pullback of §, de-
noted by hyx, the expression

2
hx:%/(dlnp)zpdx—i-/(da)zpdx— (/dotpdx)
X X

X

—i/(dlnpda—dadlnp)pdx. (8)
X

We have used a few identities in deriving this expression which
follow from [ pdx =1, namely [dpdx= [dInp pdx=0.

From (8) and (4) we obtain for the metric tensor hx the expres-
sion
hx =g —iw, 9)

where
1
0= E[(dnp)’] + Ep[(do)’] - [, o],
w=Ep[dInp A da]. (10)

This Hermitian tensor on @ coincides with the Fisher classical
information metric when do = 0. To see this, consider a parameter
space © ={61,6,,...,6n}. If we compute our metric tensor hx on
contravariant vectors 3%] B%k we obtain

a
(hX)jk = hx(a—gjy 3_9k>

_1}_' +E Ja do E o B oo
a7 R T G000 ) P\ ae; ) P\ b6,

dlnp 0 dlnp o
—iE, Jglnpoa  Jlnp oa ) (11)
30; 36 06, 06;
where
dlnp dlnp
Fi=E 12
k "( 20 ae,<> (12)

is the Fisher classical information metric, whose abstract expres-
sion reads

F=Ep[(dInp)?]. (13)

It is clear that the second and the third terms in (11) combine
to give the covariance of do and that the imaginary part of (11)
is connected with the geometric phase. So when Cov(dx) and the
geometric phase are both zero, we recover the Fisher classical in-
formation metric, namely

bx = %f. (14)

In general, we have that the Fisher classical information met-
ric F/4 is strictly dominated by the quantum Riemannian metric
g [3].

In the general case (da # 0) hx coincides with the Fisher quan-
tum information metric. This will be shown in the next section.

3. Fisher quantum information metric

A definition of the Fisher quantum information metric was pro-
posed by Helstrom [5]. This definition relies on the notion of the
symmetric logarithmic derivative. The symmetric logarithmic dif-
ferential dL, is implicitly defined by the relation
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1
dp =2 (pdLy+dL, p), (15)

where p represents a generic density matrix (which we prefer to
call a density state) and dL, = dLI) defines the Hermitian matrix
whose matrix elements are differential one-forms. The uniqueness
of dL, may be proved by adopting the arguments in [6, p. 274].
The Fisher quantum information acquires the form

Fq=Tr[p(dLy)?]. (16)

As usual the trace replaces the integrals which appear when we
consider probability distributions.

By restricting our computations to pure states, ie. p? = p,
pt=p, Trp =1, we find the identities

(i) pdp+dpp=dp, (i) Tr(dp)=0,
(iii) Tr(pdp)=0. (17)

From the definition of the symmetric logarithmic differential (15)
compared with (i) we find that

dL, =2dp. (18)

Thus for pure states we get

Fq=4Tr[p(dp)?]. (19)

We recall that by the differential of a matrix we mean a matrix-
valued differential one-form, i.e. the matrix which we obtain by
taking the differentials of the elements of the matrix.

To carry out the comparison of F; with hx, we start with

p =¥yl Wly) =1, (dyr|y) = —(yIdy). (20)
From dp = |dy)(¢| + |¥)(dy¥| we compute easily

Tr[p(dp)*] = (dv|dy) — (dy |[v) (v |dy), (21)

which is exactly our tensor field h, given in (2) when (¥ |¢) = 1.

In conclusion, we have found that for pure states, what we have
called the Fisher quantum information metric contains both the
quantum version and the classical version when do = 0.

4. Conclusions and outlook

Much interest has been focused on the quantum counterpart of
the classical Fisher information [7]. The quantum counterpart of
the classical Fisher information was shown to constitute an upper
bound on the classical Fisher information. Consequently there was
interest in understanding conditions under which the bound could
be attained. Barndorff-Nielsen and Gill [8] derived a condition for
the quantum and classical Fisher information to coincide in the
particular case of a two-dimensional pure state system. Luati [9]
showed that this condition held even for two-dimensional mixed
states. Our geometrical formulation of the quantum Fisher infor-
mation shows that the condition for the equality of the quantum
and classical information is the condition do = 0 for pure states in
any dimension.

We will elsewhere discuss the implications of our geometri-
cal formulation of Fisher information in terms of the Fubini-study
metric and tomographic probabilities.

Our presentation of Fisher quantum information metric is closer
in spirit to what is known in the literature as “nonparametric”
Fisher information metric [10]. In our approach however we con-
sider a manifold of states suitably chosen so that it carries a dif-
ferential calculus.

An additional merit of our description is that we consider prob-
ability amplitudes instead of probability densities, therefore it is

possible to work on H rather than on R(*), this means we can
deal with L2-spaces instead of L!-spaces. These considerations will
be quite useful later on when we move from pure states to generic
density states. In our approach, the classical Fisher information
metric is recovered by restricting the imbedding into a Lagrangian
subspace of H. In a future paper we shall consider the available
geometric picture of the Gelfand-Naimark-Segal construction [11]
to extend our approach to the C*-algebraic approach for statistical
models elaborated by Streater, and to compare more closely our
approach to the one by Gibilisco and Isola [12].

We believe that our present treatment will be relevant to fur-
ther enhance geometrical methods in the analysis of statistical
models, both from the conceptual point of view and the method-
ological point of view.
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