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We scrutinize the effects of non-ideal data acquisition on the tomograms of quantum states. The presence
of a weight function, schematizing the effects of a finite window or equivalently noise, only affects
the state reconstruction procedure by a normalization constant. The results are extended to a discrete
mesh and show that quantum tomography is robust under incomplete and approximate knowledge of
tomograms.
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1. Introduction

Quantum technological applications require extremely accurate
knowledge of quantum states and of the underlying quantum dy-
namical processes. For the application of fundamental principles of
quantum mechanics and quantum optics to effectively foster the
real-life implementation of quantum technologies, accurate quan-
tum state characterization is a crucial ingredient at the interface
between theoretical and experimental physics. Applications cover
wide research areas ranging from nano-science to cosmology.

One of the most successful quantum state reconstruction tech-
niques is quantum tomography [1,2] with its elegant experimental
realizations [3–9]. For recent reviews, see [10,11]. A large class of
quantum states, expressed in terms of Wigner functions, can be
efficiently reconstructed by this method, including coherent states,
Schrödinger cats, kittles, and entangled states. In quantum optics,
the state can be directly measured by homodyne photon detection
[12], providing as output result the optical tomogram. However,
the precise characterization of quantum states becomes problem-
atic, both for direct measurements and reconstruction procedures,
when noise, imperfections and other practical problems deterio-
rate the quality or limit the size of the data set. This entails, from
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an experimental perspective, a precise control/manipulation of the
quantum system, from the source to the careful optimization of the
detection apparatus, and from a theoretical perspective, the refine-
ment of mathematical inversion techniques for noisy data and the
extension of classical tomographic techniques to quantum situa-
tions [1,2,12–16].

In quantum applications, the most used tomographic meth-
ods are quantum generalizations of the Radon transform [17–19].
This is true both for massive particles and reconstruction methods
based on homodyne photon detection. The measure of optical to-
mograms yields complete information on quantum states in terms
of tomographic probability distributions [20]. Since, traditionally,
one is interested in other equivalent characteristics of quantum
states, like the Wigner or the Husimi or the diagonal coherent state
representation function, we shall address here the question of the
relation between these quantum state characteristics and our ap-
proach.

In practice the parameters introduced in the tomogram have
many sources of uncertainty and an efficient tomographic mea-
surement of the quantum state must face three major problems:
(i) a finite window (including the effects of detectors, entailing
coarse graining and/or binning of the data), (ii) the presence of
random errors (arising both from the sample and the non-ideal
precision in controlling the quadratures), and (iii) a discretized
“mesh” in the data acquisition, that affects the generation of the
quadratures of the tomogram.
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A realistic approach must define quantum tomograms through
a convolution with a smooth weight function Ξ that spreads the
marginals and reduces to the usual “classical” Radon transform
when Ξ becomes a delta function. In this case one gets a kind of
“thick tomography”, in analogy with signal analysis, where a sim-
ilar problem arises for signal detection and also requires the use
of a window function [21,22]. Notice that in a classical description,
where tomograms are measured by the attenuation of a probing
beam scanning a material body, this would correspond to a finite
transversal thickness of the scanning beam. However, this is only
an analogy: in the physical situation we are describing there is no
material body, nor probing beams, and the thickness is in phase
space.

Our aim is to suggest extensions of the quantum tomographic
techniques by taking into account the finiteness of the windows,
the discreteness of data acquisition and the effects of noise, anal-
ogously to signal analysis. Previous work [23,24] focused on the
definition of optimization strategies given a set of experimental
data and non-ideal photodetector efficiency in homodyne detec-
tion (see also [25] for a review).

This Letter is organized as follows. In Section 2 we recall the
main concepts related to the Radon and symplectic transforms.
Section 3 is devoted to the effects of the finite window function.
In Sections 4 and 5 we analyze how the tomograms are modified
by noise and a discrete mesh. In Section 6 we present some nu-
merical results for a particular example, corroborating our analysis.
Finally, in Section 7 we sketch some conclusions and outline pos-
sible future research directions.

2. Preliminaries: Radon and symplectic transforms

We shall start by studying the role of the deformation asso-
ciated with the window weight function in the experimental to-
mogram and its influence on the state reconstruction formula. The
following framework is of general validity, and can be applied to
massive particles as well as photons. However, for simplicity, let ρ̂
be a given quantum photon state, q̂ and p̂ the position and mo-
mentum operators, and ϕ and X the local oscillator phase and
quadrature in a homodyne experimental setup. The homodyne to-
mogram is given by

W(X,ϕ) = Tr
{
ρ̂δ(X − q̂ cosϕ − p̂ sinϕ)

}
, (1)

where Tr{A} denotes the trace of the operator A. Expressed in
terms of the Wigner function

W (p,q) = 1

π

∫
R

〈q − ξ |ρ̂|q + ξ〉e2ipξ dξ, (2)

the tomogram (1) reads

W(X,ϕ) =
∫

R2

dp dq W (p,q)δ(X − q cosϕ − p sinϕ). (3)

The Radon transform of the Wigner function (3) has been general-
ized to the following symplectic, or M2, transform [13,26]

W �(X,μ,ν) =
∫

R2

W (p,q)δ(X − qμ − pν)dp dq, (4)

with μ,ν ∈ R. Its complete equivalence with (3) is expressed by
the relation [27,28]

W �(X, r cosϕ, r sinϕ) = 1

r
W

(
X

r
,ϕ

)
, (5)

valid for any r > 0. Eq. (5) is an easy consequence of the fact that
the Dirac distribution is positive homogeneous of degree −1. The
symplectic tomogram (4) can be easily inverted by a Fourier trans-
form

W (p,q) =
∫

R3

dX dμdν

(2π)2
W �(X,μ,ν)ei(X−qμ−pν), (6)

which by (5) yields the inversion formula

W (p,q) = 1

(2π)2

∫
R

dX

∫
R+

dr

∫
T

dϕ W(X,ϕ)

× reir(X−q cosϕ−p sinϕ), (7)

where T = R/2πZ is the unit circle and R+ = [0,+∞).

3. Finite window

A finite window function can be accounted for by replacing the
Dirac delta function in the definition of the tomogram (4) with a
suitable smearing window function Ξ

W �
Ξ (X,μ,ν) =

∫

R2

W (p,q)Ξ(X − qμ − pν)dp dq. (8)

Now, by Fourier transforming Eq. (8), one gets

W (p,q) = NΞ

∫

R3

dX dμdν

(2π)2
W �

Ξ (X,μ,ν)ei(X−qμ−pν), (9)

where

NΞ = 1

Ξ̃(−1)
, Ξ̃(−1) =

∫
R

Ξ(z)eiz dz. (10)

In operator terms the state reconstruction is achieved by

ρ̂ = NΞ

∫

R3

dX dμdν

(2π)2
W �

Ξ (X,μ,ν)ei(X−q̂μ−p̂ν). (11)

This is one of our central results: the inverse reconstruction map
is independent of the window function, the only relic of the latter
being the normalization constant NΞ , that can be fixed by the nor-
malization of one single tomogram. Thus, no matter how involved
is the shape of the window function, an exact reconstruction of the
state can be always achieved by means of (9) or (11). This prop-
erty is very interesting because in practical cases the experimental
window function Ξ is unknown, but the result tells us that the
exact state reconstruction is possible without any precise informa-
tion about Ξ . This result is also independent of the features of the
initial state, that can even be nonstationary. Interestingly, this re-
sult can be extended to situations were noise is present. This will
be done in the next section.

4. Noise

We start from the following important observation: the effects
of a spread function in the tomogram (8) are de facto equivalent
to the presence of noise, due to quantum efficiency and/or ther-
malization, in a homodyne tomogram (e.g., if the quadrature is
determined with a finite precision). The origin of such noise is due
to the fact that any counting homodyne statistics is just a sampling
of probabilities. Namely, any statistical event can be only approxi-
mately sampled and in the course of repeated measurements, the
outputs are always fluctuating. All this can be seen as a jitter in
the detected statistics.
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The equivalence between such a jitter and a finite window can
be seen as follows: if there is some jitter X + ξ on X , where ξ is
a random variable with a finite variance, one obtains

W (ξ)(X,μ,ν) = Tr
{
ρ̂δ(X + ξ − q̂μ − p̂ν)

}
. (12)

By setting

E
[
δ(X + ξ)

] = Ξ(X), (13)

where E denotes the expectation value over the random variable
ξ , one gets

E
[

W (ξ)(X,μ,ν)
] = W �

Ξ (X,μ,ν) (14)

and the reconstruction can be done exactly as above.
The jitter provides extra noise and deforms the output of homo-

dyne experiments by affecting the basic inequalities of quantum
mechanics expressed in terms of tomograms. For this reason, it
is of practical interest to take it into account when extracting in-
formation on the uncertainty relations from the measurements of
tomograms. In practice this can be done, for example, by using the
output of photon homodyne measurements [3,11], given as optical
tomograms (1). The quadrature (co)variances are directly expressed
in terms of simple integrals containing optical tomograms [20,29]
and can be used to yield a noise limit contribution to the ex-
perimental accuracy of uncertainty relations in homodyne photon
detection.

Let us look at a simple but significant example of experimental
relevance. Consider the Wigner function of the first excited state
of a harmonic oscillator (or a single photon state)

W (p,q) = 2(p2 + q2) − 1

π
e−(p2+q2). (15)

Its Radon transform reads

W(X,ϕ) = 2X2

√
π

e−X2
. (16)

The introduction of a Gaussian window function

Ξ(X) = 1√
2πσ 2

e−X2/2σ 2
, (17)

yields the symplectic tomograms

W �
Ξ (X,μ,ν) = 2(X2/r2 + σ 2(2σ 2 + 1))√

πr(2σ 2 + 1)5/2
e−X2/r2(2σ 2+1), (18)

with r = √
μ2 + ν2. Note that

W �
Ξ (0,μ,ν) = 2σ 2√

πr2(2σ 2 + 1)3
. (19)

Therefore, the presence of a window function/noise provokes a
reduction of “visibility” of the tomogram (that would vanish for
σ = 0). However, a perfect state reconstruction is obtained by
Eq. (9) or (11).

This proves that an exact reconstruction can be obtained even
in the presence of noise, provided one has very (in the limit, in-
finitely) accurate control over the position of the quadrature. This
extends the central result of the preceding section.

5. Discreteness of data acquisition

So far we have assumed that the window function can be finite
(thick tomograms), but one has access to all possible tomograms
in a continuous range of parameters. We have not discussed the
robustness of tomography with respect to the discreteness of data
acquisition. Let us assume that the experimental tomograms are
gathered only on a sequence of discrete values of X and ϕ , namely

Wk,m = W
(

kT ,m
2π

N

)
, k ∈ Z, m ∈ ZN (20)

where T > 0, ZN = Z/NZ and, for convenience, N is an odd pos-
itive integer. If the tomograms have a limited bandwidth, then for
sufficiently small values of T and N−1 one can exactly reconstruct
the whole family of tomograms from the knowledge of the experi-
mental ones. This is the content of the Nyquist–Shannon sampling
theorem [30,31]. More precisely, consider the Fourier transform of
W

W̃(ω, �) =
∫
R

dXe−iωX
∫
T

dϕ

2π
e−i�ϕ W(X,ϕ). (21)

If its support is compact and satisfies

supp W̃ ⊂ D, D =
(

−π

T
,
π

T

)
×

(
− N

2
,

N

2

)
, (22)

one has

W̃(ω, �) = T

N

∑
k∈Z

∑
m∈ZN

Wk,me−iXkωe−iϕm�χD(ω, �), (23)

where Xk = kT , ϕm = 2πm/N , and

χD(ω, �) =
{

1 if (ω, l) ∈ D,

0 if (ω, l) /∈ D.
(24)

Let us briefly show how (23) is obtained, by considering the
less common situation of a function on the torus T:

f̃ (�) =
∫
T

dϕ

2π
e−i�ϕ f (ϕ), f (ϕ) =

∑
�∈Z

ei�ϕ f̃ (�). (25)

Suppose f̃ (�) = 0 for � /∈ J , with J = (−N/2, N/2) ∩ N. For def-
initeness let us assume N odd. Then J = {−(N − 1)/2, . . . , (N −
1)/2}, and one can consider the periodic extension of f̃

f̃ N(�) =
∑
k∈Z

f̃ (� − kN), (26)

whose restriction to J coincides with f̃ , namely,

f̃ (�) = f̃ N(�)χ J (�). (27)

This property would not be true if f̃ did not vanish outside J , and
the phenomenon called aliasing would occur. One gets

f̃ N(�) =
∫
T

dϕ

2π
e−i�ϕ f (ϕ)

∑
k∈Z

eikNϕ. (28)

By recalling Poisson’s formula

∑
k∈Z

eikNϕ = 2π

N

∑
k∈Z

δ(ϕ − ϕk), (29)

with ϕk = 2kπ/N , and setting k = jN +m with k, j ∈ Z and m ∈ ZN

one gets

∑
k∈Z

eikNϕ = 2π

N

∑
m∈ZN

∑
j∈Z

δ(ϕ − ϕm − 2 jπ). (30)

Therefore,

f̃ N(�) = 1

N

∑
e−i�ϕm f (ϕm). (31)
m∈ZN
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By plugging (31) into (27) one gets the angular dependence of (23).
The linear dependence is obtained analogously by replacing T with
R and ZN with Z.

By Fourier inverting (27) one gets

f (ϕ) =
∑
�∈ J

ei�ϕ f̃ N(�)

=
∑

m∈ZN

f (ϕm)
1

N

∑
�∈ J

ei�(ϕ−ϕm)

=
∑

m∈ZN

f (ϕm)SN

(
ϕ − ϕm

2

)
, (32)

with

SN(x) = sin(Nx)

N sin x
, (33)

which is the extension of the sampling theorem to functions on
the torus T and their discrete spectra. For a function g(X) on the
line, the analogous, well-know formula reads

g(X) =
∑
k∈Z

g(Xk) sinc

(
π

X − Xk

T

)
, (34)

with Xk = kT and sinc x = x−1 sin x.
Therefore, the tomograms are given, for N odd, by the (gener-

alized) Shannon–Whittaker interpolation formula

W(X,ϕ) =
∑
k∈Z

∑
m∈ZN

Wk,m sinc

(
π

X − Xk

T

)

× SN

(
ϕ − ϕm

2

)
, ∀X ∈ R, ∀ϕ ∈ T. (35)

For N even the formula is the same, by replacing N by N − 1
(since in that case the angular sampling points are N − 1 instead
of N). Remarkably, for sufficiently small T and N−1 the reconstruc-
tion of limited-bandwidth tomograms is faithful and there is no
information loss. It is interesting to observe that the application
of signal-analysis techniques to quantum tomography can be quite
straightforward. For example, from the mathematical point of view,
the extension of Eqs. (32) and (35) of quantum tomograms to a
torus is very natural.

By plugging (35) into (7) one can obtain a reconstruction for-
mula of the Wigner function in terms of the tomographic samples
(20). By writing

sinc

(
π

X − Xk

T

)
= T

2π

+π/T∫
−π/T

eiω(X−Xk) dω (36)

and by performing the integration over X one gets a Dirac delta
function δ(ω + r) whose integral yields

W (p,q) =
∑
k∈Z

∑
m∈ZN

Wk,m

∫
T

dϕ SN

(
ϕ − ϕm

2

)

× T

(2π)2

π/T∫
0

dr reir(Xk−q cosϕ−p sinϕ). (37)

We get

T

(2π)2

π/T∫
0

dr reirβ = α sinα + cosα − 1

4Tα2

+ i
α cosα − sinα

2
, (38)
4Tα
with α = πβ/T . Since the imaginary part is odd with respect to
the rotation ϕ → ϕ + π , its integral over the torus vanishes and
we finally obtain

W (p,q) =
∑
k∈Z

∑
m∈ZN

Wk,m

∫
T

dϕ SN

(
ϕ − ϕm

2

)

×
[

cos(αk(ϕ;q, p)) − 1

4Tαk(ϕ;q, p)2

+ αk(ϕ;q, p) sin(αk(ϕ;q, p))

4Tαk(ϕ;q, p)2

]
, (39)

with αk(ϕ;q, p) = π(Xk − q cosϕ − p sinϕ)/T (and N odd).
Let us now consider an experimental situation in which there is

some uncertainty on the linear and angular position of the quadra-
ture, that is

W (ξ)

k,m = W
(

X (ξ)

k ,ϕ
(ξ)
m

)
,

X (ξ)

k = T
(
k + ξ

(1)

k

)
, ϕ

(ξ)
m = 2π

N

(
m + ξ

(2)
m

)
, (40)

with k ∈ Z and m ∈ ZN , where {ξ (1)

k } and {ξ (2)
m } are two sequences

of independent identically distributed random variables with finite
standard deviations σ

(1)
ξ and σ

(2)
ξ . Under hypothesis (22), one gets

W̃(ω, �) = T

N
E

[∑
k∈Z

∑
m∈ZN

W (ξ)

k,me−iX(ξ)

k ωe−iϕ(ξ)
m �χD(ω, �)

]
. (41)

A Fourier transform, followed by a Radon inversion (11) yields on
average a perfect reconstruction of the state. Therefore, quadrature
uncertainties and unbiased noise do not affect the result.

Let us prove Eq. (41). Consider a function g(X) on the line,
with limited bandwidth, namely, g̃(ω) = 0 for ω /∈ I , where I =
(−π/T ,+π/T ). One can write

h(ξ)(ω) =
∑
k∈Z

g
(

X (ξ)

k

)
e−iX(ξ)

k ω

=
∑
k∈Z

∫
dν

2π
g̃(ν)e−iX(ξ)

k (ω−ν)

=
∫

dν

2π
g̃(ω − ν)

∑
k∈Z

e−iX(ξ)

k ν . (42)

By taking the expectation value, and by using Poisson’s formula
(29) one gets

E

[∑
k∈Z

e−iX(ξ)

k ν

]
= E

[
e−iξν]∑

k∈Z

e−iXkν

= 2π

T
E
[
e−iξν]∑

k∈Z

δ

(
ν − 2πk

T

)
.

(43)

Therefore,

E
[
h(ξ)(ω)

] = 1

T

∑
k∈Z

g̃

(
ω − 2πk

T

)
E
[
e−i2πkξ/T ]

,

(44)

that, when multiplied by χI (ω), yields

E
[
h(ξ)(ω)χI (ω)

] = 1

T
g̃(ω)E[1], (45)

because of the condition on the bandwidth of g . Since E[1] = 1,
we get the linear dependence of (41), the proof of the angular de-
pendence being analogous.
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A comment seems in order. In our analysis we separately ad-
dressed the effects that arise from the existence of a finite window
(or equivalently the presence of noise) and those that are a conse-
quence of partial data acquisition. The problems that arise in non-
ideal situations are under control in two limiting cases: when the
window size σ and the sampling steps s (= T ,1/N) are well sep-
arated, i.e. σ � s or s � σ . The first case can be analyzed through
Eq. (39), the second one through Eqs. (9)–(10). It would be inter-
esting to understand whether a single general formula exists, that
accounts at the same time for the consequences of all these effects
and from which both above-mentioned cases arise as suitable lim-
its. Such a formula would also enable us to elucidate whether the
simple expression we obtained in terms of the normalization con-
stant (10) can be generalized to the case of a finite number of
measurements, or when noise is combined with other sources of
uncertainty. This interesting aspect is left for future research. The
following section is devoted to a partial numerical investigation of
this problem.

6. Robustness of tomograms

So far, our analysis has taken into account the effects of noise
and discreteness of data. We have seen that for sufficiently small
T and N−1 the reconstruction of limited-bandwidth tomograms is
faithful and there is no information loss [see Eq. (35) and follow-
ing comments]. Also, quadrature uncertainties and unbiased noise
do not affect the reconstruction [see Eq. (41) and following com-
ments]. By combining all these results we now discuss the robust-
ness of quantum tomograms under the afore-mentioned sources of
uncertainty and limitations (discreteness of the sampling and finite
precision in the determination of the quadrature, since we have al-
ready argued that a finite window is equivalent to the presence of
noise). Let us look again at the tomogram (16) and numerically
investigate the effects that arise due to a discrete mesh and the
presence of noise on the Wigner function (15). We shall recon-
struct the Wigner function by using Eq. (39) with T = 0.1, N = 5,
and

∑
k∈Z

replaced by
∑

|k|�K , with K = 40.
Fig. 1 shows the tomographic reconstructions of the Wigner

function (15), starting from its tomograms (16). The Wigner func-
tion in the noiseless case is shown in the upper panel and is
practically indistinguishable from the original (15). Notice that,
even though the tomogram is not band limited and the num-
ber of points K is finite, the reconstruction by means of (39)
is practically alias free. The reconstructions in the central and
lower panel are affected by noise, as in (40) with zero means and
σ

(1)
ξ = σ

(2)
ξ = 0.5: these are large values, of the same order of the

sampling periods T and 2π/N (one should notice, however, that
in this particular case the noise on the angular position of the
quadrature does not affect the procedure due to the symmetry of
the state considered). The central panel refers to a single realiza-
tion of the noise, while the lower panel to an average over 10
realizations of the noise.

The reconstruction error is measured by the distance

ε = 1

2
‖W − W rec‖B

= 1

2

∫
B

∣∣W (p,q) − W rec(p,q)
∣∣ dp dq, (46)

where B is the box considered (in our case B = [−1.5,1.5]2). We
obtain ε = 1.4 × 10−4,0.11,0.028 for the upper, central and lower
panel, respectively. This should be compared with ‖W ‖B = 1.01.
It is apparent both from Fig. 1 and the above numerical results
that the reconstruction is robust at the same time against noise and
discretization effects.
Fig. 1. Reconstruction starting from the tomograms (16) of the Wigner function
W (p,q) in Eq. (15). We set N = 5, T = 0.1 and K = 40 in Eqs. (39) and (41). Upper
panel: no noise. The reconstructed and the original function are indistinguishable.
Central panel: single noise realization, σ

(1)
ξ = σ

(2)
ξ = 0.5. Lower panel: average over

10 realizations of the noise.

7. Conclusions

In conclusion, we have discussed the practical problems that
arise in quantum (homodyne) tomography. First of all, the presence
of a weight function has been shown to introduce only a normal-
ization constant, which entails no loss of information and permits
the exact reconstruction without any precise knowledge of the
window function of the experimental setup: on average, quadra-
ture uncertainties and unbiased noise do not affect the recon-
struction. Second, the discretization procedure affects the global
reconstruction in the same way as it does in the classical Nyquist–
Shannon setting: if the bandwidth of the tomogram is limited,
there is no information loss for a sufficiently dense sampling. We
have also discussed the most general case, in which both prob-
lems arise simultaneously. Although we were not able to derive a
general formula, from which both sources of non-ideal data acqui-
sitions are present at the same time, and from which both situ-
ations investigated here are derived as limiting cases, we proved
by numerical methods the robustness of the overall reconstruc-
tion against the different sources of imperfections. The validity of
the approach proposed here should be tested in conjunction with
other refined theoretical tools based on the maximum likelihood
estimation [14,15,23].

Since nowadays quantum states reconstruction is based on the
measurement of tomograms, the robustness against non-ideal data
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acquisition provides solid foundation to the compatibility of tomo-
graphic experiments performed in different laboratories by differ-
ent methods. Our results provide therefore a solid basis for the
theoretical and phenomenological analysis of real tomograms.
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