MOMENTO DELL' IMPULSO

F forza impulsiva applicata ad un corpo rigido per un intervallo di tempo molto piccolo

$$\mathbf{J} = \int_{0}^{1} \mathbf{F} dt = \Delta \mathbf{P}$$
 impulso della forza \mathbf{F}

L'impulso J determina una variazione della quantità di moto P

 $\mathbf{M} = \mathbf{r} \times \mathbf{F}$ momento della forza \mathbf{F} rispetto ad un polo scelto $\mathbf{M} = \mathbf{M} = \mathbf{$

Se Δt molto piccolo, per cui $\mathbf{r} \cong \mathbf{costante}$

$$\int_{0}^{t} \mathbf{M} dt = \int_{0}^{t} \mathbf{r} \times \mathbf{F} dt = \mathbf{r} \times \int_{0}^{t} \mathbf{F} dt = \mathbf{r} \times \mathbf{J}$$
quindi

$$\mathbf{r} \times \mathbf{J} = \mathbf{L}_{FIN} - \mathbf{L}_{IN} = \Delta \mathbf{L}$$

r × J momento dell' impulso determina una variazione del momento angolare L