Un conduttore sferico di raggio R = 5 cm è circondato da uno strato di dielettrico di costante dielettrica k = 6 e spessore d = 2 cm. Il potenziale nel punto P distante $R_P = 10$ cm dal centro della sfera vale V = 270 volt. Determinare:

- 1. l'espressione del campo elettrico in tutti i punti dello spazio ($0 \le r \le \infty$);
- 2. la carica libera;
- 3. l'espressione del vettore D in tutti i punti dello spazio ($0 \le r \le \infty$);
- 4. le densità di carica di polarizzazione σ_{P1} e σ_{P2} sulla superficie interna ed esterna del dielettrico.

Su una sfera conduttrice carica S_1 , di raggio , è posta una carica $Q=10^{-9}$ C. La sfera è circondata da un guscio sferico dielettrico, concentrico con S_1 , di raggi R_1 =5 cm ed R_2 =15 cm. Il campo elettrico nel punto P distante R_P =10 cm dal centro della sfera vale E_P =300 V/m. Determinare:

- l'espressione del campo elettrico in tutti i punti dello spazio ($0 < r < \infty$);
- la costante dielettrica ε_r ;
- le densità di carica di polarizzazione sulle superfici di raggio R₁ ed R₂;
- il potenziale nel punto A distante R_A=30 cm dal centro del sistema.

Una sfera conduttrice di raggio $r_1 = 10$ cm è circondata da uno strato di dielettrico di raggi r_1 ed r_2 =20cm. Se la carica di polarizzazione è $q_P = 2 \cdot 10^{-9}$ C e il campo elettrico in un punto P distante r_P = 15 cm dal centro della sfera vale $E_P = 400$ V/m, determinare:

- 1) l'espressione del campo elettrico in tutti i punti dello spazio $(0 \le r \le \infty)$;
- 2) la carica libera sulla sfera conduttrice;
- 3) la costante dielettrica k;
- 4) la differenza di potenziale tra un punto A a distanza r_A = 12cm e un punto B a distanza r_B =18cm dal centro della sfera.

Una sfera conduttrice carica S_1 , di raggio $r_1 = 10\,\text{cm}$, è circondata da un guscio sferico dielettrico, concentrico con S_1 , di spessore $d=10\,\text{cm}$. Il potenziale sulla superficie esterna del dielettrico è $V_{EST}=180\,\text{ V}$, mentre il potenziale in un punto P distante $r_P=15\,\text{cm}$ dal centro della sfera vale $V_P=195\,\text{V}$ Determinare:

- a) l'espressione del campo elettrico in tutti i punti dello spazio $(0 < r < \infty)$;
- b) la carica Q posta sulla sfera conduttrice;
- c) il valore della costante dielettrica relativa k.