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Abstract
We characterize a regime of extreme {Jeans-like) instability, for strings evolving in
cosmological backgrounds, in which the string’s proper size grows asymptotically
like the scale factor of the expanding Universe.We develop a new approximation
scheme, based on the asymptotic proportionality of world-sheet and conformal
times, for the systematic, quantitative description of such non-linear regime. We
find that only inflationary geometries (accelerated expansion) are compatible with
this instability, and we derive an equation of state for a perfect fluid of unstable
strings. The effective pressure is negative, but not large enough to sustain by itself

a phase of accelerated expansion.
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1. Introduction

Recent studies [1,2] of string propagation in cosmological backgrounds have

revealed some interesting, perhaps unexpected, features:

i) For non-accelerated expansions of the background geometry (e.g. for or-
dinary matter or radiation dominated cosmologies) strings behave very much like
point particles: the centre of mass of the string follows a geodesic path while the
harmonic-oscillator amplitudes shrink in such a way as to keep the string’s proper
size constant [2]. As expected, the distance between two strings increases with

time, relative to their own size, just like the background scale factor R(%).

ii) The above picture only holds [2] if the expansion of the cosmological back-
ground is introduced through the o-model metric G,,. If, instead, one tries to
achieve a cosmological background through a time dependent dilaton field ¢ {3],
the string proper size itself appears to grow like the scale factor [2] (while the
oscillatory behaviour persists) so that the distance among strings stays constant
relative to their sizes. The energy density p decreases with time, in D dimensions,
like R~(P=2). This can be interpreted, alternatively, as a constant p and a time
dependent Newton constant, G « R™(P~2?) « e~2% (recall that only the prod-
uct Gp enters in the right-hand side of Einstein’s equations), in agreement with

expectations from the low energy string effective action.

ili) For a positive and sufficiently large acceleration d?R/dt? ( e.g. de Sitter
with a large Hubble constant) the expansion of the exact solutions to the string
equations around the point-particle motion 1] turns out to break down [2]. The
harmeonic oscillators develop imaginary frequencies [1] and stop oscillating, while
their proper amplitudes start to grow. This was described in Ref.[2] as the onset of
a Jeans-like instability, in analogy with the well known phenomenon of exponential
grow of long-wavelength perturbations [4]. The phenomenon is certainly related

to what has been called the stretching of cosmic strings [5] during a period of fast
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inflation.

Although the methods of Refs.[2,5] allow to detect the onset of instabilities,
they are not adequate for a quantitative description of the phenomenon (e.g. the
effective mass of the string becomes time-dependent and this increases the instabil-
ity in an apparently complicated, non-linear way). This prevents one from studying
some interesting questions like the suggestion, advocated in Refs.[6,7], that highly
"unstable” or "stretched” strings might lead to a regime of self-sustained inflation,
which does not require a cosmological constant or the dominance of the vacuum

configuration of some scalar field (inflaton).

In this paper we develop a new quantitative description of what we call the
"highly unstable regime” (we stress that this instability has to be distinguished
from the usual one due to the decay, or break up, of an excited string). We shall
be able to construct a solution to both the non-linear equations of motion and the
constraints in the form of a systematic asymptotic expansion in the large R limit,

and to classify the (spatially flat) Friedman-Robertson-Walker (FRW) geometries

according to their compatibility with this unstable regime.

An interesting feature of our solution is that it implies an asymptotic pro-
portionality between the world-sheet time 7 and the conformal time coordinate 7
of the background manifold. This is to be contrasted with the stable (point-like)
regime which was characterized [1] by a proportionality between r and the cosmic
time ¢. Indeed, the conformal time 5 (or 7) will be the small expansion parameter
of the solution: the asymptotic regime (small liﬁﬁt) thus corresponds to the

large R limit only if the background geometry is of the inflationary type.

Moreover, by exploiting the general propertties of the solution, we obtain an
equation of state for a gas of highly unstable strings, in the perfect fluid approx-
mation. In such way we can show, through the use of the constraints, that there

is an explicit connection between instability and the occurrence of an effective
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negative pressure.

The content of the paper is as follows. In Section 2 we recall the system of
equations and constraints to be solved, present our leading order approximation for
various inflationary cosmologies, and discuss the expected form of the corrections.
In Section 3 we derive a very simple equation of state obeyed by a perfect gas
of highly-unstable strings and compare it with what would be needed in order to
provide a scenario of self-sustained inflation. Section 4 contains a discussion of our

results (partially summarized in Table 1) and some conclusions.

2. Inflation and highly-unstable string configurations
The action for the bosonic string, coupled to a curved D-dimensional metric

background G 4B, is given by

1

dna’

S =

] b/—g9*P 0, X205 XBG a5 (2.1)

(conventions:A,B =0,1,...,D—-1,4,7 =1,..,D-1, a,8 = 0,1; a dot and a prime
denote, respectively, differentiation with respect to the world-sheet time and space
variables, 7 and o). The variation with respect to the world-sheet metric gqp (using

the gauge in which g,g is conformally flat) provides the constraints

GAB(XAXB + X’AX'B) =0
. (2.2)
GapX2X'8 =
while the variation with respect to X4 gives the string equation of motion in the

external gravitational field
XA _X"A L TpoA(XB + X'BYXC — X'C) =0 (2.3)

where T is the Christoffel connection for the metric G 45.
In this paper we are interested in the case in which the background corre-

sponds to an isotropic, homogeneous cosmological model, with flat spatial sections,
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described by the FRW scale factor R(¢) (see [2] for a discussion of the fact that
this manifold does not provide a conformally invariant ¢ model, at the quantum
level, and hence it is not a candidate string vacuum). Choosing a frame in which
the target time X° coincides with the cosmic time ¢, the background metric takes

the form

Gan(t) = diag(1, ~R*(1)6.;) (2.4)

so that the constraints become
(XO) 4+ (X" = RP ) [(X")* +(X*)7] (2.50)

XX =RFY X'x" (2.5b)

and the time and space components of the string equations of motion are (t = X?)

X0 _ xme Ri{—f [(Xu')2 _ (X:)z] (2.6)
Vi __ m‘__?_flf_z_ 10 31 yr0 yri
Xi- X" = 2 (XPX" - X°XY) (2.7)

In refs.[1,2] the solution of the string equations and constraints has been ex-
panded around the geodesic ¢4(7) of a point particle. A typical feature of this
expansion is that, for large R, the cosmic and world-sheet time become propor-
tional,

X 5o/ Mr T—00, R— o0 (2.8)
This is consistent with eqs.(2.5),(2.6) provided that, in this limit,
D=3 (X (2.9)
i i

and

(o' M)* = R? Z[(X")2 + (XYY (2.10)
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The study in refs.[1,2] reveals, however, that only in some cases (for exam-
ple radiation or matter-dominated FRW backgrounds) the expansion of eq.(2.7)
around a geodesic path ¢'(7) is consistent, in the sense that fluctuations around
it do not grow in time. Moreover, the r.h.s. of eq.(2.10) remains approximatively
constant, allowing the identification of the parameter M appearing in eq.(2.8) with
the (time-independent) mass of the system. We may call ”stable” these situations.

By contrast, if the FRW background is of the de Sitter type with large enough
Hubble constant H (i.e. o' MH > 1, where H = R~1dR/dt), it has been shown
[1,2] that the fluctuations around ¢*(7) develop a Jeans-like instability and their
proper amplitude start growing exponentially (like proper distances in a de Sitter
metric) while the co-moving amplitudes become ”frozen”. QObviously this regime
cannot be described by perturbations around the path of a point particle (M
itself must grow with time). This suggests to call "unstable” (in a Jeans sense) a
situation in which x* = RX* essentially grows like the cosmological scale factor, so
that X* tends to remain constant in time as the universe expands, i.e. X* ~ X'(o).

Since, according to the discussion of the X° fluctuations [1,2], we may expect
that |X"°| << |X°| both for the stable and unstable case, we are thus led to

characterize unstable string configurations, at large R, by the properties
X" << |X°, X << | X" (2.11)

We shall now determine the class of geometries for which the string equations and
constraints (2.5-2.7) can be consistently solved by a configuration satisfying these
properties.
First of all, by using the conditions (2.11), we find that egs.(2.5a) and (2.6)
can be simultaneously satisfied, asymptotically, by
X%, 7) = RL(0) (2.12)
where L(o) = (6;;X""X")*/2 (in the large R limit X* has to approach a 7-
independent function, X! — A'(¢)). As a consequence, the world-sheet time
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variable of unstable strings turns out to be proportional, asymptotically, to the
conformal time coordinate n, defined by R = dt/dn. Eq.(2.12) indeed implies the

relation

n(e,7) = 7L(0) (2.13)

in contrast with the proportionality between 7 and cosmic time (see eq.(2.8)),

typical of a stable string configuration. By using (2.13) we have
X" =9'R=rRL (2.14)

which leads to the ratio

|X"|/1X°| = |7L'/L| (2.15)

The solution (2.13) is asymptotically consistent with the instability conditions
(2.11), therefore, only in the 7 — 0 limit.

On the other hand, the configurations characterized by the properties (2 .11)
can describe stretched strings, with growing proper size, provided the regime in
which (2.11) are satisfied corresponds to an expanding phase, so that the scale
factor, asymptotically, goes to infinity. When expressed in terms of the conformal
time, the R — oo limit corresponds to n — 0 or  — oo according to whether
the background is, respectively, of the inflationary type (d>R/dt? > 0) or not.
Because of eq.(2.13) and of the fact that the asymptotic consistence of unstable
configurations is achieved for 7 — 0, we can thus conclude that only inflationary
backgrounds are compatible with the presence of highly-unstable strings, with a
proper size that grows proportionally to the scale factor.

In order to check this conclusion, we shall now verify that for the geometries
describing accelerated expansions the conditions (2.11) are consistent, when 7 — 0,
also with the second constraint (2.5b) and with the other equation (2.7).

We start by noting that, by using (2.5b) to eliminate X', the equation (2.7)
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for X* becomes

Xi—x" 4 23[}'(" ~ —Ri—x"X'fo] =0 (2.16)
R (X0)2 )
In the 7 — 0 limit, where X* — A4*(0) and eqs.(2.12-2.14) are valid, the above

equation linearizes in the form

. R .. ABAN L.
i oy flocif i — .
K- X" 2 (89 - SR =0 (2.17)
and the constraint (2.5b) reduces to
rLL' = A"X} (2.18)

We shall consider, in particular, three classes of expanding geometries, in which

the scale factor has the following asymptotic behaviour:

a) Power-law inflation

The conformal scale factor
R(n) = (kn)™*, l1<a<oo (2.19)

(where k is a constant) can be expressed in terms of the cosmic time as R(t) o
t*/(e=1) | and describes an inflationary background (accelerated expansion,
d?R/dt* > 0 ) of the power-law type (dH/dt < 0). The large R limit (n — 0,

7 — () corresponds in this case to ¢ — oo. In this limit, by using (2.13), we get

X%, 1) = 1": a(TL)l_a (2.20)
and eq.(2.17) becomes
Vi oy 2_‘1 i _ AAl o I
X'-X . (6 12 X7 =0 (2.21)

The general solution, to leading order as v — 0, depends on two arbitrary

functions of ¢, A(c) and B¥(c), and can be written as
. + 2 . .
Xi(o,7) = A (o) + %D'(a) + rit2epi(g) (2.22)
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where

Di(a) — ﬁ(Ani _ ?L%AriAfjAﬂj) (2_23)
i i AT
Fi(o)=B'-37B'A (2.24)

To this order in 7, the solution (2.22) automatically satisfies also the constraint

(2.18), because of the identities

An'Di — A!iAﬂj = LLF

(2.25)
A"Fi =0
Moreover, for 7 — 0, €q.(2.22) leads to the ratio
[ XF|/1X "] = [rD* + 72%(1 + 2a)F*| /] 4" (2.26)

which is asymptotically vanishing, consistently with the instability properties
(2.11).

b) de Sitter inflation ‘
Consider now an exponentially expanding background R(t) = ezp(Ht) of the
de Sitter type (H = const), which corresponds to the conformal scale factor

R(n) = —(Hn)™* (2.27)
By using (2.13) we have, in the large R limit (r — 0, t — oo)
X%o,7) = —H 'In(—7HL) (2.28)

In this background the asymptotic expression for X* is still given by the solution
(2.22), with @ = 1, so that the ratio (2.26) goes to zero , for 7 — 0, again

consistently with eq.(2.11).



c) Super-inflation

The third possible type of inflationary background, called [8] super- inflation
and characterized by d°R/dt?> > 0, dH/dt > 0, is represented by a scale factor
of the same type as {2.19), with the exponent a, however, varying in the range
0 < & < 1. For this background we get, in the 7 — 0 limit,

-

(rL)!—= (2.29)

X%o,m)=1t.+ 1k

—

where ¢, is an integration constant, determining the value of cosmic time at which
R diverges.

Concerning the asymptotic expression for X*, we have to distinguish two
cases: if & # 1/2, we are led again to the solution (2.22) with arbitrary functions
A' and B'. ¥ a = 1/2, the asymptotic form (2.22) has to be replaced by

Al 7 A §
L2

2 15 ANj 2
i i T i A4 T W ah
X'=A +—2(F + A T2 )+—2lnr(A A

) (2.30)

where F" is still given by eq.(2.24). In both cases it turns out that the ratio X*/X"
goes to zero at large R, in agreement with (2.11), so that unstable configurations

are compatible also with this scale factor.

It may be noted that , in all cases we have analyzed, our solution appears to
depend, at first sight, upon 2D — 3 functions of ¢: A' and F* (i = 1,..D — 1),
subject to the constraint A"F* = 0. However, by exploiting o-reparametrization

invariance, one can always fix one of the functions, by imposing e.g.
(A"A") = const (2.31)

One is thus left with 2(D — 2) arbitrary functions only, as it is known to be the
case for free strings (in flat spacetime). We stress, therefore, that eqs.(2.22) and

(2.30) represent indeed the general solution, to leading order as 7 — 0.
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The approach to the asymptotic regime can be studied by constructing a
systematic expansion of the solution as a power series in 7. We have been able to
compute the first non-leading corrections to eq.(2.22) (which include both integers
and a-dependent positive powers of 7), and we have checked that they satisfy, to
this order, both the string equations and the constraints®.

The analysis of this Section shows that inflationary backgrounds, whatever
their kinematical type, are always compatible, asymptotically, with the presence
of highly unstable strings. This is due, in our opinion, to the fact that for a
monotonically expanding background the inflation condition d*R/dt* > 0 implies
the existence of an event horizon at a finite distance from the origin (i.e. the
integral f o R-14¢ converges, where to, = t. for super-inflation and t = oo
in the other cases). It becomes thus possible, for the stretched strings, to have a
characteristic "proper size” larger than the horizon radius, which is just the typical
situation in which co-moving lengths are frozen.

We have to point out, however, that some inflationary backgrounds (like de
Sitter [1,2]} can also be compatible with the stable regime, in which the exact
solution is expanded around a geodesic. For these backgrounds the development
of instabilities will depend on the full history of the string. We will come back to

this point in Section 4.

3. Equation of state and self-sustained inflation

In the previous Section we have shown that configurations of highly unstable
strings can form and evolve only during a phase of accelerated expansion. In this
Section we shall first derive a condition on the energy momentum tensor for such
string configurations. This condition will then be used to discuss the possibility

of string-driven expansion, for the case in which these unstable configurations are

* We are grateful to Nguyen Suan Han for helping us with these calculations.
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the dominant source of gravity.

To this end we consider the D-dimensional Einstein equations for the back-
ground geometry (neglecting, in the large R limit, quadratic curvature terms and
other quantum corrections)

Tc®
D-2

Ra® =87G(T, 2 - 64 %) (3.1)

and we insert, in the source term, the string stress tensor T4 g obtained by varying

the action (2.1) with respect to the target metric G5
VZ-GT4B(z) = %; / dodr(X4XB - X'"AX'"BYP(X —z) (3.2)

We are working in the conformal gauge for the world-sheet metric, as stressed
before, and we are assuming for T4 g the spatial symmetries required by the source

of a FRW geometry, so that, in a comoving frame, we can write
Too = p, Tij = —pGij = pR*&;; (3.3)

where p and p are functions of the cosmic time only.

According to the constraints (2.2), the following general identity holds
7o'V =G(GpoT® — G;TY) =

_2 / dodr§P(X — 2)[Goo(X™)? + Gi; X X7] (3.4)

For a configuration of unstable strings, the conditions (2.11) are also valid: as a
consequence, the r.h.s. of (3.4) can be approximatively neglected with respect to

each term appearing in the L.h.s., so that
p=T° ~G;T¥ = —p(D - 1) (3.5)

We thus obtain, in the case of unstable strings, an effective negative pressure,

as opposed to stable strings or point-like matter for which, usually, 0 < p < p/3.
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This difference can be ascribed to the relative sign of the X* and X" contributions
to T%/ as they appear in eq.(3.2), and to the fact that the first contribution domi-
nates for massless particles while the second one is the dominant term for unstable
strings. For D = 4 we get p = —p/3, equation which has already appeared in the
literature [6,9] in the context of string- driven cosmology. Our derivation pro-
vides, through use of the constraints, an explicit connection between this equation
of state and the presence of instability (| X*| << |X"¥)).

Taking eq.(3.5) into account, and considering the case in which the domi-
nant gravitational source is a homogeneous and isotropic configuration of unstable

strings, the Einstein equations (3.1) imply
d2_R
di?

Recalling that d>R/dt? must be positive in order to allow instability, it turns out

(D—-1)}(D-2) = —8nGp(D — 4) (3.6)

that, except for the case D = 3, the effective pressure (4.5) is not negative enough
for allowing a possible unstable-string-sustained geometry. In four dimensions, in
particular, the asymptotic contribution of unstable strings to the acceleration is
exactly vanishing,

It should be stressed, however, that this result is valid in the case that all
spatial dimensions expand isotropically, with no compactified dimensions. More-
over it is based on the fact that the string sources are represented by a stress
tensor of the perfect fluid type, neglecting possible viscosity terms due to mutual
and self- interactions. When such corrections are included, and an effective bulk
viscosity is added to the components of the stress tensor, string-driven inflation

(and deflation) can become possible, as discussed in ref.[9].

4. Discussion and conclusions
In this paper, by complementing the work of refs.[1,2], we have discussed

the possible cccurrence of a highly unstable regime for strings evolving in FRW
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cosmological backgrounds. We recall from Sect.2 that all the results we have
presented apply for the moment to the large R limit, i.e. to "late times”. In this
limit the universe, as well as our large strings, behave (semi) classically, justifying

the neglect of quantum conformal anomalies which typically occur in non- Ricci-

flat backgrounds.

The results of this paper, together with those of ref.[2], are summarized in
Table I where, for each class of FRW metrics, we give the allowed asymptotic
string evolutions. Let us describe the Table in some detail and discuss its physical
meaning.

Starting from the trivial (flat) metric, in which obviously no instability can
occur, we see that the situation is not changed as long as one considers standard
cosmological evolution with d?R/dt? < 0, including the limiting case of a linear
expansion, d?R/di? = 0: no Jeans-like instability is possible in these geometries,
in agreement with the absence of event horizons.

The situation starts to change as we move on to inflationary geometries
(d?R/dt* > 0), where we have to distinguish three cases: for power-law infla-
tion (dH/dt < 0) both stable and unstable string evolutions are possible, for
super-inflation (dH/dt > 0) only the highly unstable regime is allowed. Finally,
for the physically interesting case of a de Sitter geometry (H = const) instabilities
are always allowed while the stable, point-like behaviour is only possible [2] for
sufficiently small H (i.e. o’ MH < 1).

We recall that the two possible behaviours are characterized by different iden-
tifications of the world-sheet time 7: in the stable regime 7 turns out to be pro-
portional to cosmic time £, while, in the unstable regime, the same is true for
conformal time 7.

It is perhaps surprising to find that some FRW geometries (e.g. power- law

inflation} allow for both kinds of behaviours, and one may ask what determines
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the late time evolution of a given string in such geometries. We believe the answer
to this question to lie in the complete history of the string and, in particular, on
its initial state.

Consider, for instance, the case of de Sitter geometry with two initial strings,
one with o/ MH < 1, the second with o/ M H > 1. The first string will evolve
like a massive point particle, with the center of mass following the corresponding
geodesic and keeping a constant mass. The second string, as shown in [2], will
start developing an instability in its first mode (n = 1) which will produce an
increase of the mass with time. The mass stored in the first mode will increase
until, at o’ M($)H > 2, the second mode will become unstable and the mass will
grow even faster. The process continues and, one after the other, more and more
modes develop the Jeans-like instability: the string approaches then the highly
unstable regime considered in this paper, in which the approximate description in
terms of the point-particle expansion is no longer appropriate.

Analogously, in the case of power-law inflation, the instability will develop [2]
if, at some time,

MR &R, . ., dH

Since, in this case, R~1(d?R/dt?) is a decreasing function of cosmic time, the
instability will continue only if the mass increase is fast enough to keep the above
inequality satisfied. In other words the string size has to grow faster than the
"horizon size” H!, which is expanding. This is to be contrasted with the case
of super-inflation, where H ! is decreasing: the horizon will always be crossed by
the string at late times, and the highly unstable regime will unavoidably set in.
Concerning the possibility of string-driven inflation, our results do not appear
to support it, at least in the perfect fluid approximation for the string energy-
momentum tensor. It may be possible, however, that the inclusion of other effects,

such as mutual string interactions or quantum string production from the vacuum,
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could sustain an inflationary expansion, and phenomenological models for these
effects have indeed been considered [6,9].

We finally stress the importance of finding a smooth way to join together
stable and unstable regimes: this would allow to deal, for instance, with physical
situations in which an inflationary epoch with unstable strings is followed by an era
of standard decelerating expansion in which only the stable behaviour is allowed.

We plan to come back to this case in the near future.

One of us (MG) wishes to thank the theory division at CERN, and in par-
ticular S. Fubini, for the kind hospitality received during the early stages of this

work.
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Table caption

Table I

A classification of spatially flat FRW backgrounds, according to their asymptotic
compatibility with stable and unstable string configurations. Here "unstable”
denotes the regime, discussed in this paper, in which the string proper size grows in
time like the scale factor, while ”stable” refers to a regime in which the solution to
the string equations can be consistently expanded around a geodesic, characterized

by the mass parameter M (see refs.[1,2]).
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