

Bari Theory Xmas Workshop 2013

Myself and my research in 15 minutes: Adversarial SAT: Climbing the Hierarchy of Complexity arXiv: 1310.0967

Marco Bardoscia

Postdoctoral Fellow

Dipartimento di Fisica di Bari - December 23, 2013

Research activity

Computational problems (AdSAT):

- Antonello Scardicchio (ICTP)
- Daniel Nagaj (University of Vienna, Slovak Academy of Sciences)

Intermediate Goods:

- ▹ Giacomo Livan (ICTP)
- ▹ Matteo Marsili (ICTP)

Evolution and Metabolic Networks:

- Areejit Samal (ICTP, Berkeley)
- ▹ Matteo Marsili (ICTP)

Outline

- What is Complexity?
- ▶ Not easy: K-SAT
- Even more difficult: AdSAT
- Random AdSAT
- Conclusions

Complexity Classes

- A complexity class is a set of functions that can be computed (for example by a Turing machine) within given resource bounds.
- ▹ We focus on decision problems: functions whose output can be either true or false. Is 2^{57 885 161} 1 a prime number?
- Easy: a problem is in P if, in the worst case, it can be solved in a time scaling polynomially with the size of the problem:
 - given two vertices in a graph, does a path connecting them exist?
 - Königsberg bridges: does a path crossing all the bridges exactly once exist (Eulerian path)?

Complexity Classes

- Hard problems: a problem is in NP if, in the worst case, it is possible to verify in a time scaling polynomially with the size of the problem if a candidate solution is actually a solution:
 - integer factorization: given two integers n and k, does a divisor of n smaller than k exist?
- Harder problems: a problem is in NPC if it is in NP and if any other problem in NP can be polynomially reduced to it:
 - graph coloring: is there a way to color all the vertices of a graph such that there are not neighbors of the same color?
 - Super Mario Bros (?!?)
 - ▶ SAT...

Boolean K-Satisfiability

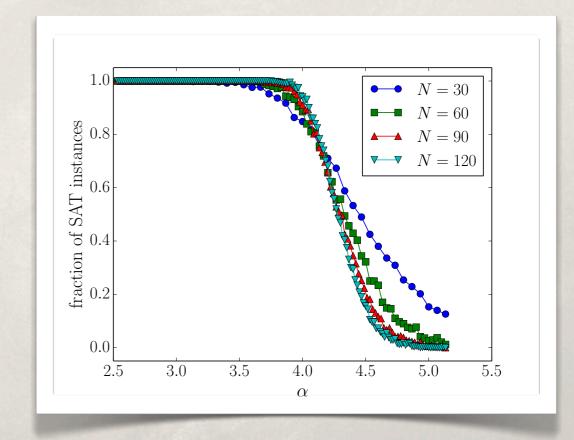
Given *N* boolean variables in the *K*-CNF form (here K = 3, N = 7, M = 4):

$$\phi(\vec{x}) = (x_1 \lor x_2 \lor \bar{x}_3) \land$$
$$(x_4 \lor \bar{x}_2 \lor x_5) \land$$
$$(\bar{x}_1 \lor x_6 \lor \bar{x}_4) \land$$
$$(x_7 \lor \bar{x}_3 \lor x_2)$$

it can be either satisfiable or unsatisfiable:

 $\exists \vec{x} \text{ s.t. } \phi(\vec{x}) = 1 \iff \phi \in L_{\text{SAT}}$ $\forall \vec{x} \ \phi(\vec{x}) = 0 \iff \phi \in L_{\text{UNSAT}}$

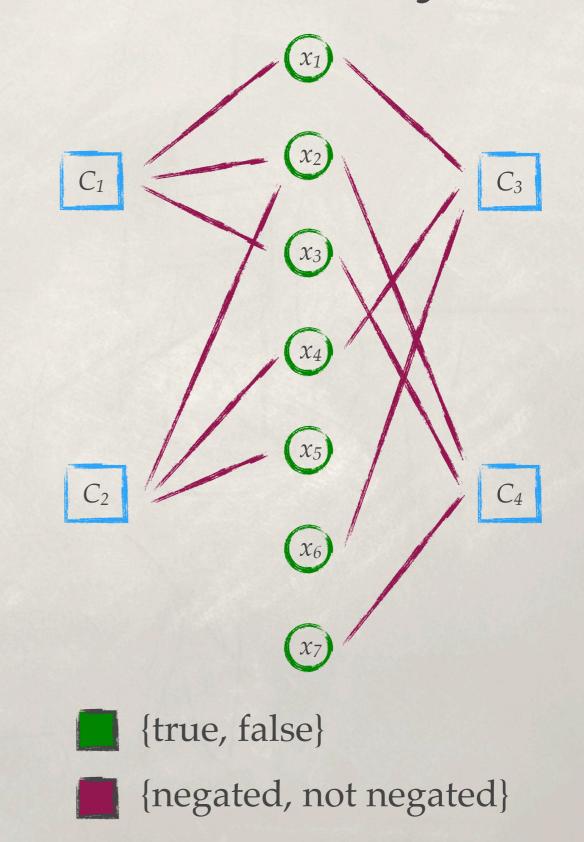
If we take random 3-CNF expressions:



sharp transition at $\alpha_c \approx 4.27$

Adversarial Satisfiability

- Two players: the *positive* controls the *N* boolean variables, the *negative* controls the *KM* negations.
- The positive wins if, for all the possible configurations of negations, he is able to make the formula SAT.
- The negative wins if he finds a set of negations such that, no matter what the positive does, the formula is UNSAT.



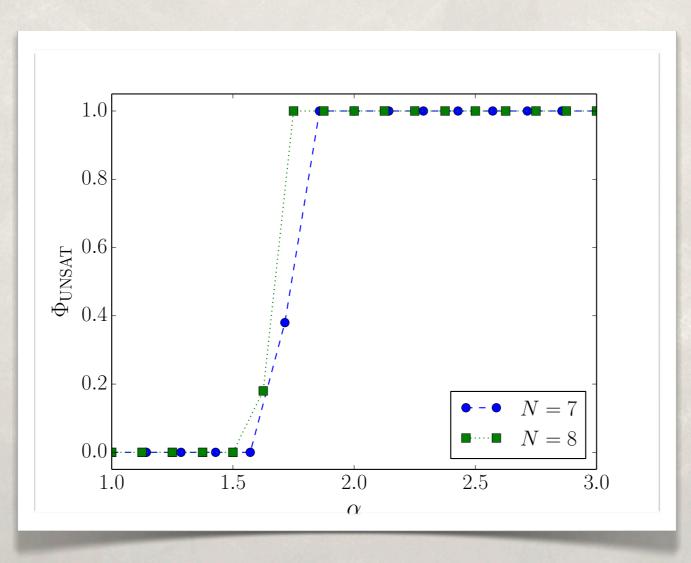
Adversarial Satisfiability

- Not in NP, al least not trivially: checking a configuration of negations is a K-SAT problem.
- The next step in the hierarchy of complexity: Σ_2^p
- But for K = 2 we proved that AdSAT is in **P**!

What happens if we look at an **ensemble** of graphs? If there is a transition, the threshold would be an upper bound for the transition threshold of *K*-QSAT.

Random AdSAT

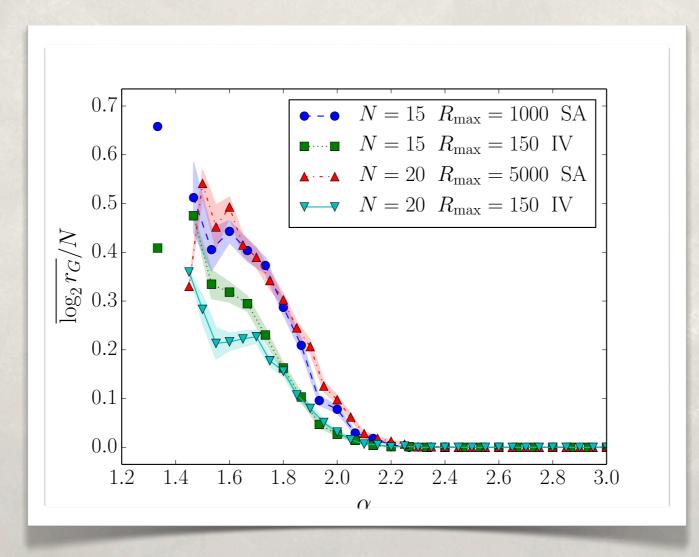
A complete algorithm is viable only for very small *N*: at *N* = 7 and α = 2 we have to solve 2³⁵ NP problems!



We must resort to a stochastic algorithm: **simulated annealing** using (the logarithm of) the number of solutions as a cost function, with **restarts**.

Random AdSAT

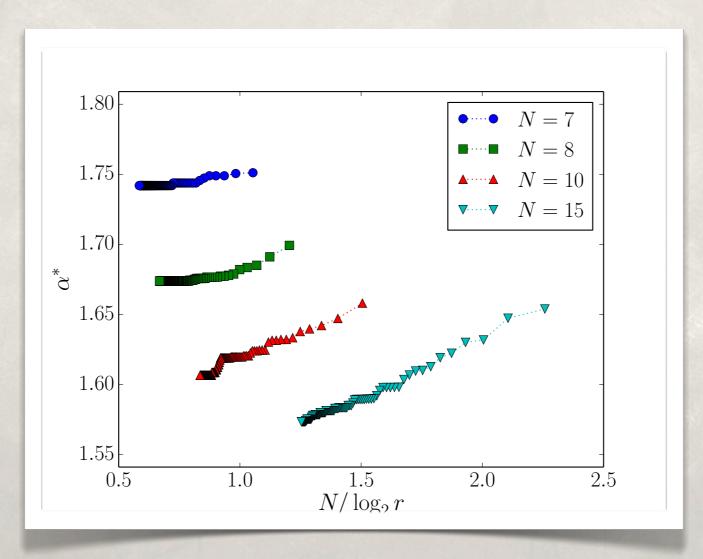
We augment an AdSAT graph so that we are deep in the UNSAT phase, and then gradually remove clauses.



Huge performance improvement, even more evident for larger N and smaller α .

Random AdSAT

Interpolating for the critical threshold we are able to set an upper bound: for N = 15, $\alpha_c < 1.6$!



We are also able to set for N = 100, $\alpha_c < 2.7$, in sharp contrast with previous results.

Conclusions

- ▶ For K = 2 AdSAT is **P**.
- Using an improved simulated annealing with restarts we are able to put upper bounds on the critical value of *α*.
- ▶ For N = 15, $\alpha_c < 1.6$, for N = 100, $\alpha_c < 2.7$.
- Can anything else be proved?

