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Chapter 1

Introduction to Quantum
Field Theory

1.1 From classical to quantum field theory

Quantum field theory arises from the need to combine quantum me-
chanics and relativity. In ordinary quantum mechanics, to deal with a
system of N particles one solves the Schrödinger equation

i!∂Ψ
∂t

= ĤΨ (1.1)

where, if one is working in the coordinate representation

Ψ = Ψ(q1, ...q3N , t) (1.2)

and Ĥ = Ĥ(q, p, t). This approach cannot be followed in relativistic
quantum theory. The reason lies not only in the absence of relativistic
covariance for eq. (1.1). In principle this defect could be corrected by
adopting a covariant generalization, such as the Klein-Gordon equation.
The reason is more profound and has its roots in the energy uncertainty
principle. As is well known this principle restricts the validity of the
energy conservation for small time intervals. More precisely suppose
we measure twice the energy of a particle with a time delay ∆t. Then
the uncertainties ∆E and ∆E ′ satisfy

∆E − ∆E′ ∼ !
∆t

. (1.3)

For small ∆t the energy fluctuations can be large enough as to pass
the threshold for the creation of new particles ∼ mc2. Clearly the
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formalism of non relativistic quantum mechanics embodied in (1.2)
cannot account for this behavior because the number of particles is
fixed.

A further consequence of the uncertainty principle is a new limi-
tation on the precision of measurements of momentum, as originally
shown by Landau and Peierls. Let us follow their argument. Since
∆E = v∆P then from (1.3)

(v − v′)∆P ∼ !
∆t

(1.4)

Since at most v − v′ = 2c then

∆P ∼ !
c∆t

(1.5)

When ∆t → 0, ∆P grows and and the particle momentum ceases to
be an observable.

This behavior is not peculiar of momentum; also position cannot be
measured with arbitrary precision. This is a consequence of the exis-
tence of negative-energy solutions of relativistic wave equations (Klein
Gordon, Dirac equations). If one tries to localize the particle, then
these unwanted solutions cannot be avoided. On the basis of dimen-
sional arguments we can estimate the uncertainty on position ∆q in
the particle rest frame as

∆q ∼ !
mc

. (1.6)

From ∆q∆P ∼ ! follows that ∆P ∼ mc, and this uncertainty on
momentum is large enough as to reach the energy threshold for creation
of new particles. If the particle moves with energy E, we have, instead
of (1.6):

∆q ∼ !c

E
(1.7)

and for massless particles, such as the photon,

∆q ∼ !
p

. (1.8)

In other words for the photon the uncertainty in the localization is of
the order of the de Broglie wavelength λDB. This means that only in
the limit λDB → 0, i.e. in the limit of geometrical optics, we can treat
e.m. waves as composed of localized particles. For the other cases the
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notion of space coordinates for the photon has no meaning. Therefore
in quantum field theory we expect a formalism where position, anal-
ogously to time, is not an observable, but has only the meaning of a
label. It follows that position will not be described by an operator in
Hilbert spaces. The operators will be constructed by new entities, the
fields, i.e. functions F (x) = F (r⃗, t). Therefore the natural formalism
that takes into account the peculiarities of the relativistic quantum
theory is quantum field theory. This might be a major development,
but actually it is not. In fact a well known example of a classical field
with a quantum behavior is the electromagnetic field in vacuum, whose
quantum properties (photons) were discovered at the very beginning of
quantum theory.

Electrodynamics is especially suited for relativistic quantum the-
ory since the Maxwell equations are covariant. Therefore, we shall
start from this theory. After two introductory subsections, as a first
example of the transition from the classical to the quantum field the-
ory we will consider below, in subsection 1.1.3, the quantization of the
electromagnetic field in absence of matter.

There is another formalism for quantization, the path-integral ap-
proach of Dirac and Feynman. This method is naturally extended to
field theory and we will give an outline of it in section 1.2 and 1.3 where
we derive some properties of the quantum theory of scalar field with
self-interactions. In section 1.4 we will briefly address the spin 1 and 2
fields. A few appendices conclude the chapter.

1.1.1 Summary of Classical Electromagnetism

Electromagnetic tensor:

Fµν = ∂µAν − ∂νAµ . (1.9)

Maxwell equations:

ϵµνρσ∂νFρσ = 0 , ∂µFµν =
4π
c

Jν ; (1.10)

they are invariant under gauge transformations:

Aµ → A′ = Aµ + ∂µf . (1.11)

Relation between 4−potential, scalar and vector potential:

Aµ = (φ, A⃗) . (1.12)

3



Lorentz gauge:
∂µAµ = 0 . (1.13)

Radiation gauge
φ = 0 , ∇⃗ · A⃗ = 0 . (1.14)

Fields E⃗, B⃗ in the radiation gauge

E⃗ = −1
c

∂A⃗

∂t
, B⃗ = ∇⃗ ∧ A⃗ . (1.15)

Vacuum Maxwell equations in the Lorentz gauge coincide with the
d’Alembert equation:

!Aµ = 0 , (1.16)

where the d’Alembert operator is: ! ≡ ∂µ∂µ ≡ 1
c2

∂2

∂t2 − ∇2 .
Lagrangian for free e.m. field:

L = −1
4
FµνFµν . (1.17)

1.1.2 Electromagnetic fields as ensembles of oscillators

Let us consider the e.m. field in the vacuum in the radiation gauge. To
start with, we suppose that the radiation field is confined in a cube of
volume V = L3. The vector A⃗ can be decomposed in a Fourier series:

A⃗ =
1
V

∑

k⃗

(
a⃗k⃗ eik⃗·r⃗ + a⃗ ∗

k⃗
e−ik⃗·r⃗

)
(1.18)

where
kx =

2πnx

L
, ky =

2πny

L
, kz =

2πnz

L
, (1.19)

with nx, ny, nz arbitrary integers. When L → ∞ one replace the
Fourier series by a Fourier integral and k⃗ becomes a continuous vari-
able:

A⃗ =
∫

dk⃗

(2π)3
(
a⃗k⃗ eik⃗·r⃗ + a⃗ ∗

k⃗
e−ik⃗·r⃗

)
. (1.20)

In fact, for any function f , with ∆kx = ∆ky = ∆kz = 2π
L → 0 (for

L → ∞), one has:

∫
dk⃗

(2π)3
f(k⃗) ≈

∑

nx,ny ,nz

∆kx∆ky∆kz

(2π)3
f(∆kxnx, ∆kyny, ∆kznz) =
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=
1
V

∑

nx,ny ,nz

f(k⃗) . (1.21)

Notice that A⃗ in (1.18) is real since a⃗ ∗
k⃗

is the conjugate of a⃗k⃗. Since
∇⃗ · A⃗ = 0, then a⃗k⃗ is proportional to k⃗:

a⃗k⃗ · k⃗ = 0 . (1.22)

As to its time dependence, it must be harmonic:

a⃗k⃗ ∝ e−iωt , ω = |⃗k| ,

so that each Fourier component satisfies the vacuum Maxwell equations
exactly as A⃗ does, see (1.16). Notice that we work with units c = 1.

Let us define new variables:

q⃗k⃗ =
1√
4πV

(
a⃗k⃗ + a⃗ ∗

k⃗

)
, p⃗k⃗ = −iω

1√
4πV

(
a⃗k⃗ − a⃗ ∗

k⃗

)
=

dq⃗k⃗

dt
, (1.23)

so that

a⃗k⃗ =
√
πV

(
q⃗k⃗ +

i

ω
p⃗k⃗

)
, a⃗ ∗

k⃗
=

√
πV

(
q⃗k⃗ − i

ω
p⃗k⃗

)
. (1.24)

By these variables we can identify the e.m. field as an ensemble of
harmonic oscillators, which is very useful to perform quantization, see
subsequent section 1.1.3, because the linear oscillator problem is exactly
solvable in quantum mechanics. In fact, let us compute E⃗ and B⃗:

E⃗ = −∂A⃗

∂t
= −

√
4π
V

∑

k⃗

(
p⃗k⃗ cos k⃗r⃗ + ωq⃗k⃗ sin k⃗r⃗

)
, (1.25)

B⃗ = ∇⃗ ∧ A⃗ = −
√

4π
V

∑

k⃗

(
k⃗ ∧ q⃗k⃗ sin k⃗r⃗ +

k⃗

ω
∧ p⃗k⃗ cos k⃗r⃗

)
(1.26)

and the energy of the e.m. field:

H =
1
8π

∫
dr⃗
(
E⃗2 + B⃗2

)
. (1.27)

The only contributions that, after integration do not vanish are those
proportional to cos2 k⃗r⃗ or sin2 k⃗r⃗. The result is

H =
1
2

∑

k⃗

(
p⃗ 2

k⃗
+ ω2q⃗ 2

k⃗

)
. (1.28)
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We observe that q⃗k⃗, p⃗k⃗ satisfy q⃗k⃗ · k⃗ = p⃗k⃗ · k⃗ = 0 because of their
definition and eq. (1.22). Therefore they have only two components
that we call qk⃗α and pk⃗α (α = 1, 2). These two directions coincide with
two directions of E⃗, i.e. with two different polarizations of the e.m.
wave with wave vector k⃗. We have therefore

H =
1
2

∑

k⃗α

(
p2

k⃗α
+ ω2q2

k⃗α

)
, (1.29)

which shows that the hamiltoniana of classical radiation field is written
as sum of hamiltonians of an infinite number of independent linear
oscillators with canonical variables qk⃗α e pk⃗α.

Problem. Using the Hamilton equations for the system (1.29) prove that the

oscillators are independent from each other.

Each term in (1.29) corresponds to a monochromatic plane wave
with definite polarization, wave vector k⃗ and frequency ω coincident
with the frequency of the linear oscillators.

If we consider the field momentum,

P⃗ =
1
4π

∫
dr⃗ E⃗ ∧ B⃗ , (1.30)

proceeding analogously to our treatment of energy one proves that

P⃗ =
1
2

∑

k⃗α

(
p2

k⃗α
+ ω2q2

k⃗,α

)
n⃗ , (1.31)

with n⃗ = k⃗/ω . We notice that H = c|P⃗ |.

1.1.3 Quantization of the electromagnetic field

In quantum mechanics observables are described by hermitian opera-
tors in Hilbert spaces. Since the components of the e.m. are observ-
ables, E⃗ and B⃗ will be observables as well. The quantum theory of light
is an example of quantum field theory (QFT). QFT is significantly more
complicated than quantum mechanics of a system of particles since E⃗
and B⃗ depend not only on t but also on r⃗, which means that we are
dealing with infinitely many operators. However elementary particle
physics can only be dealt with using this language, therefore in this
chapter we will present some basic results and fundamental ideas of
QFT. In this subsection we shall describe the main ideas needed to
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quantize the free 1 e.m. field, basically following Vol. IV of the Landau
and Lifchitz textbook.

To start with we consider only the time-dependent free field, i.e. the
fields that classically describe e.m. waves. In fact, as we discuss below,
the static fields are always classic. It is useful to consider as variables
A⃗, from which, in radiation gauge, both E⃗ and B⃗ can be derived using
eq. (1.15). Our starting point are eqns. (1.29) and (1.31). We shall
use the following units:

! = c = 1 ,

Besides E⃗, B⃗ and A⃗ also the variables qk⃗α and pk⃗α are operators. To
develop the quantum theory one can assume for H and P⃗ the classi-
cal formulae (1.29) and (1.31), but one has to postulate commutation
relations between the operators qk⃗α and pk⃗α. The form of (1.29) and
(1.31) suggests the ansatz

[qk⃗α, pk⃗′α′ ] = iδk⃗k⃗ ′δαα ′ . (1.32)

As a consequence the energy of the e.m. field is quantized, assuming
the values:

E =
∑

k⃗,α

(
Nk⃗,α +

1
2

)
ω , (1.33)

where Nk⃗,α are arbitrary integers

Nk⃗,α = 0, 1, ... , n, ... (1.34)

Instead of the operators ak⃗α and a†
k⃗α

let us introduce the operators

ck⃗α =
√
ω/2πV ak⃗α =

1√
2ω

(
ωqk⃗α + ipk⃗α

)
(1.35)

c†
k⃗α

=
√
ω/2πV a†

k⃗α
=

1√
2ω

(
ωqk⃗α − ipk⃗α

)
(1.36)

that are analogous to the annihilation and creation operators of the
quantum linear oscillator problem as they satisfy

[ck⃗α, ck⃗ ′ α′ ] = 0 (1.37)

[c†
k⃗α

, c†
k⃗ ′ α′ ] = 0 (1.38)

[ck⃗α, c†
k⃗ ′ α′ ] = δk⃗ k⃗ ′δαα ′ . (1.39)

1This means with Jµ = 0 in eq. (1.10).
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One can easily prove that

H =
1
2

∑

k⃗α

(
p2

k⃗α
+ ω2q2

k⃗α

)
=

1
2

∑

k⃗α

(
ck⃗αc†

k⃗α
+ c†

k⃗α
ck⃗α

)
ω =

=
∑

k⃗α

(
N̂k⃗α +

1
2

)
ω , (1.40)

where we have introduced the operator (number operator)

N̂k⃗α = c†
k⃗α

ck⃗α

whose eigenvalues are in eq. (1.34). Similarly one can show that

P⃗ =
∑

k⃗α

(
N̂k⃗α +

1
2

)
k⃗ . (1.41)

If |Nk⃗α > are eigenkets of N̂k⃗α, one has

ck⃗α |Nk⃗α > =
1√
Nk⃗α

|Nk⃗α − 1 > (1.42)

c†
k⃗α

|Nk⃗α − 1 > =
1√
Nk⃗α

|Nk⃗α > . (1.43)

Using previous formulae it is easy to prove that

A⃗(r⃗) =
∑

k⃗α

(
ck⃗α A⃗k⃗α(r⃗) + c†

k⃗α
A⃗∗

k⃗α
(r⃗)
)

(1.44)

with

A⃗k⃗α(r⃗) =
√

4π
V

e⃗ {α}
√

2ω
eik⃗r⃗ , (1.45)

where e⃗ {α} (α (= 1, 2)) defines the polarization of the wave. In (1.44)
c, c† are operators and A⃗k⃗α(r⃗) numerical coefficients.

Eqns. (1.40) and (1.41) show that is more convenient to use the
representation where the operators Nk⃗α are diagonal. We note that
varying k⃗ and α, their common eigenkets:

| {Nk⃗α} > = | Nk⃗1 1, Nk⃗1 2, Nk⃗2 1, Nk⃗2 2, Nk⃗3 1, Nk⃗3 2... > (1.46)

form a complete orthonormal system. This representation is called
second-quantization representation or occupation-number. The wave-
function in this representation is

Ψ({Nk⃗α}) = < {Nk⃗α} | Ψ > . (1.47)
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In the Schrödinger scheme for temporal evolution this wavefunction
satisfies the Schrödinger equation, but we prefer to work in the Heisen-
berg scheme that presents the advantage of dealing in the same way
space and time coordinates. In the Heisenberg scheme operators de-
pend on time: A⃗(r⃗, t). Using the Heisenberg equations one can prove
that

A⃗(r⃗, t) =
∑

k⃗α

(
ck⃗α A⃗k⃗α(r⃗, t) + c†

k⃗α
A⃗∗

k⃗α
(r⃗, t)

)
(1.48)

with

A⃗k⃗α(r⃗, t) =
√

4π
V

e⃗ {α}
√

2ω
e−i(ωt−k⃗r⃗) . (1.49)

In the second-quantization representation H and P⃗ are real num-
bers:

H =
∑

k⃗α

(
Nk⃗α +

1
2

)
ω ,

P⃗ =
∑

k⃗α

(
Nk⃗α +

1
2

)
k⃗ .

These equations can be interpreted as follows: In the state | {Nk⃗α} >
energy and momentum of the e.m. wave are carried by particles having
(I reintroduce for a while the factors !, c) energy: E = !ω and momen-
tum !k⃗. These particles are called photons. Notice that the energy of
the states with one or more photons are computed from the vacuum
energy

Evacuum =
∑

k⃗α

1
2
ω . (1.50)

Evacuum is actually infinite, but it is constant and can be therefore
removed safely.

A few comments are in order. To begin with we repeat that Nk⃗α are
arbitrary. This means that more photons can possess the same quan-
tum numbers (k⃗ and α). Therefore they are bosons. As well known
bosons tend to occupy the same quantum states and this property is
reflected in a property of the e.m. field. In fact we know that classi-
cal electromagnetism describes rather accurately an enormous amount
of phenomena. This means that in all these cases quantum behavior
should not differ much from classical description. For this to happen the
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operators should be c- numbers. Let us consider annihilation/creation
operators c†

k⃗α
and ck⃗α:

ck⃗αc†
k⃗α

= c†
k⃗α

ck⃗α + 1 = N̂k⃗α + 1 . (1.51)

In the second quantization representation Nk⃗α is a number. Only if
this number is much larger than 1 we can write

ck⃗αc†
k⃗α

≃ c†
k⃗α

ck⃗α . (1.52)

and c, c† are numbers as they commute with all the other operators. As
a conclusion classical electromagnetism is a successful theory because
of the bosonic nature of the photon. Let us consider the factor

A⃗k⃗α(r⃗, t) =
√

4π
V

e⃗ {α}
√

2ω
e−i(ωt−k⃗r⃗)

appearing in (1.49). It is a plane wave describing a particle of definite
momentum p⃗ = !k⃗ and energy E = !ω. We can interpret A⃗k⃗α(r⃗, t) as
the photon wavefunction. The relation between the particle wavefunc-
tion and the field operator A⃗(r⃗, , t) is as follows:

A⃗k⃗α(r⃗, t) = < 0 | A⃗(r⃗, , t) |..., 1k⃗α, ... > , (1.53)

where | 0 > is the vacuum and |..., 1k⃗α, ... > , is the state containing
one photon of quantum numbers k⃗ α. The photon wavefunction, differ-
ently from other particles, does not represent the probability amplitude
to find, by a measurement, the photon in a given position r⃗; this is so
because a measurement of the photon position means its destruction,
e.g. by its absorption in the detector. In any event the photon wave-
function satisfies its own Schrödinger equation, i.e. the d’Alembert
equation:

∇A⃗ − 1
c2

∂2A⃗

∂t2
= 0 ,

see (1.49).
Let us discuss mass, electric charge and spin. The photon mass

vanishes because of the momentum-energy relation: E = cp. As for
electric charge, photons do not interact directly or, in other words, a
photon does not interact directly with the e.m. field. Therefore its
charge vanishes. As to spin, the presence of the vector e⃗ {α} in the pho-
ton wavefunction shows that under rotations the photon wavefunction
transforms as a vector. Such a behavior is peculiar of spin 1 particles

10



with the same number of components of a vector (3 = 2s+1). It should
be noted that when we speak of photon spin we refer to the total pho-
ton angular momentum. because the identification of the spin with the
angular momentum in the particle rest frame is meaningless for the
light. However, differently from other spin 1 particles the photon spin
components are two and not three. More precisely the components of
the spin projection on the momentum direction are ±1 (the S⃗ · n⃗ = 0
component is absent). This is a consequence of the transverse nature
of the e.m. waves, which implies that only two polarizations, both
transverse, are possible.

As a concluding remark let us show that static fields are always
classic. Let us suppose that the electric field E⃗ is almost time inde-
pendent in the time interval ∆t. Then its Fourier transform contains
frequencies in the range (0, 1/∆t). The total number of oscillators in
V = 1 with frequencies lower than 1/∆t can be estimated:

1
V

∫
dn =

∫
d3k

(2π)3
=

1
2π2c3

∫ 1/∆t

0
ω2dω ∼ 1

(c∆t)3
.

On the other hand the energy in the unitary volume is ∼ E2. Therefore
the energy per oscillator is

E2c3∆t3 .

Since each photon has energy !ω the total number of photons is

N ∼ E2c3∆t4

! .

The field is classic if N ≫ 1, i.e. if

E2 ≫ !
c2∆t4

.

For static fields one can take ∆t = ∞ and this condition is always
verified. On the other hand, rapidly varying fields and/or weak fields
cannot be well described by classical electromagnetism.

1.2 Feynman path integral

1.2.1 Quantum mechanics

The Feynman path integral approach provides a way to compute the
propagator in the coordinate representation:

U(qF , t + T ; qI , t) = < qF |U(t + T, t)|qI >=< qF |U(T )|qI >

11



= < qF |e−iHT/!|qI > , (1.54)

where we suppose H independent of time and consider, for the time
being, one dimensional motions.

With T = Nδt, and putting ! = 1:

< qF |e−iHT |qI >=< qF |
(
e−iHδt

)N
|qI >

= < qF |
∫ ⎛

⎝
N−1∏

j=1

dqj

⎞

⎠ < qF |e−iHδt|qN−1 >< qN−1|...×

× ...|q1 >< q1|e−iHδt|qI > . (1.55)

To begin with we compute

σj =< qj+1|e−iHδt|qi > (1.56)

for the free particle:

σj =
∫

dp < qj+1|e−iδtp2/2m|p >< p|qi >=

=
∫

dp

2π
e−iδtp2/2m+ip(qj+1−qj) =

√
−im

2πδt
e

imδt
2

(
qj+1−qj

δt

)2

(1.57)

where we have used (1.199). Therefore

< qF |e−iHT |qI > =
(
−im

2πδt

)N/2
⎛

⎝
N−1∏

j=1

∫
dqj

⎞

⎠ ×

× exp

⎧
⎨

⎩
imδt

2

N−1∑

j=1

(
qj+1 − qj

δt

)2
⎫
⎬

⎭ . (1.58)

We define the measure

∫
[Dq] = lim

N→∞

(
−im

2πδt

)N/2
⎛

⎝
N−1∏

j=1

∫
dqj

⎞

⎠ . (1.59)

In the limit N = T/δt → ∞ one has

imδt

2

N−1∑

j=0

(
qj+1 − qj

δt

)2

→ i

∫ T

0
dt

mq̇2

2
(1.60)
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and therefore

< qF |e−iHT |qI > =
∫

[Dq]eiS[q] , (1.61)

S[q] =
∫ T

0
dt L(q, q̇) . (1.62)

In the present case the lagrangian is simply given by L = Ekin, however
this formula holds also in presence of a potential energy. In fact in this
case

σj = < qj+1|e−iEkinδte−iV (q)δt|qi >

= e−iV (qj)δt < qj+1|e−iEkinδte−iV (q)δt|qi > (1.63)

where we have used the property

e−iδt[Ekin+V (q)] = e−iδtEkin e−iδt V (q) (1.64)

valid up to terms O(δt)2. This implies that (1.62) holds also for L =
Ekin − V . This result can be generalized and gives the amplitude for
the transition from an initial state |I > at time 0 to the final state
|F > at time T :

Z =< F |e−iHT |I >=
∫

dqF dqI

∫
[Dq]ψ∗

F (qF )ψI(qI) eiS[q] . (1.65)

Integrals such as (1.61) or (1.65) are called path integrals (or Feyn-
man integrals or functional integrals). We shall refer to Z also as the
generating functional, for reasons that will be clear below. The name
path integral follows from an interpretation of the measure. A particle
can go from the initial position X ′ at time t = 0 to the final position
X at time t = T by any of the polygonal trajectories Pj depicted in
fig. 1.1. All the paths begin and end in the same points. Since any
path can be approximated by polygonal trajectories, the path-integral
measure means that the transition amplitude is the sum over all the
trajectories with fixed end point, weighted by the factor exp iS.

It is not clear if the measure we have introduced in (1.59) makes
generally sense, in other words if the limit exists. It exists however if
one performs an analytic continuation and considers imaginary times
T → −iT . In fact

exp
{

i

∫ T

0
Ldt

}
→ exp

{
i

∫ −iT

0
dt

(
mq̇2

2
− V (q)

)}
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Figure 1.1: Path integral.

= exp
{
−
∫ T

0
dτ

(
mq̇2

2
+ V (q)

)}
(1.66)

(τ = −it), so that the integral

Z =
∫

dqF dqI

∫
[Dq]ψ∗

F (qF )ψI(qI)e−SE [q] (1.67)

is well defined due to the quadratic terms in the exponential. Here the
euclidean action is defined as

SE [q] =
∫ T

0
dτ

(
mq̇2

2
+ V (q)

)
. (1.68)

Let us now derive the semiclassical (! → 0) limit. We can compute <
qF |e−iHT/!|qI > by the steepest descent (or stationary phase) method,
see subsection 1.6; we get

< q|e−iHT/!|qI >∝ eiSc/! (1.69)

where Sc is the action computed at the classical trajectory qc(t) i.e.
the function q(t) that starts at time t in qI and ends at t + T in q and
satisfies δS = 0 or, equivalently, the Lagrange equations

∂L

∂q
− d

dt

∂L

∂q̇
= 0 . (1.70)
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The form (1.69) is the well known semiclassical limit for the wavefunc-
tion at time t+T : ψ(q, t+T ), for a particle that at time t was localized
in qI . We interpret this result by saying that the path integral is dom-
inated in the classical limit by the classical trajectory. In the following
table we present the main result of this subsection.

∫
[Dq] = lim

N→∞

(
−im

2πδt

)N/2
⎛

⎝
N−1∏

j=1

∫
dqj

⎞

⎠

1.2.2 Fields

In subsection 1.1.3 we have discussed the quantization of the free e.m.
field and we discussed the way to associate particles (photons) to it.
Photons have spin 1, a consequence of the vector nature of the potential
Aµ. We generalize this result stating that the association of particles
and fields is a general feature; in particular we can imagine that spin
0 particles will be associated to a scalar field i.e. a function φ(x)
(xµ = (t, r⃗)) that is scalar under Lorentz transformations Λ:

φ′(x′) = φ(x) (1.71)

where x′ = Λx.
We will discuss quantization of the scalar field using the path in-

tegral approach. Before doing that, let us introduce the action for
the scalar field by an analogy with the e.m. field, where we wrote the
hamiltonian as a sum of hamiltonians for infinitely many oscillators. To
this end we introduce a system of particles with mass m and potential
energy V so that the lagrangian is

L = Ekin − V . (1.72)

Let us consider L near an equilibrium point, where the first derivatives
of V vanish. If qa denotes the position of particle a with respect the
equilibrium, then

L ≈ 1
2

∑

a

mq̇2
a − 1

2

∑

a b

Kabqaqb −
∑

a b c

Fabcqaqbqc + ... (1.73)

Neglecting the third order terms the equations of motion are

m
d2qa

dt2
= −

∑

b

Ka bqb + O(q2) (1.74)
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K can be diagonalized by an orthogonal matrix R so that, putting
Q = Rq we get

d2Qa

dt2
= −

∑

a

ω2
bQa + O(Q2) , (1.75)

where mω2
a are the eigenvalues of K. This shows that in harmonic

approximation the system, exactly as for the e.m. field, is equivalent
to a set of non interacting oscillators. Non harmonic terms correspond
to interactions.

The generating functional for this system is a simple generalization
of (1.65):

Z =
∫ ∏

a

[Dqa]ei
∫ T
0 dt L(q,q̇) (1.76)

where we have embodied the product of the wave functions in the
definition of the measure and

L(q, q̇) =
∑

a

mq̇2
a

2
− V (q) . (1.77)

Let us define a field
φ(t, r⃗) (1.78)

whose values, on a discrete lattice, coincide with qa(t), e.g, if a =
(i, j, k), then φ(t, ℓi, ℓj, ℓk) = qa(t) (ℓ = lattice spacing); when (i, j, k)
vary in Z3 we cover the entire 3-D space.

Suppose that ℓ≪ L, where L denotes the smallest length scale we
are interested in; then one can make the substitution qa(t) → φ(t, r⃗).
We have, if σ = m/ℓ3 is a mass density:

∑

a

mq̇2
a =

∑

ijk

σℓ3(φ̇(t, ℓi, ℓj, ℓk))2 →
∫

dr⃗ σ [φ̇(t, r⃗)]2 . (1.79)

Let us next consider the term containing Kabqaqb and let us suppose
that K vanishes unless the triplets a = (i, j, k) and b = (i′, j′, k′) differ
by one unit along the same axis2, e.g. b = (i + 1, j, k). For example
with one space dimension we write

− 1
2

∑

ab

Kabqaqb =
1
4

∑

ab

Kab

(
(qa − qb)2 − q2

a − q2
b

)
(1.80)

2In other terms Kijk;i′j′k′ = K(δi′,i±1δjj′δkk′ + δi′,iδj,j′±1δkk′ + ...)
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Now

(qa − qb)2 = ℓ2
(
φ(aℓ) − φ(aℓ− ℓ)

ℓ

)2

→ ℓ2
(
∂φ

∂x

)2

(1.81)

Therefore we get

S[q] → S[φ] =
∫ T

0
dt

∫
dDxL(φ, ∂µφ) (1.82)

and the lagrangian density (or simply the lagrangian) is given by

L(φ, ∂µφ) =
1
2

[
σ

(
∂φ

∂t

)2

− ρ|∇⃗φ|2 − Aφ2 − Bφ3 − Cφ4...

]
, (1.83)

where the terms φ3, φ4, ... arise from anharmonic terms in (1.73).
With the definition

φ′ =
√
ρφ, c2 =

ρ

σ
, µ2 =

A

ρ
, ... (1.84)

we get (calling again φ the field φ′):

L(φ, ∂µφ) =
1
2
(∂φ)2 − V (φ) (1.85)

where

(∂φ)2 =
1
c2

(
∂φ

∂t

)2

− |∇⃗φ|2 (1.86)

and

V (φ) =
m2

2
φ2 +

g

3!
φ3 +

λ

4!
φ4 + ... (1.87)

If we want to describe a Lorentz invariant physical system and φ is a
Lorentz scalar, the lagrangian must be a scalar as well, D = 3 and c
must be interpreted as the velocity of light in vacuum. Therefore

(∂φ)2 = (∂µφ)(∂µφ) . (1.88)

The generating functional is obtained from (1.76)

Z =
∫

[Dφ]ei/!S[φ] (1.89)

with
S[φ] =

∫
ddx

(
1
2
(∂φ)2 − V (φ)

)
(1.90)
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and
[Dφ] =

∏

x⃗

[Dφ(t, x⃗)] . (1.91)

Here d = D + 1 (in three dimensions D = 3) and
∫

ddx =
∫ T

0
dt

∫
dDx . (1.92)

Ordinary quantum mechanics is obtained for D = 0.
Let us derive, by the stationary phase method the classical field

equations. In the classical limit (! → 0) the dominant contribution to
the path integral is given by the field φ satisfying δS = 0. Therefore

0 = δS = δ

∫
dt

∫
ddxL(φ, ∂φ) =

=
∫

dDx

(
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ)

)
= (1.93)

=
∫

dDx

(
∂L
∂φ

− ∂µ
∂L

∂(∂µφ)

)
δφ+

∫
dDx∂µ

(
∂L

∂(∂µφ)
δφ

)
.

The last term is transformed by the Gauss theorem in a surface term
∫

dDx∂µ

(
∂L

∂(∂µφ)
δφ

)
=
∫

Σ
dσµ

(
∂L

∂(∂µφ)
δφ

)
(1.94)

where Σ is an hypersurface extended at infinity. The integral (1.94)
vanishes because we assume that at the space-time infinity the fields
vanish. Since δφ is arbitrary the Euler-Lagrange equations follow:

∂L
∂φ

− ∂µ
∂L

∂(∂µφ)
= 0 . (1.95)

In the following table we summarize the main result of this section.

Z =
∫

[Dφ]ei/!S[φ]

S[φ] =
∫

ddx
(

1
2(∂φ)2 − V (φ)

)

[Dφ] =
∏

x⃗[Dφ(t, x⃗)]
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1.3 Quantization of the scalar field theory

1.3.1 Free scalar field theory

Let us first assume

V (φ) =
m2

2
φ2 +

λ

4!
φ4 . (1.96)

Then from (1.95) one gets

(✷ + m2)φ = −λ
6
φ3 (1.97)

For λ = 0 the scalar field is called free; its lagrangian is

L =
1
2
[
(∂φ)2 − m2φ2

]
(1.98)

and the corresponding field equation is known as the Klein-Gordon
equation:

(✷ + m2)φ = 0 . (1.99)

Before the advent of the Quantum Field Theory this equation was
interpreted as a covariant generalization of the Schrödinger equation;
in the present formalism is the equation satisfied by the scalar field φ
and is analogous to the Maxwell equation (1.16). One might quantize
it along the lines followed in subsection 1.1.3. The field φ would be
written as

φ =
1
V

∑

k⃗

(
ak⃗e

i(ωkt−k⃗·r⃗) + a∗
k⃗
e−i(ωkt−k⃗·r⃗)

)
(1.100)

where, to satisfy (1.99) one has

ωk =
√

k2 + m2 (1.101)

Similarly to the photon case the particles appear here as quanta of
mass m because (1.101) is the energy-momentum relativistic relation
typical of massive particles.

Since we have decided to follow the path integral approach, we shall
not introduce creation/annihilation operators and we will see particles
to emerge in a different way.

Let us go back to the functional generator in (1.89) which we write
as follows:

Z = < 0|e−iHT |0 >=
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=
∫

[Dφ] exp
{

i

∫
ddx

[
−1

2
φ(✷ + m2 − iϵ)φ+ Jφ

]}
.(1.102)

Note that we have integrated by parts (1.89) neglecting a surface inte-
gral, so that

(∂φ)2 → −φ✷φ ;

moreover we have changed

m2 → m2 − iϵ (1.103)

which guarantees the convergence in the Minkowsky space due to the
Gaussian nature of the functional integral. Finally we have added an
extra term

∼ Jφ (1.104)

to the lagrangian, which represents the interaction of the field with
an external source J . Only including this term we can get interesting
results; in fact, without (1.104) the functional integral would be trivial
because |0 > is the ground state of H for J = 0.

The integral (1.102) can be performed exactly. As a matter of fact
let us discretize space variables r⃗ so that r⃗ = aℓ = (nxℓ, nyℓ, nzℓ) and
let us take t = jδt = jT/N . Then φ(t, r⃗) = φ(jδt, aℓ) ≡ φK with
K = (a, j) = (nx, ny, nz, j). Then, writing

∏
a

∏N−1
j=1 =

∏
K we have

Z ∝
∫ (∏

K

dφK

)
exp

{
i

[
1
2
φIAIKφK + JKφK

]}
(1.105)

where sum over repeated indexes is understood and the matrix A is
the operator −(✷ + m2 − iϵ) on the lattice. Using (1.203) to evaluate
(1.105) we get

Z ∝ e
−i
2 JIA−1

IKJK , (1.106)

and going back to the continuum

Z[J ] = Z[0] eiW [J ] , (1.107)

with

W [J ] = −1
2

∫
ddx1d

dx2 J(x1)D(x1 −x2)J(x2) = −1
2

< J1D12J2 > .

(1.108)
Here we have introduced the notation <>ij to denote integration over
space time variables xi, xj .
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Problem. Prove that

δ2W
δJ(x)δJ(y)

= −D(x − y) (1.109)

Therefore higher order functional derivatives vanish.

We have written D(x − y) and not D(x, y) since D satisfies

−(∂2 + m2 − iϵ)D = 1 , (1.110)

i.e.
−(∂2 + m2 − iϵ)D(x − y) = δ(x − y) (1.111)

D(x − y) is called the Feynman propagator for the scalar field and is
given by

D(x − y) =
∫

d4k

(2π)d

eik(x−y)

k2 − m2 + iϵ
. (1.112)

Problem. Prove that

D(x) = −i

∫
d3k

(2ωk 2π)3

{
e−i(ωkx0 − k⃗ · x⃗) θ(x0) + e+i(ωkx0 − k⃗ · x⃗) θ(x0)

}
.

(1.113)

Hint: Use the residue theorem to perform the k0 integration. If x0 > 0 close the

contour with a semi-circle in the upper half plane, where k0 has a positive imaginary

part; otherwise use the lower half-plane.

Besides (1.109) another useful formula for the free field propagator
is as follows:

iD(x−y) =
1

Z[0]

∫
[Dφ]φ(x)φ(y) exp

{
i

∫
ddx

[
−1

2
φ(✷ + m2 − iϵ)φ

]}

(1.114)
Problem. Prove (1.114). Comment on the relation between (1.114) and the

result
i D(x − y) =< 0|T (φ(x)φ(y))|0 > (1.115)

that is obtained for the propagator in the operatorial approach, see e.g. the Bjorken&
Drell textbook, Appendix C.

Hint: To prove (1.114) use (1.107) and (1.109). To prove (1.115) use the defi-
nition of path integral that takes into account time ordering automatically.

Let us go back to (1.102) and let us assume that the external source
is the form

J(x) = J(0, x⃗) = J1(x⃗) + J2(x⃗) = J [δ(x⃗ − x⃗1) + δ(x⃗ − x⃗2)] . (1.116)

In other terms we have two static sources concentrated in x⃗1 and x⃗2.
How the vacuum energy is disturbed? We expect a change in the

21



hamiltonian H → H + E; the new term E will be a potential energy
and

eiW [J ] =
Z[J ]
Z[0]

=
< 0|e−iHT |0 >

< 0|0 >
= e−iET . (1.117)

Evaluating W [J ] we consider only the two terms containing the product
J1J2 since we wish to compute the effect of having two sources at the
same time in two different places. We have therefore

−ET = W12[J ] = −J2

2

∫
d4xd4y

d4k

(2π)4
e(ik(x−y)

k2 − m2 + iϵ
×

× [δ(x⃗ − x⃗1)δ(y⃗ − x⃗2) + δ(x⃗ − x⃗2)δ(y⃗ − x⃗1)] =

= −J2
∫

dx0

∫
dk0 eik0x0

2π

∫
dy0 e−ik0y0

∫
dk⃗

(2π)3
eik⃗(x⃗1−x⃗2)

k2 − m2 + iϵ

= +J2
∫

dx0

∫
dk⃗

(2π)3
eik⃗(x⃗1−x⃗2)

k⃗ 2 + m2
(1.118)

Since
∫

dx0 = T we finally get

E = −J2
∫

dk⃗

(2π)3
eik⃗(x⃗1−x⃗2)

k⃗ 2 + m2
(1.119)

and, performing the last integral (see section 1.9),

E = − J2

4πr
e−mr (1.120)

where r = |r⃗1 − r⃗2|. With m =pion mass (∼ 140 MeV) this is the
famous Yukawa formula giving the potential between two nucleons in
a nucleus. It is attractive and its typical range is 1 Fermi.

Two static sources coupled to the scalar field in two different points
produce an energy potential and therefore a force acting on each source.
This static potential corresponds to an instantaneous force. To produce
results compatible with special relativity we need to consider time-
dependent sources; let us therefore consider again

J(x) = J1(x) + J2(x) (1.121)

and the effect of the product J1J2 on W :

W12[J ] = − 1
2

∫
d4xd4y J1(y)D(x − y)J2(x) =
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= −1
2

∫
d4xd4y

d4ℓ eiℓ·yJ1(ℓ)
(2π)4

d4k

(2π)4
eik(x−y)

k2 − m2 + iϵ

d4q eiq·xJ2(q)
(2π)4

= −1
2

∫
d4k

(2π)4
J1(k)J2(−k)
k2 − m2 + iϵ

. (1.122)

We have here introduced J(q), the Fourier transform of the source,
related to J(x) by

J(x) =
∫

d4q

(2π)4
eiq·xJ(q) . (1.123)

Note that since J(x) is real, J∗(q) = J(−q). Eq. (1.122) shows that
the sources can perturb significantly the vacuum only if their Fourier
transform are numerically large at ±k and kµ is not far away from the
mass shell condition

k2 = k2
0 − k⃗2 = m2 . (1.124)

This is the condition satisfied by a particle of mass m and we can
interpret this equation saying that (1.122) represents the creation of a
particle of mass m and momentum k at the position 2 by the source
J2 that absorbs a momentum −k; then the particle travels to 1 where
it is absorbed by the source J1 to which it releases its momentum, see
Fig.1.2

J12J

k , m

Figure 1.2: The virtual particle of momentum k and mass m going
from source J2 to source J1.

Note that at the integral (1.122) contribute also off-shell momenta,
for this reason we call in general the particle travelling between sources
J2 and J1 a virtual particle, leaving the adjective real to particles
satisfying (1.124). The existence of virtual particles, such that E ≠√

k⃗ 2 + m2 is possible only because the energy uncertainty principle
allows violations of the energy conservation, as discussed in Section
1.1.

We can now reconcile eq. (1.120) with relativity. The instantaneous
potential is only an approximation obtained when all velocities are
much smaller than c. The relativistic picture is as follows: The source
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interacts with the field φ at point 2, then a particle is created that
travels until is absorbed by the other source. Therefore the interaction
is always mediated by particles that act as messengers.

Can we extract further information from the generating functional
in the free field case? To give an answer let us perform an expansion
in J of Z. We get, using (1.107):

Z[J ] = Z[0]
∞∑

n=0

(iW [J ])n

n!
. (1.125)

W can be interpreted as the process of creation of a virtual particle
by a source, its propagation and its eventual absorption by another
source. Each term of the series contains products of W ’s without noth-
ing connecting them; for example, for n = 2,

1
2

(
−i

2

)2

< J1D12J2 >< J3D34J4 > (1.126)

each term is represented pictorially by a line with ends in two sources
and there is nothing connecting the pieces, see Fig. 1.3. Diagrams of
this sort are called disconnected. Notice that in the free field theory
all diagrams are disconnected.

Fig. 1.3 might represent the creation of two particles by two sources
1,2 and their eventual absorption by some detector in 3 and 4. During
their lives these particles do not interact because we are assuming free
particles. Therefore, to describe collisions we must include interacting
terms in the lagrangian.
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Figure 1.3: Disconnected diagrams.

In the following tables we summarize the main results of this sec-
tion.
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Notations

< AB >=
∫

d4xA(x)B(x)

< AiOijBj >ij=
∫

d4xid4xj A(xi)O(xi, xj)B(xj)

Free scalar fields

Generating functional

Z[J ] =< 0|e−iHT |0 >=
∫

[Dφ] ei<− 1
2φ(✷+m2−iϵ)φ+Jφ>

Z[J ] = Z[0]eiW [J ] ; W [J ] = −1
2 < J1D12J2 >

Free scalar field propagator:

D(x − y) =
∫

d4k

(2π)d

eik(x−y)

k2 − m2 + iϵ

1.3.2 Perturbative expansion for λφ4: Green’s functions

Including the self coupling we have to evaluate the generating func-
tional

Z[J ] = Z[0]eiW [J ] =
∫

[Dφ] ei<− 1
2φ(✷+m2−iϵ)φ− λ

4!φ
4+Jφ> . (1.127)

It is not an easy task to extract the relevant information from (1.127).
The best we can do is to treat it perturbatively by expanding in J and
λ. Let us first expand in J .

Since Z[J ] has a series expansion of the type (1.125), it clearly
contains both disconnected and connected amplitudes; however now
W [J ] is not simply given by the free field expression (1.122) and can
be computed only as series expansion in λ. Before doing that, let us
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observe that the Taylor expansion of (1.127) gives

Z[J ] = Z[0, 0]
∞∑

n=0

in

n!
< G(1, 2, ...n)J1J2...Jn >12...n , (1.128)

where the function G(1, 2, ...n) = G(x1, x2, ...xn) is the n−point Green’s
function

G(x1, x2, ...xn) =
1

in Z[0, 0]
δnZ

δJ(x1)δJ(x2)...δJ(xn)

∣∣∣
J=0

(1.129)

and is given by

G(x1, x2, ...xn) =
1

Z[0, 0]

∫
[Dφ]φ(x1)φ(x2)...φ(xn) ei<[ 12φD−1φ− λ

4!φ
4>

(1.130)
with

D−1 = −(∂2 + m2 − iϵ) . (1.131)

In these formulae we have extracted a factor Z[0, 0] = Z[J = 0,λ = 0].
Examples. For n = 2:

G(x1, x2) =
1

Z[0, 0]

∫
[Dφ]φ(x1)φ(x2) ei<[ 12φD−1φ− λ

4!φ
4> (1.132)

For λ = 0 the integration is easily performed using (1.205) with two
variables. Clearly we have:

G(0)(x1, x2) = iD(x1 − x2) , (1.133)

where the superscript (0) is a reminder that this result refers to the
free case. Therefore, G12 and G(0)

12 describe the propagation of a scalar
particle between 1 and 2 respectively in presence and in absence of
interaction.

For n = 4:

G(x1, x2, x3, x4) =
1

Z[0, 0]

∫
[Dφ]φ(x1)φ(x2)φ(x3)φ(x4)×

× ei< 1
2φD−1φ− λ

4!φ
4> . (1.134)

Similarly to (1.133) also (1.134) depends only on the differences xk−xj

because of translation invariance. Let us compute the 4−point Green’s
function in the free field case. Using again the Wick’s theorem (1.205)
with four variables

G(0)(x1, x2, x3, x4) = G(0)(x1, x2)G(0)(x3, x4)
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+G(0)(x1, x3)G(0)(x2, x4) + G(0)(x1, x4)G(0)(x2, x3) .(1.135)

Each of these terms correspond to a diagram like that in fig.1.3 (with-
out the factors corresponding to the sources. G(0)(1234) only contains
disconnected pieces; considering G(1234), that includes interactions,
also connected contributions appear. Let us see how, by considering
the first correction in the coupling constant λ:

G(1234) =
1

Z[0, 0]

∫
[Dφ]φ1φ2φ3φ4 ei< 1

2φD−1φ>

(
1 − iλ

4!
< φ4

x >x

)

= G(0)(1234) − iλ

4!

∫
[Dφ]

Z[0, 0]
ei< 1

2φD−1φ> < φ1φ2φ3φ4φ
4
x >x .(1.136)

Neglecting G(0)(1234) that we know already, let us apply the Wick’s
theorem to the last term:

− iλ

4!

∫
[Dφ]

Z[0, 0]
ei< 1

2φD−1φ> < φ1φ2φ3φ4φ
4
x >x =

= − iλ

4!

{
4! < G(0)(1x)G(0)(2x)G(0)(3x)G(0)(4x) >x

+
4!
2

(
< G(0)(1x)G(0)(2x) >x G(0)(34)+

+ < G(0)(1x)G(0)(3x) >x G(0)(24)+
+ < G(0)(1x)G(0)(4x) >x G(0)(23)+
+ < G(0)(2x)G(0)(3x) >x G(0)(14)+
+ < G(0)(2x)G(0)(4x) >x G(0)(13)+
+ < G(0)(3x)G(0)(4x) >x G(0)(12)

)
< G(0)(yy) >y +

+3
(
G(0)(12)G(0)(34) + G(0)(13)G(0)(24) + G(0)(14)G(0)(23) +

)
×

× < G(0)(xx) >x< G(0)(yy) >y . (1.137)

We see that the various terms can be organized as follows. There are
terms that connect the four points where the sources are to a point x,
see fig 1.4 (a); then we have terms where one particle propagates and
the other also propagate but interact with itself, see fig 1.4 (b); finally
there is the possibility that the particles propagate freely but particles
are emitted and reabsorbed without interacting with the sources, see
fig 1.4 (c). We see that the picture graphically represent a scattering
process 1+2 → 3+4 that, differently from the one depicted in fig.1.3 is
not trivial. Clearly one can go ahead with the perturbative expansion;
a typical O(λ2) contribution is depicted in fig. 1.5.

It arises from

1
2

(
− iλ

4!

)2 ∫ [Dφ]
Z[0, 0]

ei< 1
2φD−1φ> < φ1φ2φ3φ4φ

4
xφ

4
y >xy (1.138)
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Figure 1.4: O (λ) perturbative expansion of G(1234).

and is given by

1
2

(
− iλ

4!

)2

2 · 2(4 · 3)2
{

(1.139)

< G(0)(1x)G(0)(2x)G(0)(3y)G(0)(4y)G(0)(xy)G(0)(xy) >xy +
< G(0)(1x)G(0)(3x)G(0)(2y)G(0)(4y)G(0)(xy)G(0)(xy) >xy +
< G(0)(1x)G(0)(4x)G(0)(3y)G(0)(2y)G(0)(xy)G(0)(xy) >xy

}
.

Let us concentrate on the first of the three terms on the r.h.s. of this
equation; this contribution is depicted in fig. 1.5, while the other con-
tributions come from the so called crossed diagrams that are obtained
from the previous one connecting the external legs in different ways.
More precisely, the second term is obtained by connecting x1 and x3

in x and x2 and x4 in y; the third term is obtained connecting x1 and
x4 in x and x2 and x3 in y. The numerical factor (4 × 3)2 × 2 × 2 is
obtained as follows. The field φ1 can be linked to φx in four ways, φ2 to
φx in three ways. This gives a factor 4 × 3 and a similar factor comes
from linking φ3 and φ4 to φy. One of the remaining two φx can be
linked to the two remaining φy in two ways, which gives another factor
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Figure 1.5: One of the contributions to the O (λ2) connected part of
G(1234); it corresponds to the first of the three terms on the r.h.s. of
eq. (1.139).

of 2, while the remaining φx can be only linked to the remaining φy.
There is an overall factor of 2 obtained exchanging x and y.

Besides this connected contribution there are disconnected terms as
well. It is clear however that the connected terms are more interesting,
because the full amplitude can be written in terms of them only.

The generating functional Z[J,λ] generates both connected and dis-
connected contributions. However if we write, analogously to (1.107)
and (1.125),

Z[J.λ] = Z[0,λ]eiW [J ] = Z[0,λ]
∞∑

n=0

(iW [J ])n

n!
(1.140)

we can identify the generating functional of the connected parts. In fact
Z[0,λ] generates diagrams without external lines (J = 0), for example
diagrams like Fig. 1.6.

Figure 1.6: A diagram without external legs.

A term like (W [J ])2 is the product of two numbers and contains
therefore two disconnected parts; (W [J ])n contains n disconnected con-
tributions and so on. It is therefore clear that the generating functional
of connected graphs is W [J ].

Let us now evaluate in momentum space the amplitude depicted in
Fig.1.5 and written down explicitly in (1.139). Using Fourier transform
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of the free propagators one gets:

G(k1, k2, k3, k4)

= (2π)4δ(k1 + k2 − k3 − k4)
4∏

j=1

(
i

k2
j − m2 + iϵ

)
×

×(−iλ)2

2

∫
d4q

(2π)4
i

q2 − m2 + iϵ

i

(k1 + k2 − q)2 − m2 + iϵ

The proof is left as an exercise. This contribution is depicted in fig.
1.7.

1k

2k

3

4k

k
q

1k 2k q+ -

Figure 1.7: The O (λ2) scattering amplitude in momentum space.

The crossed diagrams produce two other contributions; one is ob-
tained by the exchange k2 ↔ −k3, the other one by the exchange
k2 ↔ −k4. This is an example of the crossing symmetry discussed in
more detail in section 1.7. It is useful in this context to introduce the
Mandelstam variables

s = (k1 + k2)2 = (k3 + k4)2 ,
t = (k1 − k3)2 = (k2 − k4)2 ,
u = (k1 − k4)2 = (k2 − k3)2 . (1.141)

They satisfy, in general the relation

s + t + u =
∑

ext.particles

m2
j (1.142)

and, in our case, s + t + u = 4m2. Crossing symmetry in our example
is equivalent to invariance under the exchanges s ↔ t, s ↔, and t ↔ u.

It would be tedious and time consuming to derive each time ex-
pressions like these. Feynman helped the physics community inventing
a set of practical rules; for the scalar theory they are written down in
the subsequent section 1.3.3.
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1.3.3 Feynman rules for λφ4

Feynman rules allow to get Green’ function easily. For λφ4 and for
connected Green’s function G(12...n) they are as follows:

1. Draw all the possible connected graphs with n external legs; to
O(λ)k include k vertices;

2. for each vertex a factor (−iλ)(2π)4δ(
∑

qj −
∑

q′n) if q, q′ are all
the momenta ingoing and outgoing;

3. a factor
∫

d4ℓ/(2π)4 for each internal momentum ℓ;

4. for each line with momentum ℓ a Feynman propagator i/(ℓ2 −
m2 + iϵ)

5. a numerical symmetry factor that has to be evaluated directly
from the definition.

It is common practice to omit the propagator on the external lines; in
this case the external legs are amputated. As an example we consider
the scattering amplitude of two pions into two pions: π(k1) + π(k2) →
π(k3)+π(k4). The scattering amplitude is the S−matrix element once
we have subtracted the unity matrix (corresponding to no scattering
at all: S − 1 = iT . We denote the scattering amplitude as iM. To the
order O(λ)2 it is given by

iM = −iλ+
λ2

2
[A(s) + A(t) + A(u)] (1.143)

where

A(s) =
∫

d4k

(2π)4
1

[k2 − m2 + iϵ][(k − K)2 − m2 + iϵ]
(1.144)

with K = k1 + k2 and s = K2. We note that this integral is logarith-
mically divergent for k → ∞.

Formulae for cross sections can be found in section 1.8, where also
the Feynman rules for QED and a few useful formulae are reported.

1.4 Spin 1 and spin 2

We derive here some results for spin 1 and spin 2 particles. The appli-
cations we have in mind are to photons and gravitons. The full-fledged
quantization of these fields is complicated by requiring gauge invari-
ance. Following Zee’s treatment we will add a mass to the photon
letting it go to zero at the end.
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1.4.1 Spin 1 particles

Giving the photon a mass and adding a coupling to an external current
transforms (1.17) into

L = −1
4
FµνFµν +

m2

2
AµAµ + JµAµ . (1.145)

The action takes the form (after an integration by parts)

S[A] =
∫

d4xL =
∫

d4x

(
1
2

Aµ
[
(✷ + m2)gµν − ∂µ∂ν

]
Aν + JµAµ

)
,

(1.146)
and the generating functional

Z = < 0|e−iHT |0 >=
∫

[DAµ]eiS[A] =

=
∫

[DAµ]ei
∫

d4x( 1
2 Aµ[(✷+m2)gµν−∂µ∂ν]Aν+JµAµ) . (1.147)

Notice the differences in comparison with the analogous relation for the
spin 0 field, eq. (1.102), that we rewrite for the readers’s convenience:

Z =
∫

[Dφ]eiS[φ] =
∫

[DAµ]ei
∫

ddx[− 1
2φ(✷+m2−iϵ)φ+Jφ] (1.148)

To get the massive spin-1 field propagator Dσλ(x) we simply have to
compute the inverse of the operator

(✷ + m2)gµν − ∂µ∂ν (1.149)

i.e. solve the equation
[
(✷ + m2)gµν − ∂µ∂ν

]
Dνσ(x) = δµ

σδ(x) (1.150)

Introducing the Fourier transform as in eq.(1.112)

Dνσ(x) =
∫

d4k

(2π)d
Dνσ(k)eikx (1.151)

we get [
(−k2 + m2)gµν + kµkν

]
Dνσ(k) = δµ

σ . (1.152)

Therefore the massive spin-1 field propagator in momentum space is

Dνσ(k) =
−gνσ + kνkσ/m2

k2 − m2
, (1.153)
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and for the generating functional of the connected Green’s functions,
instead of (1.122):

−1
2

∫
d4k

(2π)4
J(−k)

1
k2 − m2 + iϵ

J(k)

the result

W [J ] = −1
2

∫
d4k

(2π)4
Jν(−k)

−gνσ + kνkσ/m2

k2 − m2
Jσ(k) . (1.154)

For the photon ∂µJµ(x) = 0; therefore kµJµ(k) = 0 and the term
∝ kνkσ vanishes; moreover m → 0 so that one gets the result

W [J ] =
1
2

∫
d4k

(2π)4
Jµ(−k)

1
k2

Jµ(k) . (1.155)

We can now repeat the analysis with two static sources and get, instead
of the Yukawa potential

E = − J2

4πr
e−mr

the Coulomb long-range potential

E = +
J2

4πr
. (1.156)

Notice the striking fact that equal electric charges repel each other3,
while equal nuclear charges attract. Therefore the character of the force
between equal sources (attractive or repulsive) depends on the spin of
the exchanged particle (spin 0 or 1). In the next subsection we shall
consider gravitational force and we will discover that the attractive
character of the gravitational force is related to the graviton spin (s =
2). For the time being let us discuss the numerator of (1.153) and
introduce

Gνσ(k) =
∑

λ

ϵ{λ}∗ν ϵ{λ}σ . (1.157)

Here ϵ{λ}µ are, for λ = 1, 2, 3 three 4-vectors defined as follows. In
the rest frame of the particle, when kµ = (1, 0, 0, 0), ϵ{λ}µ = (0, e⃗{λ}).
The vectors e⃗{λ} are three orthonormal vectors, e.g. (1, 0, 0), (0, 1, 0)
and (0, 0, 1). They are the three independent spin eigenvectors and

3Clearly, if the electric charges are opposite in sign: +J and −J , they produce
an attractive forces.
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appear, for a particle of polarization λ, as a multiplying factor of the
wavefunction, exactly as the factor e⃗{α} in the photon wavefunction.
They satisfy

kµϵ{λ}µ = 0
ϵ{λ}µϵ{λ}µ = −1 (1.158)

in the rest frame and therefore in any other inertial reference frame.
We now prove that

Gνσ(k) = −gνσ +
kνkσ
m2

. (1.159)

In fact we can generally write

Gνσ(k) = Agνσ + Bkνkσ . (1.160)

Using (1.157) and (1.158), eq. (1.159) follows.
As a consequence we can write the massive spin 1 field propagator

as follows:

Dνσ(k) =
∑

λ ϵ
{λ}∗
ν ϵ{λ}σ

k2 − m2 + iϵ
. (1.161)

We notice that it is impossible to construct three 4-vectors ϵ{λ}µ satis-
fying (1.158) for a massless particle; for example for k = (1, 0, 0, 1) we
can have only ϵµ = (0, 1, 0, 0) or (0, 1, 0, 0). This is why the photon has
only two transverse (i.e. k⃗ · e⃗ = 0) polarizations.

1.4.2 Spin 2 particles

Let us now compute the analogous of (1.157) for a particle of spin 2
(the graviton). Its polarization wavefunction must have 5 = 2s + 1
components and therefore in general must be a rank 2 tensor. From a
tensor Eµν we can extract three tensors with definite symmetry prop-
erties, its antisymmetric part E[µν], its symmetric traceless part: E{µν}
and its trace gµνEσ

σ/4. They are apt to describe respectively a spin
1, a spin 2 and a spin 0 particle of momentum k, but the conditions
kµE[µν] and kµE{µν} must be imposed. The former condition reduces
the number of independent components from 6 to 3, the latter from
9 = 10 − 1 to 5. The 5 graviton spin eigenfunctions will be denoted as
ϵ{λ}µν (λ = 1, ..., 5) with

ϵ{λ}µν = ϵ{λ}νµ , ϵ{λ}µµ = 0 , kµϵ{λ}µν = 0 . (1.162)
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The analogous of (1.157) for a particle of spin 2 is
∑

λ

ϵ{λ}∗µν ϵ{λ}ρσ = GµρGνσ + GνρGµσ −
2
3
GµνGρσ . (1.163)

The proof is left as an exercise to the reader.
In analogy with (1.161), for the graviton propagator we write

Dµν,ρσ(k) =
∑

λ ϵ
{λ}∗
µν ϵ{λ}ρσ

k2 − m2 + iϵ
=

GµρGνσ + GνρGµσ − 2
3GµνGρσ

k2 − m2 + iϵ
.(1.164)

Let us now derive a formula for the generating functional analogous
to (1.154). The graviton field φµν (symmetric traceless) must be cou-
pled in the action to a source T µν . Since gravity is coupled to energy
the natural candidate is the symmetric energy-momentum tensor T µν ,
whose T 00 component is the energy density. Therefore instead of eq.
(1.165):

−1
2

∫
d4k

(2π)4
J∗(k)

1
k2 − m2 + iϵ

J(k)

one obtains the result

W [T ] = −1
2

∫
d4k

(2π)4
Tµν∗(k)

GµρGνσ + GνρGµσ − 2
3GµνGρσ

k2 − m2
T σρ(k) .

(1.165)
Let us observe that because of the energy-momentum conservation,
kµTµν = 0 and Gµν reduces to gµν in (1.165). If we now want to derive
the gravitational force between two static sources we must consider T 00

and obtain

W [T ] = −1
2

∫
d4k

(2π)4
T 00∗(k)

1 + 1 − 2
3

k2 − m2
T 00(k) , (1.166)

i.e. an attractive force since 1 + 1 − 2
3 > 0.

In a more rigorous treatment, that takes into account the massless
nature of the graviton, the factor changes to 1, but the sign does not
change and with it the attractive nature of the gravitational force.

1.5 Appendix I: Functional derivative

For a function of N variables S(q) ≡ S(q1, ...qN ), Taylor expansion
around qc = (qc 1, qc 2, ..., qc N ) is as follows

S(q) = S(qc +δq) ≈ S(qc)+
N∑

k=1

∂S(qc)
∂qk

δqk +
1
2

N∑

k,j=1

∂2S(qc)
∂qk∂qj

δqkδqj + ...

(1.167)
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An analogous formula for a functional S[q] might be obtained by ap-
proximating the graph of the function q = q(t), t ∈ (0, T ) by N + 1
points q0, q1, q2, ...qN , with qj = q(jT/N) for j = 0, ...N . This leads
to the notion of functional derivative.

Suppose that the functional S[q] is defined by the formula

S[q] =
∫ T

0
dt f(q(t)) , (1.168)

then, for q(t) = qc(t) + δq(t) one has

S[qc + δq] =
∫ T

0
dt f(qc(t) + δq(t)) ≈ S[qc] +

∫ T

0
dt
∂f

∂q

∣∣∣
q=qc

δq(t)

+
1
2

∫ T

0
dt
∂2f

∂q2

∣∣∣
q=qc

(δq(t))2, +... (1.169)

S[q] might have a a more complicated functional dependence, therefore
we write in general:

S[qc + δq] ≈ S[qc] +
∫ T

0
dt

δS

δq(t)

∣∣∣
q=qc

δq(t)+

+
1
2

∫ T

0
dt

δ2S

(δq(t))2
∣∣∣
q=qc

(δq(t))2 + ... (1.170)

δS

δq(t)
,

δ2S

(δq(t))2
are known as functional derivatives of the functional

S[q].
An equivalent definition of the functional derivative is as follows.

for a function of n variables S(qj) = S(q1, q2, ..., qn) we define

∂S(q)
∂qk

= lim
ϵ→0

S(qj + ϵδkj) − S(qj)
ϵ

. (1.171)

We generalize to functionals as follows:

δS[q]
δq(τ)

= lim
ϵ→0

S[q + ϵδτ ] − S[q]
ϵ

(1.172)

where
∀t ∈ (0, T ) : δτ (t) = δ(t − τ) . (1.173)

It is easily seen that this property is equivalent to the definition given
above.

Let us consider a few examples.
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• S[q] is a function, e.g S[q] = q(t). It can be always written as
follows

S[q] =
∫

dτδ(t − τ)q(τ) = q(t) (1.174)

In this case

δS = S[q + δq] − S[q] = δq(t) =
∫

dtδ(t − τ)δq(τ) (1.175)

and therefore
δq(t)
δq(τ)

= δ(t − τ) (1.176)

• S[q] is the action

S[q] =
∫ T

0
dt L[q(t), q̇(t)] . (1.177)

Then if δq(T ) = δq(T ) = 0, one has

δS[q] = S[q] − S[qc] =
∫ T

0
dt

δS

δq(t)

∣∣∣
qc

δq(t) + O(δq)2 , (1.178)

where
δS

δq(t)
=
∂L

∂q
− d

dt

∂L

∂q̇
(1.179)

Clearly, if δS = 0, as stated by the action principle, then the
Euler-Lagrange equations follow:

δS

δq(t)
= 0 . (1.180)

1.6 Appendix II: Steepest descent method

Let us consider the integral

I =
∫ +∞

−∞
dq g(q) e−

1
! f(q) . (1.181)

In the ! → 0 limit I is dominated by minima of f(q). Assuming one
minimum at q = a, we write f(q) ≈ f(a) + 1

2f (2)(a)(q − a)2 with
f (2)(a) > 0. Therefore one has

I ≈ g(a) e−
1
! f(a)

∫ +∞

−∞
dq e−

1
2! f (2)(a)(q−a)2 = g(a) e−

1
! f(a)

√
2π!

f (2)(a)
.

(1.182)
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For n variables using the result (1.202) and the development

f(q) ≈ f(a) +
1
2
f (2)

i,j (a)(q − a)i(q − a)j (1.183)

with the matrix f (2)
i,j given by f (2)

i,j (a) = ∂2f/∂qi∂qj |q=a, one gets

I =
∫ +∞

−∞
dnq g(q) e−

1
! f(q) = g(a) e−

1
! f(a)

√
(2π!)n

Det||f (2)||
. (1.184)

Now we substitute the n-dimensional integral
∫

dq with a functional
integral

∫
[Dq] and the function f(q) with the functional S[q]:

I =
∫

[Dq]e−
1
! S[q] (1.185)

In the limit ! → 0 the path integral is dominated by the path qc(t)
corresponding to a minimum of S[q]. Let us expand I around the
minimum qc, which is such that:

δS ≈
∫

dt
δS

δq(t)
δq(t) = 0 (1.186)

The variations δq(t) vanish at the extrema of integration in t because
all the paths in the functional integration start and end at the same
points. Therefore, since δq(t) is arbitrary, one recovers the Lagrange
equations

δS

δq(t)
=
∂L

∂q
− d

dt

∂L

∂q̇
= 0 . (1.187)

1.7 Appendix III: Crossing symmetry

Consider the scattering amplitude

M = M(A(pa) + B(pb) → C(pc) + D(pd)...) (1.188)

then Mcross is obtained by M by changing one (or more) particle into
its antiparticle, changing the sign to its momentum and changing its
place between initial and final state. For example

Mcross = M(A(pa) + C̄(−pc) → B̄(−pb) + D(pd)...) (1.189)

Crossing symmetry requires

Mcross = M . (1.190)

Feynman rules automatically guarantee crossing symmetry.
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1.8 Appendix IV: Feynman rules for QED and
cross sections

QED Lagrangian

L = −1
4
FµνFµν + ψ̄(iγµ(∂µ + ieAµ) − m)ψ (1.191)

Feynman rules:

1. Vertex : −ieγµ

2. Dirac propagator : iS(p) = i
γ · p + m

p2 − m2 + iϵ
(1.192)

3. Photon propagator iDµν(q) =
−igµν

q2 + iϵ

4. For any unconstrained internal momentum k :
∫

d4k

(2π)4
5. Fermion loop : factor − 1
6. A factor -1 between graphs differing by an exchange
of external identical fermion lines

7. External initial fermions: a factor u(p, s)
8. External final fermions: a factor ū(p, s))
9. External final antifermions: a factor v(p, s)
10. External initial antifermions: a factor v̄(p, s) .

Massive gauge boson propagator:

Dµν(q, mW ) =
−gµν + qµqν/m2

W

q2 − m2
W + iϵ

. (1.193)

Formulae for cross sections and widths
Cross section
For the process A(qa) + B(qb) →

∑
k Ck(pk)

dσ =
1

|v⃗a − v⃗b|2Ea2Eb

(
∏

k

d2pk

2Ek(2π)3

)
∑∣∣∣M

∣∣∣
2

×(2π)4δ

(
qa + qb −

∑

k

pk

)
S (1.194)

where
∑

means sum over final spins and average over the initial spins
and S is a statistical factor:

S =
∏

k

1
nk!

(1.195)

39



if there are nk identical particles in the final state.
Decay width (Γ = 1/τ)
For the decay process A(q) →

∑
k Ck(pk)

dΓ =
1

2mA

(
∏

k

d2pk

(2π)3

)
∑∣∣∣M

∣∣∣
2
(2π)4δ

(
q −

∑

k

pk

)
S . (1.196)

1.9 Problems

1. Gaussian integrals. If
∫

dxf(x) ≡
∫ +∞
−∞ dxf(x), prove the formu-

lae
∫

dxe−ax2/2 =
√

2π
a

(1.197)
∫

dxe−ax2/2+Jx =
√

2π
a

exp
J2

2a
(1.198)

∫
dxeiax2/2+iJx =

√
2πi

a
exp

−iJ2

2a
(1.199)

Moreover,

< f(x) >≡
∫

dxf(x)e−ax2/2

∫
dxe−ax2/2

, (1.200)

prove by induction that

< x2n >≡
∫

dxx2ne−ax2/2

∫
dxe−ax2/2

=
(2n − 1)!!

an
. (1.201)

If A is a symmetric matrix of rank n with detA ≠ 0 and x, J are
matrices (n × 1) prove that

∫
dnxe−xT Ax/2+JT x =

(2π)n/2

√
detA

eJT A−1J/2 (1.202)

∫
dnxei(xT Ax/2+JT x) =

√
(2πi)n/2

detA
e−iJT A−1J/2 (1.203)

2. If x = (x1, ...xn) and < f(x) > is defined as

< f(x) >≡
∫

dnxf(x)e−xT Ax/2

∫
dnxe−xT Ax/2

, (1.204)
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prove that
< xixj ...xkxℓ >=

∑
A−1

ab ...A−1
cd (1.205)

where the sum is over all the permutations (a, b..., c, d) of (i, j...k, ℓ).
This property is known as Wick’s theorem in Quantum Field The-
ory. Hint: Derive repeatedly (1.202) with respect to J putting at
the end J = 0.

3. Consider

L(x, v, t) =
mv2

2
+ b(t)x v − 1

2
c(t)x2 − e(t)x ,

with v =
dx

dt
. Prove that the classical equations of motion are

m
d2x

dτ2
+ [c(τ) +

db(τ)
dτ

] x(τ) + e(τ) = 0 .

Let x̄(τ) be a solution of this equation with appropriate boundary
conditions. Prove that

δS = S[x̄ + δx] − S[x̄] =
1
2

∫
dτ

δ2S

δx(τ)2
∣∣∣
x=x̄

(δx(τ))2 =

=
∫ t

0
dτ L̃(δx,

dδx

dτ
, τ) ,

with

L̃
(

y,
dy

dτ
, τ

)
=

m

2

(
dy

dτ

)2

+ b(τ) y
dy

dτ
− 1

2
c(τ)y2.

4. Prove that
∫

dk⃗

(2π)3
eik⃗(x⃗1−x⃗2)

k⃗ 2 + m2
= +

e−m|x⃗1−x⃗2|

4π|x⃗1 − x⃗2|
. (1.206)

5. Prove that in QED in the massless limit, for e+e− → µ+µ−

1
4

∑

spin

∣∣∣M
∣∣∣
2

=
2e4(t2 + u2)

s2
(1.207)

and for e−µ− → e−µ−

1
4

∑

spin

∣∣∣M
∣∣∣
2

=
2e4(s2 + u2)

t2
. (1.208)

This gives an example of crossing symmetry.
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6. Prove the formula
[Pµ,φ] = −i∂µφ (1.209)

that actually holds not only for scalar fields, but in general for
any field or function of fields. Hint: As P µ is the generator of
space-time translations, φ(x + a) = eiP ·aφ(x)e−iP ·a . Use this
property to prove (1.209).

References
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see A. Zee, Quantum Field Theory in a nutshell, Princeton University
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Chapter 2

Symmetries in Quantum
Field Theory

2.1 Global and local symmetries

2.1.1 Nöther theorem

The relevance of symmetries in field theory is embodied in the Nöther
theorem: to each continuous symmetry of the lagrangian corresponds a
conserved current.
Proof. Consider a complex scalar field theory with lagrangian

L = L(φ) , φ = {φ}i (2.1)

with i = 1, ..., N . Under
φ→ φ+ δφ (2.2)

the lagrangian is invariant:

L(φ+ δφ) = L(φ) (2.3)

Now

0 = δL = L(φ+ δφ) − L(φ) =
∂L
∂φi

δφi +
∂L
∂µ∂φi

δ∂µφi =

= δφi ∂µ
∂L

∂(∂µφi)
+

∂L
∂µ∂φi

∂µδφi =

= ∂µJµ (2.4)

with
Jµ = δφi

∂L
∂µ∂φi

= δφ
∂L
∂µ∂φ

(2.5)
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where in the last step we use a lighter notation. The theorem is proved.
Even though we have considered the scalar field case, its validity is
general.

Let us suppose that L is invariant1 under

φ→ φ′ = Uφ (2.6)

with U is a matrix of rank n belonging to a unitary group, i.e. either
SU(n), a group of matrices n × n whose definition is

U ∈ SU(n) ⇐⇒ UU † = 1 detU = 1 , (2.7)

or U(n) defined as

U ∈ U(n) ⇐⇒ UU † = 1 . (2.8)

In general we can write
U = eiαaTa (2.9)

where, for SU(n) (resp. U(n)), Ta are n2 − 1 (resp. n2) hermitean
matrices of rank n. For SU(n) Ta are traceless.

Problem. Prove this property.

If (2.6) is infinitesimal, then

φ′ ≈ φ+ δφ , δφ = iαaTaφ (2.10)

and there are as many conserved currents as there are generators in
the group:

Jµ
a = i

∂L
∂(∂µφ)

Taφ . (2.11)

Since ∂µJµ
a = 0, by integrating over all space we get

∂

∂t

∫
d3xJ0

a = −
∫

dσ⃗ · J⃗a = 0 (2.12)

where the surface integral is at the spatial infinity and vanishes since
the fields and the currents vanish for |x⃗| → ∞. Therefore, associated
to the symmetry we have conserved charges

Qa =
∫

d3xJ0
a (x⃗, t) (2.13)

Q̇a = 0 (a = 1, ..., n) . (2.14)
1Here we consider only internal symmetries, leaving aside space time translations

and rotations that give rise to 4-momentum and angular momentum conservation
laws.
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Let us go back to (2.9). If αa are independent of space-time the
symmetry is called a global gauge symmetry, otherwise it is a local gauge
symmetry. We shall discuss examples of global symmetries in chapter
3. For the time being we shall discuss the role of local symmetries.

2.1.2 Local symmetries and the Yang-Mills construction

If the internal symmetry is a local one , then

δφ = iαa(x)Taφ (2.15)

then one can easily see that the lagrangian (2.1)is not invariant under
local transformations. Since

∂µφ→ ∂µ(φ+ δφ) = ∂µφ+ δ∂µφ , (2.16)

then
δ∂µφ = ∂µδφ = iαaTa∂φ+ i(∂µαa)Taφ . (2.17)

The breaking of the invariance arises from the derivative term (any
polynomial term is invariant):

(∂µφ)†(∂µφ) → (∂µφ)†(∂µφ)+
+ i∂µφ

†(∂µαa)Taφ − iφ†(∂µαa)Ta∂µφ , (2.18)

which shows that the origin of the symmetry breaking is in the deriva-
tive of the parameters αa(x), i.e. in the second term on the r.h.s. of
(2.17). To enforce local gauge symmetry one has to substitute the
derivative ∂µ with a gauge covariant derivative Dµ such that

δDµφ = iαaTaD
µφ = iαDµφ , (2.19)

i.e. without the offending term. We have put

α = αaTa . (2.20)

In this way
(Dµφ)†(Dµφ) (2.21)

is invariant2. Let us put

Dµ = ∂µ + igAµ (2.22)
2Note that δ(Dµφ)† = −iαDµφ†.
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We use here the notation
O = OaTa (2.23)

(Oa = Aµ
a in the present case), with the normalization

TrTaTb = 2δab . (2.24)

The fields Aµ
a are called gauge fields,

For eq. (2.18) to hold the field Aµ must trasform in a peculiar way:

Aµ → Aµ + δAµ (2.25)

so that

δDµφ = D′
µφ

′ − Dµφ = [∂µ + ig(Aµ + δAµ)][φ+ iαφ]−
− ∂µφ− igAµφ =
= iα∂µφ+ i(∂µα)φ− gAµαφ+ igδAµφ . (2.26)

On the other hand

δDµφ = iα∂µφ− gαAµφ . (2.27)

It follows:
igδAµφ = gAµαφ− gαAµφ− i(∂µα)φ . (2.28)

Therefore
δAµ = i[α,Aµ] − 1

g
(∂µα) , (2.29)

which is the desired transformation law for the fields Aµ. The sim-
plest case is the abelian case, with the U(1) gauge group. Here U are
complex numbers: U = exp(iα), there is only one gauge field Aµ and
the commutator in (2.29) is absent. This formalism describes ordinary
electromagnetism, with Aµ the photon field. Note that Aµ is a dynami-
cal field and therefore we have to add to the lagrangian the free photon
field lagrangian of eq. (1.17) −1/4FµνFµν , with Fµν = ∂µAν − ∂νAµ.

Let us consider the non abelian case (Yang-Mills case). Let us
introduce the generalization of Fµν :

Fµν =
1
ig

[Dµ, Dν ] = [∂µ + igAµ, ∂ν + igAν ] =

= [Aµ, ∂ν ] + [∂µ,Aν ] + ig [Aµ,Aν ] =
= ∂µAν − ∂νAµ + ig [Aµ,Aν ] . (2.30)

In terms of the components:

F a
µν = ∂µAa

ν − ∂νA
a
µ − g fabcA

b
µAc

ν . (2.31)
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That Fµν is a suitable generalization of the abelian field tensor follows
from the fact that out of it we can construct a suitable pure gauge
lagrangian:

Lgauge = −1
2
Tr (FµνFµν) (2.32)

which is gauge invariant because under the gauge transformation in-
duced by U = U(x):

Fµν → UFµνU
† . (2.33)

We prove (2.33) for infinitesimal transformation U ≈ 1 + iα. As a
matter of fact one has

δFµν = i[α,Fµν ] (2.34)

and therefore
F′

µν − Fµν = iαFµν − iFµνα (2.35)

which implies

F′
µν ≈ (1 + iα)Fµν(1 − iα) ≈ UFµνU

† (2.36)

Problem. Prove (2.34) using (2.30).

We conclude with two important remarks. First, for the gauge
symmetry to hold, gauge fields must be strictly massless because terms
like m2Aa

µAa
µ is not invariant.

Problem. Prove that Dµ → UDµU†, from which prove that the gauge fields can

appear in the lagrangian only through gauge covariant derivatives.

The second remark is that in abelian gauge theories, due to the
term proportional to the coupling constant g in (2.31) the pure gauge
field lagrangian (2.32) contains besides the kinetic terms of the fields
Fµν

a also self-interactions of 3 and 4 gauge fields. They are absent only
for abelian gauge theories.

2.2 Spontaneous symmetry breaking

We speak of spontaneous symmetry breaking (ssb) when

• the hamiltonian (or lagrangian) is invariant under transforma-
tions belonging to a given symmetry group (which means that
also the Euler-Lagrange equations are symmetric).

• the physical states, in particular the ground state, are not sym-
metric.
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Spontaneous symmetry breaking is a phenomenon different from ex-
plicit breaking that occurs when there is a symmetry breaking term
in the lagrangian. Symmetry breaking is very common in nature. A
well known example is given by ferromagnetism. The hamiltonian is
rotationally invariant, but the ground state, that exhibits spontaneous
magnetization, breaks space isotropy.

A simple example of ssb in classical mechanics is given by the one
one-dimensional motion of a particle with potential energy (λ > 0) :

V (x) =
λ

4
(x2 − a2)2 , (2.37)

see fig. 2.1. Obviously the hamiltonian is parity invariant (the sym-
metry group is Z2). Let us determine the ground state, i.e. the state
of minimal energy. Clearly it would correspond to the particle at rest
either in x = a or in x = −a; in any case the ground state is not
parity invariant. Notice that for ssb to occur, one needs degeneracy of
the ground state. In our example there two different ground states i.e.
states of motion with the same value of the energy (the minimum). If
we consider both everything is symmetric, but since the particle can
be only in one position, the physical state is not symmetric.

-a +a x

V(x)

Figure 2.1: Double well potential.
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A second example again taken from classical physics is the scalar
field theory described by the lagrangian density

L(φ, ∂φ) =
1
2
∂µφ∂

µφ− V (φ) (2.38)

where φ is a real scalar field and V (φ) has again the double-well shape
of fig. 2.1:

V (φ) =
λ

4
(φ2 − a2)2 , (2.39)

The ground state has should have zero kinetic energy

Ekin =
1
2

∫
dx φ̇2 (2.40)

and zero potential energy

Epot =
∫

dx

(
1
2
|∇φ|2 + V (φ)

)
(2.41)

It is therefore either the constant state

φ = +a (2.42)

or the constant state
φ = −a . (2.43)

In any case the symmetry is spontaneously broken.
Let us now consider the quantum case and to begin with we consider

the quantum-mechanical version of the one-dimensional motion of a
particle with potential energy (2.37) of fig. 2.1. From general properties
of the Schrödinger equation for a potential such as (2.37), that allows
only discrete spectrum, we know that all the energy eigenstates are not
degenerate. This implies that there is not ssb. Parity invariance of the
hamiltonian implies that there exist both even and odd eigenfunctions,
but they correspond to different eigenvalues (in particular the ground
state correspond to an even eigenfunction).

The reason why in the quantum mechanical problem the ground
state is not degenerate is in the tunnelling phenomenon. It allows the
particle to go from one minimum of fig. 2.1 to the other. Therefore,
loosely speaking, the state of minimal energy is a superposition of two
wave-packets, peaked at x = +a and x = −a and there is no spon-
taneous symmetry breaking. It is useful to stress that no tunnelling
would take place were the two minima separated by an infinite energy
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barrier. This is why when we consider the quantum field theoretical
version of the problem, thins are different. As a matter of fact, in
quantum field theory with potential (2.39) the tunnelling barrier is not
V (0) − V (±a), but

∫
d3x[V (0) − V (±a)], which is infinite. Therefore

also in the quantum case for the scalar field theory with potential (2.39)
parity is spontaneously broken, exactly as in the classical field theory.

In quantum field theory the value a or −a is the vacuum expectation
value of the field. To prove this consider

< φ >0=
< 0|φ|0 >

< 0|0 >
=

1
Z

∫
[dφ]Ψ∗

0[φ] φ e−SE [φ]Ψ0[φ] (2.44)

where

Z =
∫

[dφ] Ψ∗
0[φ] e−SE [φ] Ψ0[φ] =

∫
[Dφ]e−

∫
dxE{[ 12 (∂Eφ)2+V (φ)} .

(2.45)
Let us evaluate the functional integrals by the saddle point method.
There are two saddle points, corresponding to the minima of SE [φ],
at φ = const. = ±a. The ground state functional Ψ[φ] is not parity
invariant and will be peaked e.g. in φ = +a. Then

< φ >0 =
(+a)

∫
[dφ]|Ψ0[a]|2 e−SE [a]

∫
[dφ] |Ψ0[a]|2e−SE [a]

= +a . (2.46)

Therefore the minimum of the classical potential energy φ = +a cor-
responds (in the semiclassical limit ! → 0) to the vacuum expectation
value (vev) of the field in the quantum case. The quantum field will
differ by the classical solution by small fluctuations O (!):

φ = a + φ′ (2.47)

and φ′ must be small for the perturbation theory to make sense. For
this reason the other vacuum −a cannot be reached by perturbation
theory (it can give rise to non perturbative phenomena, however, but
they lye outside the scope of this course).

Let us examine a few consequences of ssb in the field theory case.
In evaluating the perturbation theory it is better to work with fields
having zero vev. Therefore we consider the shifted field φ′ defined in
(2.47) so that the lagrangian becomes

L(φ, ∂φ) → L(φ′, ∂φ′) =

=
1
2
(∂φ′)2 − m2φ′2 − λaφ′3 − λ

4
φ′4 (2.48)
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with m2 = λa2 > 0. The field φ′ is massive and has both cubic and
quartic couplings. It is interesting to observe that the original φ had
bo cubic coupling and the quadratic term had a negative coefficient
−λa2/2 that could not be interpreted as a mass. last we observe that
L(φ′, ∂φ′) is no longer symmetric, which is a consequence of the shift
(2.47).

2.2.1 SSB of continuous symmetries

Let us consider a more general case, characterized by a continuous
symmetry instead of the discrete symmetry (parity) of the previous
subsection. We consider the lagrangian for the complex scalar field φ:

L(φ, ∂φ) = (∂µφ)†(∂µφ) − V (φ) , V (φ) = λ

(
φ†φ− a2

2

)2

. (2.49)

L has U(1) invariance, which, differently from the previous example, is
continuous. Since φ has two real components:

φ =
φ1 + iφ2√

2
, (2.50)

we can rewrite L as follows:

L(φ⃗, ∂φ⃗) =
1
2

(∂φ⃗)2 − V (φ⃗) (2.51)

with φ⃗ = (φ1,φ2) and

V (φ⃗) =
λ

4
[(φ⃗)2 − a2]2 . (2.52)

This shows that U(1) invariance is equivalent to O(2) invariance. In
the (φ1,φ2) plane the potential (2.52) has the form of a mexican hat
as in fig. (2.2). There are infinite degenerate vacua given by

φ2
1 + φ2

2 = a2 . (2.53)

Suppose that the true vacuum has φ1 = +a, φ2 = 0. Then performing
the shift

φ1 → φ1 + a , φ2 → φ2 (2.54)

one gets

L(φ⃗, ∂φ⃗) =
1
2
[
(∂φ1)2 + ∂φ2)2 − m2φ2

1

]
− λ

4
[(φ2

1 + φ2
2)

2 + 4aφ3
1] (2.55)
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Figure 2.2: Mexican hat.

The interesting point is that out of the two fields, one, φ1, has mass
m2 = 2λa2 > 0, and the other,φ2, is massless.

The presence of a massless scalar field is an example of the Gold-
stone theorem, that states that in presence of a spontaneous breaking
of a continuous symmetry there are as many massless bosons (called
Nambu-Goldstone bosons, NGB) as are the broken generators. In par-
ticular if the group has n generators and is completely broken, then
there are n NGB; if a subgroup with k < n generators remains unbro-
ken, then there are only n − k NGB.

It is useful to derive this result again using the form (2.49) of the
lagrangian. We write

φ = ρeiθ (2.56)

The minimum of V is obtained for

|φ| = ρ =
a√
2

(2.57)

and therefore, performing the shift

ρ = χ+ v (2.58)

one gets

L =
a2

2
(∂θ)2 + (∂χ)2 − 2λ2a2χ2

− 2
√

2λaχ3
(√

2aχ+ χ2
)

(∂θ)2 , (2.59)

which shows again the presence of a massless (θ) and a massive (χ)
field, together with three different interaction terms.
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2.2.2 Goldstone theorem

The Goldstone theorem is completely general. To begin with we prove
that in presence of ssb the vacuum is degenerate. If |0 > denotes the
vacuum (H|0 >= E0|0 >) we can always add the constant −E0 to the
hamiltonian so that:

H|0 >= 0 . (2.60)

Let Qa be the conserved charges associated to a symmetry group. Then

[H, Qa] = 0 , a = 1, ...n (2.61)

since the charges are conserved. If the vacuum is symmetric, then
Qa|0 >= 0 because in this way U |0 >= exp{iTaαa}|0 >= |0 >. Since
it is not symmetric we have Qa|0 >≠ 0. Now

HQa|0 >= [H, Qa] = 0 = 0Qa|0 > (2.62)

means that there is another eigenstate Qa|0 > different from |0| >
corresponding to the same eigenvalue. Therefore the vacuum state is
degenerate.

Let us consider a field theory, when, according to (2.13),

Qa =
∫

d3xJ0
a (x⃗, t) (2.63)

Take the state
|⃗k, a >=

∫
d3xeik⃗·x⃗J0

a (x⃗, t)|0 > (2.64)

We have

(P i)2 |⃗k, a >=
∫

d3xeik⃗·x⃗(P i)2J0
a (x⃗, t)|0 >=

=
∫

d3xeik⃗·x⃗[(P i)2, J0
a (x⃗, t)]|0 >=

∫
d3xeik⃗·x⃗(−∇2)J0

a (x⃗, t)|0 >=

= k⃗ 2
∫

d3xeik⃗·x⃗J0
a (x⃗, t)|0 > (2.65)

In the limit k⃗ → 0, this state vanishes. But in this limit also vanishes
P 2

0 |⃗k → 0 >= H2Qa|0 >. Therefore

PµPµ |⃗k, a >= 0 (2.66)

since it is a Lorentz scalar. This means that |k⃗, a > describes a massless
particle. Varying the index a we see that there are as many massless
particles as broken generators. This ends the proof3.

3 |⃗k, a > is a spin 0 object since under rotations it does not change.

53



We shall discuss below an example of SSB in particle physics iand
we shall learn that pions can be understood as the Goldstone bosons
of the spontaneously broken chiral symmetry of quarks.
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Chapter 3

Quarks

3.1 Isotopic Spin

The proton mass (mp ≃ 938.3 MeV/c2) and the neutron mass mn ≃
939.6 MeV/c2 are quite similar. This difference can be produced either
by a small term in the strong hamiltonian, which distinguishes between
p and n, or by the different electromagnetic properties of the two nu-
cleons. It is reasonable to neglect, at a first level of approximation,
this tiny mass difference. In a similar vein one can assume not only
that the masses are equal, but also that the strong interactions between
nucleons are invariant under the exchange

p ↔ n . (3.1)

A test is provided by the so called mirror nuclei, i.e. two nuclei that are
obtained by the substitution (3.1). Let us consider the binding energy
Eb of a nucleus (Z, A) formed by Z protons and A − Z neutrons:

Eb ≡ (Zmp + (A − Z)mn − M) c2 ,

where M is the nucleus mass. If nuclear interactions are invariant
under (3.1), the binding energies Eb of the nuclei (Z, A) and (A−Z, A)
should be equal. The simplest mirror nuclei are H3 (tritium: pnn) an
He3 (ppn); the binding energies are

Eb(H3) = 8.482 MeV ,

Eb(He3) = 7.711 MeV .

The difference might be attributed to the electrostatic repulsion be-
tween the two protons in He3, which decreases Eb. It is useful to
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observe here that typical nuclear binding energies are of the order of a
few MeV, about 106 larger than the atomic bonding energies.

Besides H3 and He3, other mirror nuclei have similar Eb and this
leads to to assume that:

Vpp = Vnn . (3.2)

On this basis one makes the following hypothesis. Strong nuclear
forces1 are invariant under the exchange (3.1).

The symmetry (3.1) is called charge symmetry of nuclear forces and
can be described by a formalism similar to the spin formalism. Let us
see it in detail. If strong interactions cannot distinguish between proton
(p) and neutron (n), we can imagine p and n as two states of the same
physical system, the nucleon N . Therefore we can write for the generic
nucleon state

|N >=
(
ψp

ψn

)
= ψp

(
1
0

)
+ ψn

(
0
1

)
, (3.3)

with |ψp|2 + |ψn|2 = 1, while

|p > =
(

1
0

)
,

|n > =
(

0
1

)
. (3.4)

Within this formalism the operator I+ that transforms the n state into
the p state, thus creating a unit of electric charge:

I+ |n >= |p > , (3.5)

is described by

I+ =
(

0 1
0 0

)
, (3.6)

while
I− = I†+ =

(
0 0
1 0

)
, (3.7)

transforms the p state into the n state and destroys a unit of electric
charge:

I− |p >= |n > .

1These forces, also called strong interactions, are responsible for the stability
of the nucleus. They are distinct from weak nuclear forces, responsible for the β
decays.

56



Let us introduce the Pauli matrices

τ1 =
(

0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)

and three operators I1, I2, I3 that satisfy

[Ii, Ij ] = iϵijkIk , (3.8)

while they commute with all the operators describing space properties
(r⃗, p⃗, L⃗, etc.). In the orthonormal basis when |1 >= |p > e |2 >= |n >

the matrices
τj
2

are a representation of the operators Ij while

I± =
1
2

(τ1 ± i τ2) .

The operators Ik act as generators of unitary transformations

U = eiαkIk (3.9)

acting as follows
ψ → Uψ (3.10)

on a generic state ψ. If Ik = τk/2, then U is a traceless, hermitean,
2 × 2 complex matrix; the U form a group called SU(2) (for further
examples of unitary groups see section 3.3). Given its analogy with
spin the operator I⃗ is called I-spin or isospin.

Due to the invariance of the strong hamiltonian under the exchange
p ↔ n one has

[H, Ij ] = 0 , (3.11)

which implies a conservation rule

dIj

dt
= 0 (3.12)

called isospin conservation in strong interactions. As a consequence
the physical states can have definite energy and isospin at the same
time. The states |p > and |n > have charge +1 and 0 (in units |e|).
Therefore they are eigenkets of the electric charge Q that has the form:

Q =
(

1 0
0 0

)
. (3.13)

One has
Q = I3 +

1
2

1 =
τ3
2

+
1
2

1 . (3.14)
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Physical states can have definite

I2 = I2
1 + I2

2 + I2
3 (3.15)

and, e.g., I3:

I2 |i, i3 > = i(i + 1) |i, i3 > ,
I3 |i, i3 > = i3 |i, i3 > . (3.16)

Moreover i is integer or half-integer and i3 has 2i + 1 possible values,
from −i to +i. Nucleons have i = 1/2:

|p > =
∣∣∣
1
2
, +

1
2

> ,

|n > =
∣∣∣
1
2
, − 1

2
> . (3.17)

For i = 1 one expects one or more multiplets with 3 = 2i + 1 particles
having the same mass. An example are the pions π+, π−, π0 with
masses in the range 135-140 MeV. Let us write

|π+ >=

⎛

⎝
1
0
0

⎞

⎠ , |π0 >=

⎛

⎝
0
1
0

⎞

⎠ , |π− >=

⎛

⎝
0
0
1

⎞

⎠ . (3.18)

For them

I+ =

⎛

⎝
0 1 0
0 0 1
0 0 0

⎞

⎠ , I− =

⎛

⎝
0 0 0
1 0 0
0 1 0

⎞

⎠ ; (3.19)

let us consider

I1 =
1√
2

(I+ + I−) =
1√
2

⎛

⎝
0 1 0
1 0 1
0 1 0

⎞

⎠ ,

I2 =
−i√

2
(I+ − I−) =

1√
2

⎛

⎝
0 −i 0
i 0 −i
0 i 0

⎞

⎠ ,

I3 =

⎛

⎝
1 0 0
0 0 0
0 0 −1

⎞

⎠ . (3.20)

These matrices satisfy (3.8) and constitute a representation D=3 of
isospin. The charge matrix is

Q = I3 =

⎛

⎝
1 0 0
0 0 0
0 0 −1

⎞

⎠ ; (3.21)
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it satisfy

Q = I3 +
1
2

B , (3.22)

where B is an operator assuming the value 1 for nucleons (and other
particles, called baryons) and 0 for pions (and other particles, called
mesons). B is called bayonic number. This name has its origin in the
fact that the first known hadrons with B = 1 were heavier than those
with B = 0.

For the systems with several hadrons the total isospin is obtained
by the same rules used to add angular momentum. For example, two
nucleons can have total isospin 1 or 0; a system comprising a nucleon
and a pion has isospin 3/2 or 1/2. On the other hand I3 is the sum of
the eigenvalues of I3 for the constituents. The total bayonic number is
additive as well. Therefore (3.22) holds also for the complex systems.

3.2 Strangeness and Hypercharge

If we consider mesons of increasing mass, we encounter, after the pions,
the kaons K (mass ≃ 500 MeV/c2). They exist with three different
charges: ±1 and 0. However two different neutral kaons there exist:
the states K0 and K

0 (its antiparticle). They are truly different as it
can be argued as follows. Let us consider the following reaction

π− + p → Λ0 + K0 . (3.23)

Here the hyperon Λ0 is a baryon of spin 1/2 and mass 1116 MeV. The
process (3.23) is mediated by strong nuclear interactions, as one can
argue by the rather large value of the cross section. On the other hand
the following process does not take place:

π− + p → Λ0 + K
0

. (3.24)

The explanation was found by Pais in the ’50 of the last century. Pais
argued that, differently from pions and nucleons, hyperons and kaons
possess a new quantum number, called strangeness. It is an additive
quantum number that is assumed to be conserved by strong interac-
tions. Strangeness is really a new quantum number, different from the
electric charge. In fact while the electric charge of an isolated system is
always conserved strangeness is only conserved by strong interactions.
One conventionally attributes strangeness S = −1 to the hyperon Λ0

and S = +1 to K0; moreover particle and antiparticle have opposite
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strangeness and therefore K
0 has S = −1. By this mechanism while

the process (3.23) can be mediated by strong interactions, the reaction
(3.24) cannot.

In presence of strange particles eq. (3.22) is modified as follows:

Q = I3 +
Y

2
, (3.25)

where
Y = B + S (3.26)

is called hypercharge. Clearly also hypercharge is conserved by strong
interactions and one can use the conservation of hypercharge to char-
acterize the behavior of strongly interacting strange particles.

Since the observable Y is conserved, its corresponding operator
must commute with the strong interaction hamiltonian H. Clearly
Y is an internal symmetry which is distinct from isospin: Therefore
there are at least four generators of internal symmetries commuting
with H. If we want to consider only unitary symmetry groups we are
led to enlarge the isospin group SU(2)I and consider the next unitary
group: SU(3).

3.3 SU(3) and SU(n)

For SU(n)

U ∈ SU(n) ⇐⇒ UU † = 1 detU = 1 . (3.27)

in general we have

U ∈ SU(n) ⇐⇒ U = exp(i
n2−1∑

a=1

φata) (3.28)

The matrices ta must be linearly independent, hermitean and traceless
(for this reason their number is n2 − 1). For SU(3) we have

U ∈ SU(3) ⇐⇒ U = exp(i
8∑

a=1

φaλa/2). (3.29)

The usual choice for the λ is by the Gell-Mann matrices:

λ1 =

⎛

⎝
0 1 0
1 0 0
0 0 0

⎞

⎠ , λ2 =

⎛

⎝
0 −i 0
i 0 0
0 0 0

⎞

⎠ , λ3 =

⎛

⎝
1 0 0
0 −1 0
0 0 0

⎞

⎠ ,
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λ4 =

⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠ , λ5 =

⎛

⎝
0 0 −i
0 0 0
i 0 0

⎞

⎠ λ6 =

⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠ ,

λ7 =

⎛

⎝
0 0 0
0 0 −i
0 i 0

⎞

⎠ , λ8 =
1√
3

⎛

⎝
1 0 0
0 1 0
0 0 −2

⎞

⎠ (3.30)

They satisfy

Trλaλb = 2δab . (3.31)

Moreover
[
λa

2
,
λb

2

]
= ifabc

λc

2
. (3.32)

The constants fabc are the structure constants for the SU(3) group.
They are antisymmetric for exchange of any pair of indices.
Problem. Prove that

fabc =
1
4i

Tr ([λa,λb]λc) . (3.33)

It also useful to consider the anticommutator that is given by the
formula

{λa,λb} =
4
3
δab · 1 + 2dabcλc . (3.34)

Problem. Prove (3.34).

Solution. The l.h.s. is a hermitean matrix of rank 3: therefore it is given by a linear

combination of the 8 Gell-Mann and the matrix 1: {λa,λb} = Cab · 1 + 2dabcλc.

Taking the trace one gets eq. (3.34).

Problem. Prove that

dabc =
1
4
Tr ({λa,λb}λc) , (3.35)

which shows that the constants dabc are totally symmetric.

The parameters f and d for SU(3) are in the Table below.
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ijk fijk (antisym.) ijk dijk (symm.)
123 1 118 1/

√
3

147 1/2 146 1/2
156 -1/2 157 1/2
246 1/2 228 1/

√
3

257 1/2 247 -1/2
345 1/2 256 1/2
367 -1/2 338 1/

√
3

458
√

3/2 344 1/2
678

√
3/2 355 1/2

366 -1/2
377 -1/2
448 −1/2

√
3

558 −1/2
√

3
668 −1/2

√
3

778 −1/2
√

3
888 −1/

√
3

We note that the analogous of the structure constants fijk for the group
SU(2) are the components of the tensor ϵijk.

3.3.1 Representations

Let us consider SU(n) and the mapping

D : U ∈ SU(n) → D(U) ∈ Cn×n . (3.36)

D(U) is a matrix (n, n) and (3.36) defines a representation iff

D(1) = 1 (3.37)
D(UV ) = D(U)D(V ) . (3.38)

The simplest representations are

Trivial : 1 U → 1 , amatrix (1, 1)
Fundamental : 3 U → U , amatrix (3, 3)

Conjugate : 3̄ U → U∗ , amatrix (3, 3) (3.39)

Suppose that U ∈ SU(3) is infinitesimal, i.e.

U ∼ 1 + iδφa
λa

2
(3.40)

and consider a representation of dimension n. SU(n) is a group whose
element depend smoothly by a set of parameters φa. Groups with this
property are called Lie groups and for them also the representations
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depend smoothly by the parameters. It follows that also D(U) differs
infinitesimally from 1:

D(U) ∼ 1 + iδφaFa . (3.41)

The matrices Fa are called generators of the representation D and are
matrices of rank n. It is easy to prove that

[Fa, Fb] = ifabcFc . (3.42)

Problem. Prove eq. (3.42). Hint: Use (3.38) expanding U exp(iφata), V exp(iϕata)

up to second order.

We note that in the fundamental representation Fa ≡ λa/2. It is
useful to note that the set of generators commuting among themselves
contain at most two elements: for example we can pick up F3 and F8:

[F3, F8] = 0 . (3.43)

There is no other generator commuting with F3, F8.
Another important representation is the adjunct. Let us consider

the matrix
C = Ca

λa

2
(3.44)

We can write it as a ket |C > in the C8 vector space. More generally,
for SU(n), |C > has n2 − 1 components and belongs to the Cn2−1

vector space. The representative of U in adjunct representation is, by
definition, the D(U) matrix that, for each |C > in the vector space
Cn2−1, works as follows:

D(U)|C >= |UCU † > . (3.45)

Clearly this is a representation.
Problem. Prove it. Hint: Show that eqns. (3.37), (3.38) are satisfied.

Let us determine the generators of the adjunct representation. If
D(U) represents U in the adjunct, then

D(1 + iδφa
λa

2
) = (1 + iδφaFa) (3.46)

Moreover

D(1 + iδφa
λa

2
)|C > = |(1 + iδφaλa/2)C(1 − iδφaλa/2) >=
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= |C + iδφa[
λa

2
, C] > ≃ |C > +iδφa| [

λa

2
, C] > (3.47)

which gives

Fa|C >= |[λa

2
, C] > ; (3.48)

if C = λc/2, then

Fa|λc/2 >= ifacb|λb/2 > . (3.49)

Written in terms of matrices this equation is

(Fa)mn δnc = ifacbδbm , (3.50)

i.e.
(Fa)mc = ifacm (3.51)

in other words the group structure constants provide the generators of
the adjunct representation.

3.3.2 Irreducible representations and Young tableaux

Consider matrices D(U) in a given representation of dimension n (the
rank of the matrix). They are operators in a vector space V = Cn:

D : ξj → ξ′k = Dkjξj . (3.52)

We say that D(U) is reducible if, for any U it can be written as follows:

D(U) =
(

D1(U) α(U)
0 D2(U)

)
(3.53)

Here D1(U) , D2(U) are square matrices of rank n1, n2 (and n1+n2 = n)
and α(U) a matrix (n1, n2). In other words D(U) is reducible if there
are subspaces in V that are left invariant under the action of the group.
If this does not happen we say that D is irreducible (IRR). In the
example above the subspace which is left invariant is as follows:

W =
{
ψ ∈ V

∣∣∣ψ =
(
χ
0

)}
. (3.54)

To give an example of reducible and irreducible representations, let
us consider in SU(3) the tensor product

ψi
j = ξiηj (3.55)
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of two tensors, one (ξi) belonging to the fundamental representation 3
and the other (ηj) belonging to the conjugate 3̄ (we distinguish 3 and
3̄ by raing/lowering the index). Let us write

ψi
j = ψ̂i

j +
δi
j

3
Trψ , (3.56)

where

ψ̂i
j = ψi

j −
δi
j

3
Trψ , Trψ = ψi

i . (3.57)

In other words ψ̂ is traceless (it has therefore 8 components); moreover
δi
j

3 Trψ is proportional to the unit matrix and is therefore a scalar. Since
ψ has the transformation property ψi

j → ψ′ i
j = UiℓU∗

jmψ
ℓ
m, or, in matrix

form,
ψ → ψ′ = UψU †, (3.58)

also ψ̂′ is traceless; analogously the scalar maintains its form under the
group transformations. Therefore ψi

j can be reduced in the sum of two
are irreducible tensors; written as a column (with 9 rows) we have

ψ =
(

ψ̂
Trψ

)
(3.59)

where the column ψ̂ has 8 rows. Therefore the vector space to which
ψ belongs has two invariant subspaces and the D(U) acting ψ can
generally be written as follows:

D(U) =
(

D1(U) 0
0 D2(U)

)
(3.60)

Here D1(U) , D2(U) are square matrices of rank 8 and 1 respectively.
(3.56) can be summarized as follows:

3 ⊗ 3̄ = 8 ⊕ 1 . (3.61)

Problem. Prove that the 8 defined above coincides with adjunct representation.

Hint: Use (3.44), (3.45) and (3.58).

Problem. Show that
ψij = ξiξj (3.62)

transforms under a reducible representations; prove that the decomposition of (3.62)

in IRR is obtained dividing ψ into its symmetric and antisymmetric part. Write

down the analogous of (3.61).
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The procedure we have outlined in the examples above is rather
cumbersome. In general, higher dimension IRRs can be constructed
starting from the fundamental representation and the conjugate repre-
sentations n and n̄ of SU(n) by the Young method.

Let us construct start by the nk elements

ξj1ξj2 ...ξjk (3.63)

forming a tensor in the tensor space

V × V × ... × V︸ ︷︷ ︸
k terms

For simplicity we only consider now vector in fundamental representa-
tion (upper indices). Since we are taking a tensor product we denote
the operation (3.63) as follows:

n × n × ... × n︸ ︷︷ ︸
k terms (3.64)

Under the group each vector ξ transforms according to eq. (3.52) and
therefore the tensor (3.63) transforms as follows

ξj1ξj2 ...ξjk → ξ′j1ξ′j2 ...ξ′jk = Dj1i1Dj2i2 ...Djkikξi1ξi2 ...ξik . (3.65)

However Dj1i1Dj2i2 ...Djkik is not IRR. To get IRR out of the product
of the k IRRs in (3.64) we decompose the tensor (3.63) in IRR ten-
sors having definite symmetry properties under index permutations.
Indeed, as shown in the examples above, tensors having definite per-
mutation symmetry properties or traceless tensors belong to IRR. The
procedure of getting IRRs out of the product of other IRRs is based on
a graphical method (Young tableaux) that we present without proof.
We work in SU(n). Let us take n1 indices and symmetrize them. To
each index j we associate a box. Let us denote this operation as in
figure 3.1.

i'1 i'
1ni' i'2 3 . . . 1

n

Figure 3.1: n1 symmetrized indices.
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i'i'i' 1
n

1i"

i'2

i"2

1 3 4

. . .

. . .

n 2

nk. . .

Figure 3.2: A Young tableau.

Let us repeat this operation with other n2 < n1 indices different from
the previous ones and so forth. We obtain the figure 3.2 (in the example
n1 = 4).

Clearly

n1 ≥ n2 ≥ ... ≥ nk ,
k∑

j=1

= n . (3.66)

A table as in the previous picture is called a Young tableau. It corre-
sponds to a possible partition of n into n1 n2 ... , nk integers. Indexes in
any row must be symmetrized in the tensor corresponding to a given
tableau. For example, if in fig 3.2 n1 = 3, i.e. if the indexes to be
symmetrized in ξi1i2...in are the first three, then we construct

ξi1i2i3...in → 1
6
(
ξi1i2i3...in + ξi1i3i2...in + ξi2i1i3...in + ...

)
(3.67)

Once we have done this we antisymmetrize over all the columns, each
column once, and independently from each other. Let us how it works
in a simple case. Consider the tensor ξαβγδ that has no particular
symmetry property under the permutation group and therefore it is
not an IRR tensor. The Young tableau in fig. 3.3
allows to construct an IRR tensor, and therefore also an IRR represen-
tation, according to the formula

1
12

(
ξαβγδ + ξαγβδ + ξγαβδ + ξγβαδ + ξβγαδ + ξβαγδ

−ξδβγα − ξδγβα − ξγδβα − ξγβδα − ξβγδα − ξβδγα
)

(3.68)
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α β γ

δ

Figure 3.3: Another Young tableau.

The first six terms correspond to symmetrization of the first row in the
tableau, the other six to antisymmetrization along the first column.
The IRR tensor (3.68) has the following symmetry property: it is sym-
metric in β, γ and antisymmetric in α, δ. It is clear that we can use the
Young tableau to denote the corresponding tensor. Note that in our
example the two tensors depicted in 3.4 are identical.

α β γ

δ

αβ γ

δ

=

Figure 3.4: Two identical tensors.

The following properties hold:
Property 1: Tensors of any given symmetry class form an invariant
subspace. In other words they constitute an IRR.
Property 2: Each IRR correspond to one and only one Young tableau.

Therefore there is a correspondence one-to-one between IRRs and
Young tableaux. We do not prove these properties and prefer to con-
sider in more detail the SU(3) group. In this case, in a generic Young
tableau, each column cannot have more than three boxes (the corre-
sponding property in SU(n) is that each column cannot have more
than n boxes). Let us consider the Young tableaux in fig. 3.5. The
corresponding tensor is

ξijk = ϵijk (3.69)

Under the group it transforms as follows

ϵijk → Uii′Ujj′Ukk′ϵi
′j′k′

= detUϵijk = ϵijk . (3.70)

This is a tensor of rank 0 (a scalar). The corresponding IRR is the
trivial, of dimension 1. We write symbolically as in fig.3.6.
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Figure 3.5: The tableau representing the singlet in SU(3).

1 ==

Figure 3.6: The singlet in SU(3).

It is important to note that in any diagram a full column can be elim-
inated; an example of this procedure is in fig. 3.7.

=

Figure 3.7: The procedure of eliminating an entire column.

The most general Young tableau in SU(3) is depicted in fig. 3.8.
The corresponding tensor can also be denoted as follows:

(
k1 k2 ... km | i1 i2 ... in
j1 j2 ... jm |

)
(3.71)

The tensor (3.71) is completely fixed by a pair of integer numbers:
(m, n) such that there n + m boxes in the first row and m boxes in
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. . .

1

1

. . .

2 m

2 

2 

m

. . . 1 nk k k i i i

j j j

Figure 3.8: The most general Young tableau in SU(3).

the second. Accordingly we shall call Dm,n the corresponding IRR and
by D(m, n) its dimension. The IRR tensor (3.71) can be written in a
more economic way:

ξℓ1...ℓm
i1...in

=
(

k1 ... km | i1 ... in
j1 ... jm |

)
ϵℓ1k1j1 ...ϵℓmkmjm (3.72)

The dimension of the representation (m, n) is

D(m, n) =
(n + 1)(m + 1)(n + m + 2)

2
(3.73)

(for the proof see section 3.8).

Problem. Prove that the representation (m , n)= (1 , 0)= is the conjugate 3̄.

Solution.

ηi = ϵijkψ
jk → ϵijkUjmUknψ

mn = ϵℓjkUℓaUjmUknU†
aiψ

mn

= U∗
iaϵamnψ

mn = (U∗η)i (3.74)

transforms according to the 3̄.

It is useful to note that the representations (n, m) and (m, n) are
conjugate:

(n, m) = (m, n) .

Problem. In SU(3) draw the Young tables and compute the dimensions of the IRRs
defined by: (m, n) = (0, 1), (0, 2), (2, 0), (1, 1), (1, 2), (2, 1), (3, 0), (0, 3), (0, 4),
(4, 0), (1, 3), (3, 1), (2, 2). Moreover write the tensors corresponding to these IRRs.
Hint: Use the property

D(m, n) = D(n, m)

that follows from (3.73)
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3.3.3 Product of IRRs

We have already shown an example of decomposition of the product
of two IRRs in the sum of other two IRRs in (3.61). Another exam-
ple was given in the problem and eq. (3.62). It corresponds to the
decomposition

3 ⊗ 3 = 6 ⊕ 3̄ . (3.75)

The practical rule is as follows. Consider (n, k) ⊗ (ℓ, m) and write
the corresponding Young tableau inserting indexes in the boxes. Then
arrange the boxes in all the possible ways such that the diagrams of
the resulting IRRs maintain the previous antisymmetry among the in-
dexes (if the indexes are still in the new diagrams and have not been
eliminated by subtracting an entire column as in (3.7).
Problem. Prove by this procedure (3.61), (3.75). Prove that

8 ⊗ 8 = 1 ⊕ 8 ⊕ 8 ⊕ 10 ⊕ 10 ⊕ 27 . (3.76)

Prove that this equation is written in terms of Young tables as in fig. 3.9.

X + + +

+ +

=

10 10
_

27

8 8 8 81

Figure 3.9: The decomposition (3.76).

3.4 SU(3)f symmetry and quarks

We now make the assumption that strong interactions are invariant
under the group of transformations SU(3)f

2. As it is shown in the
previous paragraph, SU(3)f comprises a subgroup SU(2) generated by

2We use the symbol SU(3)f for the global (flavor) symmetry group and SU(3)c

for the local (color) symmetry group.
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Table 3.1: Isospin and Hypercharge.

Fa Ii = Fi (i = 1, 2, 3: isospin) Y = 2√
3
F8 ( a = 8: hypercharge)

I1 =

⎛

⎝
0 1/2 0

1/2 0 0
0 0 0

⎞

⎠

3 I2 =

⎛

⎝
0 i/2 0

i/2 0 0
0 0 0

⎞

⎠ Y =

⎛

⎝
1/3 0 0
0 1/3 0
0 0 −2/3

⎞

⎠

I3 =

⎛

⎝
1/2 0 0
0 −1/2 0
0 0 0

⎞

⎠

the first three generators: Fa (a = 1, 2, 3). We identify this subgroup
with the isospin group and denote it as SU(2)I . We also identify F8, up
to a factor, with hypercharge. These results are summarized in table
3.1.

We shall see below that in the quark model SU(3)f symmetry is a
consequence of the assumption that the three lighter quarks have the
same mass. Since this is only approximately true, SU(3)f must be
regarded as an approximate and not an exact symmetry.

Let us now discuss the consequences of this symmetry. Let us sup-
pose that the hamiltonian of a system of hadrons can be approximated
only by the part containing strong interactions H, i.e. we neglect grav-
itational, electromagnetic and weak interactions. Under a transforma-
tion of SU(3)f , H remains unchanged

H → H ′ = U †HU = H , (3.77)

which implies in particular that

[H, Fa] = 0 (a = 1, ..., 8) . (3.78)

As a consequence of these formulae for any representation of SU(3)f

one has
D(U)H = HD(U) ∀U ∈ SU(3)f , (3.79)
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and in particular this is true for IRR. This result is extremely important
due to the following theorem due to Schur.
Theorem. Let

U → D1(U) dim D1 = n1

U → D2(U) dim D2 = n2 (3.80)

be two IRRs of a Lie group G. If there exists S such that

∀U ∈ G : D1(U)S = SD2(U) , (3.81)

then either S = 0 or

S ≠ 0 , det S ≠ 0 , n1 = n2 .

Remark. We say that two representations D1(U), D2(U) are equivalent
iff exists a matrix S such that ∀U ∈ G: D1(U) = SD2(U)S−1. There-
fore in the hypotheses of the Schur’s theorem, the two representations
are equivalent.
Corollary. Let D(U) be an IRR of G of dimension n. If

∀U ∈ G : D(U)S = SD(U) , (3.82)

then S is proportional to the unity matrix:

S = α · 1 ,

with α ∈ C. We prove only the corollary.
Proof. Let |α > be an eigenvector of S with eigenvalue α. Then, for
all U ∈ G:

SD(U)|α >= D(U)S|α >= αD(U)|α > . (3.83)

Varying U ∈ G generates the whole vector space Cn, and therefore
S = α · 1 .

This important theorem (also called Schur’s lemma) has an impor-
tant application here. In fact within any assigned IRR of SU(3)f H is
a number. If the states describe single particles at rest, this number is
the particle mass. Therefore hadrons will appear grouped in multiplets
of multiplicity equal to the dimension of the representation.

Because of (3.43) and (3.77) there exist states that are simulta-
neously eigenstates of H, I3 = F3, Y = 2/

√
3F8; they describe single

particles of mass m at rest

|m, i3, y > . (3.84)
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The generators Ik and Y for the 3 are reported in Table 3.1. For fixed
m, and variable i3, y, the set {|m, i3, y >} is a basis of a vector space.
We report these vectors on the I3 − Y plane and we get as a result a
diagram, called the weight diagram.

+1/2

-2/3

+1/3

+2/3

I3

Y

..
-1/2

-1/3

ud

s

s

du

_

__

Fig. 3.4 The weight diagrams for the representations 3 (solid line)
and 3̄ (dashed line).

Let us consider for example the weight diagram for the fundamental
representation 3. It is depicted in fig. 3.4 in solid line. The three
particles corresponding to the three base vectors are called quarks3.
The state |i3, y >= | + 1/2, +1/3 > is called up (u); the state | −
1/2, +1/3 > is the quark down (d); the state |0,−2/3 > is the quark
strange (s), see fig. 3.4. To make contact with our previous notation
we write the irreducible tensor of 3 as ξk, so that < j|i3, y >= ξj and

uj =

⎛

⎝
1
0
0

⎞

⎠ , dj =

⎛

⎝
0
1
0

⎞

⎠ , sj =

⎛

⎝
0
0
1

⎞

⎠ . (3.85)

We attribute baryonic number +1/3 to the quarks. Therefore, using
eqns. (3.25) and (3.26) one can see that the charges of the three quarks
are as follows

eu = +2/3 , ed = −1/3 , es = −1/3 . (3.86)

As to strangeness, the quarks u and d have zero strangeness and the
strange quark has S = −1.

3The introduction of SU(3)f as an approximate symmetry of strong interactions
is due to Gell-Mann and Zweig. The introduction of quarks is due to M. Gell-Mann.
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In fig. 3.4 we have reported also the weight diagram for the 3̄
representation. It can be derived by observing that

D∗(U) = U∗ ≈ 1 − iδφa
λ∗a
2

, (3.87)

where we have used (3.41). Expressing D∗(U) by its generators, ac-
cording again the generic formula (3.41), one gets

Fa = −λ
T
a

2
. (3.88)

Therefore the hadrons in the 3̄ multiplet, that are called antiquarks
and are denoted by a bar: q̄, have opposite I3 and Y , see again fig. 3.4.
They also have opposite baryonic number (B = −1/3) and charges
with respect to the quarks. Finally the antiquark s̄ has S = +1.

3.5 Constituent quark model

Differently from other hadrons, quarks have never been detected as free
particles. There are cogent reasons to believe in their existence, but a
well established fact is that baryons with fractional baryonic number
B have never been observed. Within the quark model this result is
assumed as an ansatz and mathematically formulated as follows: The
only IRRs corresponding to hadrons in the physical spectrum are those
whose Young tableaux have a number of boxes which is multiple of 3.
Therefore, for example, 8, 10, 10 and 27 representations are admitted,
while 3, 3̄, 6, 15 do not correspond to physical states. The empirical
rule we have stated is also called triality rule.

Problem. Prove that the IRRs 3, 3̄, 6, 15 have fractional baryonic number, while

the 8, 10, 10 and 27 have integer B.

Even though quarks are not observed as free particles, they are
extremely useful as building blocks of the other hadrons. In other words
quarks can be thought of as constituents of physical hadrons. There
are several experimental reasons why hadrons cannot be considered as
elementary particles; for example the nucleon magnetic dipole moments
show that neither the proton nor the neutron are truly elementary.
Other evidences will be discussed in more detail below. For the time
being let us discuss how we can implement the idea of constituent
quarks.

First of all let us observe that quark must have spin 1/2, since
there are hadrons with half-integer spin (baryons) as well as hadrons
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with integer spin (mesons), but half-integer spins cannot be produced
summing only integer spins and orbital angular momenta. Moreover,
if a hadron h comprises k quarks and ℓ antiquarks, its SU(3)f wave-
function (wf) will be of the form ξj1 ...ξjkηi1 ...ηiℓ . Therefore it is clear
that the wfs of all the hadrons can be obtained by forming products of
irreducible tensors of 3 and 3̄ representations, i.e. by products of quark
and antiquark SU(3)f wfs (=tensors). Hadrons have however definite
mass, therefore they are in IRRs of SU(3)f . It follows that in forming
the products of quark and antiquark tensors we must decompose them
in IRRs. Let us consider a few examples.

a) 3
⊗

3

Since 3
⊗

3 = 6
⊕

3 and neither 6 nor 3 satisfy the triality rule,
this product does not produces hadron representations.

b) 3
⊗

3

Hadrons made up by a quark and an antiquark are called mesons.
Since 3

⊗
3 = 8

⊕
1, we conclude that mesons are either in the

singlet or in the octet of SU(3)f . Mesons have baryonic number
B = 0.

c) 3
⊗

3
⊗

3

Hadrons made up by three quarks are called baryons. Since
3
⊗

3
⊗

3 = 1
⊕

8
⊕

8
⊕

10, possible baryonic multiplets are
the singlet, the octet and the decuplet. Baryons have baryonic
number B = 1.

c) 3
⊗

3
⊗

3

This combination produces the antibayons, i.e. the antiparticles
of the baryons with B = −1. They are formed by three antiquarks
and their possible multiplets are the singlet, the octet and the
antidecuplet.

Let us discuss in more detail mesons and baryons.

3.5.1 Mesons

Mesons M are made up by a quark and an antiquark. Their spin is in-
teger. If the orbital angular momentum of the pair is zero, the only pos-
sibilities for JP is 0− and 1−. In fact remember that PM = (−1)ℓPqPq̄;
conventionally Pq = +1 therefore PqPq̄ = −1, because particles and
antiparticles have opposite intrinsic parities. As to SU(3)f , mesons
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are organized in octets and singlets. The weight diagram for the octet
and singlet is depicted in fig. 3.10 together with the quark content of
the different states.

I 3

Y

+1/2-1/2 +1-1
. .

+1

-1

0
. du

_

s
_

u

d
_

u

u
_

s d
_

s

s
_

d

Figure 3.10: The weight diagrams for the mesonic octet and singlet .

Notice that in correspondence of the point (I3, Y ) = (0, 0) there are
three different states:

|1; Y = 0, I = 0, I3 = 0 > =
ūu + d̄d + s̄s√

3
(3.89)

|8; Y = 0, I = 0, I3 = 0 > =
ūu + d̄d − 2s̄s√

6
(3.90)

|8; Y = 0, I = 1, I3 = 0 > =
ūu − d̄d√

2
(3.91)

Low-lying mesons with JP = 0− and JP = 1− are reported in table
3.2.

On this basis we can write the quark content of the different meson
states as follows.
0− mesons:

|π+ > = |ud̄ >, |π− >= |dū >, |π0 >=
1√
2
|
(
ūu > −|d̄d >

)
,

|K+ > = |us̄ >, |K0 >= |ds̄ >,
|K− > = |sū >, |K̄0 >= |sd̄ >,

|η8 > =
1√
6

(
|ūu > +|d̄d > −2|s̄s >

)
,
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JP Particles (mass in MeV)
0− π0(135), π±(140), η(547), η′(958)

K±(494), K0, K̄0(498)
1− ρ±,0(771), ω(783)

K∗±, K∗0, K̄∗0(892), Φ(1020)
1
2
+

p(938) , n(939),
Λ(1116), Σ±,0(1193), Ξ0,−(1318)

3
2
+ ∆++, ∆+, ∆0, ∆−(1232)

Σ∗±,0(1385), Ξ∗±,0(1530), Ω−(1672)

Table 3.2: Low-mass hadrons.

|η0 > =
1√
3

(
|ūu > +|d̄d > +|s̄s >

)
. (3.92)

In these equations we would like to identify the physical states η and
η′ with the SU(3)f states η8 and η0 since the η mass is closer to the
masses of the other members of the octet. However out of the two states
|η8 > and |η0 > we can construct, by the superposition principle, new
states having the same quantum numbers Y and I. This procedure is
called mixing and the actual content of the physical states η and η′ is
as follows

|η > = cos θ|η8 > +sin θ|η0 >
|η′ > = − sin θ|η8 > +cos θ|η0 > (3.93)

The value of the mixing angle is

θ ≈ −20o (3.94)

and will be derived in a problem in section 3.8.
A useful representation of the pseudoscalar meson octet is by means

of traceless 3 × 3 matrix. Using the fact that 8 is the adjunct repre-
sentation, we write the octet as a matrix

||P||

which is a linear combination of the 8 Gell-Mann matrices. Therefore a
meson of quark content qiq̄j is represented by the matrix element P i

j .
One gets

||P|| =

⎛

⎜⎝

1√
2
π0 + 1√

6
η8 π+ K+

π− − 1√
2
π0 + 1√

6
η8 K0

K− K̄0 − 2√
6
η8

⎞

⎟⎠ . (3.95)
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For the singlet one has

||P0|| =
1√
3

⎛

⎝
η0 0 0
0 η0 0
0 0 η0

⎞

⎠ . (3.96)

1− mesons:

|ρ+ > = |ud̄ >, |ρ− >= |dū >, |ρ0 >=
1√
2

(
|ūu > −|d̄d >

)
,

|K∗+ > = |us̄ >, |K∗0 >= |ds̄ >,
|K∗− > = |sū >, |K̄∗0 >= |sd̄ >,

|ρ8 > =
1√
6

(
|ūu > +|d̄d > −2|s̄s >

)
,

|ρ0 > =
1√
3

(
|ūu > +|d̄d > +|s̄s >

)
(3.97)

There are two physical states ω and φ having the same quantum num-
bers Y = 0 and I = 0 as the SU(3)f eigenstates ρ8 and ρ0. Also in
this case mixing occurs and the actual content of the physical states ω
and φ is as follows

|ω >=
1√
2

(
|ūu > +|d̄d >

)
, |φ >= |s̄s > . (3.98)

This mixing (called ideal mixing) will be proved in section 3.6. The
nonet (octet+singlet) of vector meson states V is represented by the
matrix

||V|| =

⎛

⎜⎝

ρ0√
2

+ ω√
2

ρ+ K∗+

ρ− − ρ0√
2

+ ω√
2

K∗0

K∗− K̄∗0 φ

⎞

⎟⎠ . (3.99)

3.5.2 Baryons

Baryons are made up by three quarks. If the orbital angular momentum
vanishes, the only possibilities for JP is 1/2+ and 3/2+. As to SU(3)f ,
baryons are organized in octets, singlets and decuplets.

The weight diagram for the octet is depicted in fig. 3.11. The low
lying hadrons with JP = 1/2+ are in table 3.2. The quark content of
the different states is as follows (we have grouped the states in isospin
multiplets):

I = 1/2 : |p >= |u(ud) >, |n >= |d(du) > ,
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I 3

Y

+1/2-1/2 +1-1
. .

+1

-1

0
.

d(du) u(ud)

u(us)d(ds)

s(sd) s(su)

1/   2 [ u(ds) + d(us) ]_

Figure 3.11: The weight diagrams for baryonic 8 and 1.

I = 1 :
|Σ+ >= |u(us) >, |Σ− >= |d(ds) > ,

|Σ0 >=
1√
2

(|u(ds) > +|d(us) >) ,

I = 0 : |Λ0 >=
1√
2

(|u(ds) > −|d(us) >) ,

I = 1/2 : |Ξ0 >= |s(su) > , |Ξ− >= |s(sd) > . (3.100)

Here, according to the rule (3.72), (qq′) means

(qq′) = q(1)q′(2) − q(2)q′(1) (3.101)

where the labels 1 and 2 identify the two different quarks. On this basis
the state Λ0 has not only I3 = 0, but also I = 0 and differs from Σ0

that has I3 = 0, but I = 1. Using (3.72) we can represent the baryonic
B octet by a traceless matrix as follows

Bi
j = qi(qℓqkϵj ℓ k) (3.102)

where i is the row index and j the column index. It follows that the
matrix ||B|| is as follows:

||B|| =

⎛

⎜⎝

1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ

⎞

⎟⎠ . (3.103)
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0
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Y

. ...
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.
.

.
. .

ddd udd uud uuu

sss

dss uss

dds uds uus

Figure 3.12: The weight diagrams for the baryonic decuplet.

Next we consider the weight diagram for the decuplet, depicted in
fig. 3.12. Experimentally these states have spin 3/2 and can be found,
together with their masses in Table 3.2. The quark content of these
states is as follows (also in this case we have grouped the states in
isospin multiplets):

I = 3/2 :
|∆++ >= |uuu >, |∆+ >= |uud >,
|∆0 >= |udd >, |∆− >= |ddd >

I = 1 :
|Σ∗+ >= |uus > , |Σ∗− >= |dds > ,
|Σ∗0 >= |uds > ,

I = 1/2 : |Ξ∗0 >= |uss > , |Ξ∗− >= |dss >
I = 0 : |Ω− >= |sss > . (3.104)

3.6 Mass formulae

Let us write the Dirac lagrangian for the quark fields :

L =
∑

i

ψ̄i(iγµ∂µ − mi)ψi (3.105)

where the sum runs over the three flavors i = u, d, s. The remaining
part of the lagrangian containing interaction does not depend on the
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flavor. Therefore SU(3)f would be a symmetry if mi might be supposed
equal. Since this is not true, let us write the mass term in matrix form

H = ψ̄Mψ (3.106)

with

M =

⎛

⎝
mu 0 0
0 md 0
0 0 ms

⎞

⎠ =

=
mu − md

2
F3 +

mu + md − 2ms√
3

F3 +
mu + md + ms√

6
F0(3.107)

where Fa = λa/2 and F0 = 1√
6
diag(1, 1, 1). We shall now assume

that SU(3)f but not isospin is violated by mass terms, i.e. ms ≠ mu

but mu = md. Let us consider the effect on the mass splitting within
baryonic multiplets. One has

< B|H|B′ >=
mu − md

2
< B|F3|B′ > +

+
mu + md − 2ms√

3
< B|F8|B′ > +

mu + md + ms√
6

< B|F0|B′ >=

=
mu + md − 2ms√

3

{
a8Tr

(
B′B†F8

)
+ a′8Tr

(
B†B′F8

)}
+

+a0
mu + md + ms√

6
Tr(B†B′F0) . (3.108)

In conclusion we have, for the baryon B = B ′ with mass mB:

mB = m0 +
√

2αTr
(
B†BF8

)
+
√

2βTr
(
BB†F8

)
. (3.109)

Using (3.103) one can express the four different masses of the octet in
terms of three parameters. Therefore one gets a constraint:

mΞ + mN

2
=

mΣ + 3mΛ

4
, (3.110)

known as the Gell-Mann Okubo formula for baryons.

Problem. Derive the Gell-Mann Okubo formula. Test its validity using hadron

masses as given in Table 3.2 and mN = (mp + mn)/2.

For the pseudoscalar mesons we have instead of (3.109):

m2
M = m2

0 +
√

2αTr
(
M †MF8

)
+
√

2βTr
(
MM †F8

)
. (3.111)
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A reason why in the formula for mesons one should better use quadratic
masses might be the presence of quadratic mass term in the scalar
lagrangian. Using (3.95) and working as before we get the Gell-Mann
Okubo formula for pseudoscalar mesons

m2
K =

mπ + 3m2
η8

4
. (3.112)

If we use for mη8 the value reported in table 3.2 we get agreement
within 7%. The agreement improves if we admit mixing, as given by
eq. (3.93). With the mixing angle given in (3.94) the disagreement
decreases to less than 1%. Finally we consider vector mesons. Let us
first assume that the matrix for the vector meson octet is, analogously
to (3.95),

||V(8)|| =

⎛

⎜⎜⎝

ρ0√
2

+ ω8√
6

ρ+ K∗+

ρ− − ρ0√
2

+ ω8√
6

K∗0

K∗− K̄∗0 −2 ω8√
6

⎞

⎟⎟⎠ . (3.113)

Then the Gell-Mann Okubo formula would give, in this case,

3m2
ω8

= 4m2
K∗ − m2

ρ , (3.114)

i.e.
mω8 = 926.5 MeV , (3.115)

which differs significantly from the two experimental masses mω and
mφ, see Table 3.2. However we expect mixing between the states ω8

and the singlet ω0 in other words the quadratic mass term ωM 2ω has
the form

ωM2ω =
(
ω8 ω0

)( m2
ω8

m2
ω8 0

m2
ω8 0

m2
ω0

)(
ω8

ω0

)
. (3.116)

We diagonalize M 2 by the rotation

R =
(

cos θ sin θ
− sin θ cos θ

)
(3.117)

and we get the eigenvectors

ω = cos θω8 + sin θω0

φ = − sin θω8 + cos θω0 (3.118)
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together with the eigenvalues m2
ω and m2

Φ, given by the relations

m2
ω8

= cos2 θ m2
ω + sin2 θ m2

φ (3.119)

m2
ω0

= sin2 θ m2
ω + cos2 θ m2

φ (3.120)

m2
ω8 0

= sin 2θ
m2
φ − m2

ω

2
. (3.121)

Using (3.115), (3.119) and the values in Table 3.2 one gets sin θ =
+0.76. Using the approximate value

sin θ =
√

2
3

, (3.122)

together with eq. (3.113) and the analogous of (3.96) for ω0, we get
the ideal mixing results of matrix (3.99).

Problem. Fill in the steps leading to eqns.(3.119)-(3.122)

3.7 Color and heavy quarks

In the constituent quark model the particle ∆++ is formed by three
identical spin 1/2 u quarks. The three spin 1/2 add to form a spin 3/2
system, therefore the spin wavefunction is symmetric; moreover the
orbital angular momentum is zero, therefore the orbital wavefunction
is symmetric as well. However the total wavefunction of the uuu sys-
tem must be antisymmetric since the three identical constituents are
fermions. It follows that the total wavefunction must contain an extra
factor antisymmetric under fermion exchange. If we attribute an extra
degree of freedom α = 1, 2, 3 to quarks then the missing piece has the
form ϵαβγ and the antisymmetry is guaranteed. This extra degree of
freedom is called color. It is assumed that color is a exact symmetry of
strong interactions and that the symmetry group is SU(3), which we
denote SU(3)c to make distinction with SU(3)f . Quarks transforms
as the 3 of SU(3)c. It is assumed that all the observed hadrons are
color singlets i.e. they are in the IRR 1 of SU(3)c, with irreducible
tensor δαβ (mesons) or ϵαβγ (baryons). The internal symmetry SU(3)c

differs from SU(3)f not only by being exact and not approximate, but
also because it is a local and not a global gauge symmetry. This means
that the strong interaction lagrangian is assumed to be invariant under
transformations

qα → Uαβq
β . (3.123)
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U ∈ SU(3) is given by an equation similar to (3.29):

exp(i
8∑

a=1

φa(x)λa/2) (3.124)

with parameters depending on space and time: xµ = (t, r⃗). The lo-
cal gauge theory based on the color symmetry group SU(3)c is called
Quantum Chromodynamics; its formulation is based on the Yang Mills
construction of section 2.1.2. The QCD Lagrangian can be therefore
written as follos

L = −1
4
Ga

µνG
a µν +

∑

f

q̄f (iγ · D − mf )qf (3.125)

where f denotes the flavor (for f = u, d, s...), the sum over a is from 1 to
8, Dµ = ∂µ+igTaGa

µ. Ta are the SU(3) generators in the representation
3 and Ga

µν = ∂µGa
ν − ∂νGa

µ − gfabcGb
µGc

ν . The constant g is the strong
interaction coupling constant. The particles corresponding to the fields
Ga

µ are called gluons. These massless spin one particles belong to the
b, therefore, similarly to the quarks, are not color-neutral.

Let us conclude with a remark on the number of quarks. We have
discussed so far the so-called light quarks u, d, s. Since their masses
are much smaller than typical hadronic masses 4, they can be assumed
equal to a good extent and this is the basis for the success of the ap-
proximate flavor symmetry SU(3)f . If they can be neglected strong
interactions have an extra symmetry, the chiral symmetry, to be dis-
cussed in chapter 5.

Other three quarks have been discovered in the last 30 years. They
are the the charm c, the beauty b and the top t.

3.8 Problems

1. Which would be the quark content of hadrons in the IRR 27?

2. Prove (3.73). You might consult the textbook by K. Huang.

3. Derive the result (3.94) using the same procedure adopted to
derive the ideal mixing in the vector meson nonet.

4The masses of the quarks are as follows. Light quarks: mu = 1.5 − 5 MeV,
md = 3−9 MeV, ms ≈ 120 MeV. Heavy Quarks: mc = 1.1−1.4 GeV, mb = 4.1−4.4
GeV, mt = 173.8 ± 5.2 GeV.
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Chapter 4

Leptons

4.1 Leptons

Leptons are particles having no strong interactions. Six of them are
known from experiment. Three are neutrinos, basically massless1:
νe, νµ, ντ . The other three are the electron e (mass 0.51 MeV), the
muon µ (mass 106 MeV), the τ (mass 1777 MeV). All these particles are
spin 1/2 fermions. We denote the corresponding fields as ψe, ψνe , ...,
or simply e, νe, etc. Together with these particles we have the antipar-
ticles: e+, ν̄e, ... It is useful to introduce left handed and right handed
components for each field ψ as follows

ψL = P−ψ, ψR = P−ψ

P± =
1 ± γ5

2
, P 2

± = P± , P+P− = P−P+ = 0 . (4.1)

ψR and ψR are helicity eigenstates .

Problem. Prove this property.

Note the properties:

ψ̄L = ψ†
Lγ0 = ψ̄P+ , ψ̄R = ψ†

Rγ0 = ψ̄P− ,
ψ = ψL + ψR , ψ̄ = ψ̄L + ψ̄R ,

ψ̄γµψ = ψ̄Lγ
µψL + ψ̄Rγ

µψR ,
ψ̄ψ = ψ̄LψR + ψ̄RψL , ψ̄RψR = ψ̄LψL = 0 . (4.2)

Only the left-handed neutrinos are considered. We can therefore or-
ganize the leptonic fields (also called matter fields) into three sets or

1Recent experimental data show that neutrinos have a tiny mass. We will neglect
this effect here.
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families as follows:

{ψ(j)
L , ψ(j)

R } (j = 1, 2, 3 for 1st, 2nd and 3rd family) . (4.3)

Here

ψ(1)
L =

(
νe

e

)

L

, ψ(1)
R = eR

ψ(2)
L =

(
νµ

µ

)

L

, ψ(2)
R = µR

ψ(3)
L =

(
ντ
τ

)

L

, ψ(3)
R = τR (4.4)

To begin with we assume that these particles are massless; their la-
grangian is therefore, for each family,

L = ψ̄Liγ · ∂ψL + ψ̄Riγ · ∂ψR . (4.5)

We assume that under transformations belonging to the symmetry
group

SU(2)L × U(1) (4.6)

the fields transform as follows:

U ∈ SU(2)L : ψL → UψL , ψR → 1ψR

V ∈ U(1) : ψL → V ψL , ψR → V ψR . (4.7)

As a consequence, the lagrangian (4.5) is invariant under (4.6). Next
we make a stronger assumption, i.e. that the Dirac Lagrangian for the
massless leptons is invariant under local transformation of the group
(4.6). We know already that to transform a global internal symmetry
into a local gauge symmetry one has to introduce gauge bosons, which
play a role analogous to the photon in QED. In our case the substitution
is

∂µ → Dµ = ∂µ + igWµ + ig′XµS (Wµ = W µ
a Ta) (4.8)

Let us comment on this equation. We have two coupling constants g, g′

because of the two factors in (4.6). Ta (a = 1, 2, 3) and S are generators
of SU(2)L and U(1) respectively, with

[Ta, Tb] = iϵabcTc , [Ta, S] = 0 . (4.9)

Wµ
a and Xµ are four vector bosons. Since ψL is a doublet and ψR a

singlet under SU(2)L, we have

TaψL =
τa
2
ψL , TaψR = 0 . (4.10)
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To define the action of S on the matter fields we define it as follows:

S = −T3 + Q =
Y

2
, (4.11)

where Y is called weak hypercharge. Therefore, since

QψL =
(

0 0
0 −1

)
ψL , QψR = −ψR , (4.12)

we have
SψL = −1

2
ψL , SψR = −ψR . (4.13)

Due to (4.8) the lagrangian assumes the form for each family

L1 = LL + LR , (4.14)

where, e.g. for the first family

LL = ψ̄Liγ · DψL = i
(
ν̄L e ēL

)
γ · (∂ + igW + ig′XS)

(
νL e

eL

)

LR = ψ̄Riγ · DψR = i ēRγ · (∂ + ig′XS)eR . (4.15)

Let us consider the term containing interactions between matter fields
and gauge fields in L:

−
(
ν̄L e ēL

)
γ · (gW + g′XS)

(
νL e

eL

)
− ēRγ · (g′XS)eR =

= − g

2
√

2

(
ν̄eγµ(1 − γ5)eW µ

± + h.c.
)
− ψ̄L γµ (gW µ

3 T3 + g′XµS)ψL

− ψ̄R γµ (gW µ
3 T3 + g′XµS)ψR (4.16)

where we have used (4.10) and defined

W±µ =
Wµ

1 ± iW µ
2√

2
. (4.17)

The first term on the r.h.s of (4.16) describes the interaction of a
charged vector boson W with a charged lepton and its neutrino; it
produces Feynman diagrams such as the one depicted in fig. 4.1. The
charged vector bosons were discovered at CERN in the decade 1980.

Let us consider the other two terms in (4.16). Since we have two
neutral vector bosons X and W3 we may hope to describe both the
photon γ of field Aµ and the neutral vector boson Z also discovered at
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Figure 4.1: The decay µ− → νµe−ν̄e.

CERN in the 1980’s. However we may expect mixing between X and
W3 as they have the same quantum numbers. Therefore we define

Aµ = sin θW µ
3 + cos θXµ ,

Zµ = cos θW µ
3 − sin θXµ . (4.18)

In the last two terms of (4.16) we have

gW µ
3 T3 + g′XµS =

= Aµ
(
g sin θ T3 + g′ cos θ S

)
+ Zµ

(
g cos θ T3 − g′ sin θ S

)
. (4.19)

We now identify Aµ with the photon field and Zµ with the field of the
Z0 spin 1 boson.

The coefficient of the photon field must be equal to eQ therefore

g sin θ T3 + g′ cos θ S = e(T3 + S) , (4.20)

which implies the fundamental relations

g =
e

sin θ
g′ =

e

cos θ
. (4.21)

Therefore the coupling to the photon is simply

− ψ̄L γµ (eQAµ)ψL − ψ̄R γµ (eQAµ)ψR = eAµēγµ e . (4.22)

We can also derive the couplings of Z0 to leptons:

LZψψ = −Zµψ̄L γµ (g cos θ T3 − g′ sin θ S)ψL

−Zµ ψ̄R γµ (g cos θ T3 − g′ sin θ S)ψR =
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= −e(−1 + 2 sin2 θ)
2 sin θ cos θ

ZµēL γµ eL − e sin θ
cos θ

ZµēR γµ eR

− e

2 sin θ cos θ
Zµν̄L γµνL . (4.23)

Problem. Using the Z0 couplings determine the width Γ(Z0 → µ+µ−) .

4.1.1 Gauge fields

Besides the term L1 describing the kinetic term of the fermions and
their couplings to the gauge fields, eq. (4.14), the lagrangian contains
the pure gauge fields term, containing the kinetic terms of the gauge
bosons and their self-couplings. It has the form discussed in subsection
2.1.2:

L2 = −1
2
TrWµνWµν − 1

4
XµνX

µν (4.24)

When expressed in terms of orthogonal combinations it gives rise to the
kinetic terms of the four gauge bosons W±, Z, γ and to self interactions,
i.e. W+W+γ or W+W−Z couplings.

4.2 Effective theory of weak interactions

4.2.1 Fermi theory of weak interactions

So far we have not yet considered the W mass; we know from ex-
periment that the W boson has indeed a mass mW ≃ 80 GeV. Its
propagator would be

iDλσ(q) = i
gλσ − qλqσ/m2

W

q2 − m2
W

(4.25)

Let us compute the amplitude for the process depicted in fig.4.1. We
get

M = i < νµ(k1)e−(̄k2)νe(k3)|L|µ−(p) >=

=
(
−ig

2
√

2

)2

ū(k1)γλ(1 − γ5)u(p) × ū(k2)γσ(1 − γ5)v(k3)iDλσ(q) =

≈ i < νµ(k1)e−(̄k2)νe(k3)|
GF√

2
jλj†λ|µ

−(p) > (4.26)

with

GF =
g2

4
√

2m2
W

(4.27)
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Here we have used the fact that mW ≫ |q|. This matrix element is
therefore approximately equivalent to the one produced by an effective
lagrangian

Leff =
GF√

2
jλj†λ (4.28)

where jλ is the leptonic current is given by

jλ =
∑

ℓ=e,µ,τ

ν̄ℓγ
λ(1 − γ5)ℓ (4.29)

jλ changes by 1 the lepton charge and it is therefore called charged
current. Note the structure V − A of the current and the common
coupling to all the families, which is named universality of the weak
current. The constant GF is called Fermi constant:

GF = 1.166 × 10−5 GeV −2 . (4.30)

4.2.2 Neutral currents

For small momentum transfer the Fermi theory can be extended to
include neutral currents. They relate lepton fields having the same
electric charge and can be derived from the couplings (4.23) in the
approximation |q| ≪ mZ .

Problem. Show that the effective lagrangian for neutral currents can be written as

Ln.c. =
GF√

2

(
mW

mZ

)2

jλ
n.c.jn.c. λ (4.31)

Show that the leptonic neutral current has the form

jλ
n.c. =

∑

ℓ=e,µτ

(
ℓ̄γλ(a + bγ5)ℓ+ cν̄ℓγ

λ(1 − γ5)νℓ

)
(4.32)

and determine the coefficients a, b, c.

Neutral currents were discovered at CERN in 1973, 10 years before
the discovery of the gauge bosons W, Z0. The process leading to their
discovery was

ν̄µe− → ν̄µe− (4.33)

that cannot take place by charged current. Their discovery was a fun-
damental success for the unified model of electroweak interactions.
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4.3 Glashow-Weinberg-Salam Model

4.3.1 Renormalizability

Let us consider the Fermi lagrangian (4.28) having a coupling constant
of dimension [M ]−2, see (4.30). A theory having a coupling constant
with a negative dimension is not renormalizable. Let us discuss this
point in some detail.

Since we use ! = c = 1, then [M ] = [E] = [L]−1 = [T ]−1. Action S
is dimensionless and therefore the lagrangian density L has dimension
4: [L] = [M ]4.

Problem. Determine the canonical dimension of spin 0, 1/2, 1 fields.

Now let us consider for example the process νµe− → νµe−. Besides
the tree level contribution, which is proportional to GF and has no
loops, we can consider a perturbative correction ∝ G2

F arising from a
Feynman diagram with one loop, see Fig. 4.2. The extra factor of GF in

eν

νµ

µ

e e

µν

k

Figure 4.2: The scattering νµe → νµe at one loop in the Fermi theory.

the loop diagram, as compared to the tree diagram, is compensated by
two extra powers of mass that are provided by two powers of the inte-
gration variable k. The diagram is therefore ultraviolet (UV) divergent
2, due to the bad behavior when |k| → ∞. The procedure to eliminate
UV divergences consists of: i) regularize the divergent integrals, for

2We considered a similar diagram in fig. 1.7 for the λφ4 theory. Its expression
in eq. (1.144) shows a logarithmic divergence O(Λ2/s) when Λ, the upper limit on
the momentum integration (also called UV cutoff) goes to infinity. We omit here
the discussion on infrared divergences that can arise from the behavior at small
momenta, for example because of vanishing masses in the propagators.
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example by cutting the loop integral with some momentum cut-off Λ.
This introduces an unphysical dependence on Λ in the amplitude. To
get rid of it one adds an ad hoc term δL(Λ) in the lagrangian (called
a counterterm) such that in the limit Λ → ∞, when one removes the
cut-off, the amplitude remains finite. This is the usual procedure, that
clearly works only if the number of counterterms is finite. Theories
whose UV divergences can be cured in this way are called renormaliz-
able. Fermi theory is not renormalizable, because adding new vertices
in new loops implies introducing extra factors of GF ; therefore the cor-
responding Feynman diagram would have a cut-off dependence O(Λ)n

with larger and larger exponent n. As a consequence an infinite num-
ber of counterterms would be necessary to get rid of UV divergences
at all orders in the perturbative expansion.

Renormalizable theories are preferred because they allow in prin-
ciple accurate calculations by the inclusion of terms of higher order in
the perturbative series. Let us therefore control if the exact theory,
which includes the gauge bosons W and Z represents an improvement.
Apparently it does, because the coupling constants g and g′ are di-
mensionless. However a problem still remains and arises from gauge
boson masses. Let us consider the Z gauge boson whose propagator is
as follows:

iDµν(k) = i
−gµν − kµkν/m2

Z

k2 − m2
Z + iϵ

. (4.34)

The term kµkν/(k2 − m2
Z + iϵ) behaves as a constant for |k| → ∞. As

a consequence the SU(2) × U(1) model with massive gauge bosons is
not renormalizable.

The way to overcome this difficulty was discovered at the end of the
decade ’60 of last century by Abdus Salam and Steven Weinberg who
modified the SU(2) × U(1) model originally introduced by Glashow.
They noticed that the presence of the mass term actually is not al-
lowed by the gauge symmetry. The non-renormalizability of the mas-
sive gauge boson model is therefore related to the explicit breaking
of the symmetry. There is however a different way by which gauge
bosons can acquire mass. It is possible when a gauge theory is sponta-
neously broken. While in general SSB implies the existence of massless
Nambu-Goldstone scalar fields, in presence of gauge fields the NGBs
are absent and these missing degrees of freedom appear as longitudinal
components of the gauge bosons. In other words the gauge bosons ac-
quire masses. This effect is known as the Higgs-Anderson mechanism.
Since the theory is only spontaneously broken, even though the physical
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states are not symmetric the lagrangian does maintain its symmetry
properties. As a consequence one can prove that the spontaneously
broken SU(2) × U(1) model is renormalizable.

4.3.2 Higgs mechanism in the GWS model

Besides the gauge boson mass, another problem of the SU(2) × U(1)
model is the absence of lepton masses. We now show that, if the
symmetry SU(2) × U(1) is spontaneously broken, then not only the
gauge bosons, but also the fermions acquire masses.

It is useful to start with one family, when the electron mass will
appear in the lagrangian through a term

∼ ēReL . (4.35)

It will appear by SSB, i.e. through the non vanishing vacuum expec-
tation value of a field. It is natural to assume the existence of a scalar
field φ and a lagrangian term

L4 = −fēRφ
†ψL + h.c. (4.36)

It is obvious that we need at least a doublet φ of complex scalar fields
to construct a singlet under the gauge group. In other words

T⃗φ =
τ⃗

2
φ . (4.37)

On the other hand
Sφ =

1
2
φ (4.38)

and, introducing the components of φ we have:

φ =
(
ϕ+

ϕ0

)
, (4.39)

where ϕ+ has charge +1 while ϕ0 is neutral.
Problem. Prove that the assumption (4.38) ensures invariance of (4.36) under trans-

formation of U(1). Prove also that the structure of (4.39) follows from Q = T3 + S.

If now < 0|ϕ0|0 >= v/
√

2 ≠ 0, then the electron will have a mass.
This point will be discussed below, see eq. (4.62). The scalar field will
have a kinetic term with a gauge covariant derivative and a self coupling
potential V implementing the hypothesis of SSB, see for comparison
(2.49):

L3 = (Dφ)†(Dφ) − V (φ) (4.40)
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V (φ) =
λ

2

(
φ†φ− v2

2

)2

(4.41)

The vev v is defined by

< 0|φ|0 > =
(

< ϕ+ >0

< ϕ0 >0

)
=

(
0
v√
2

)
, (4.42)

Similarly to the choice in subsection 2.2.1 we write the fields in polar
components

φ =
(
ϕ+

ϕ0

)
= e−iτ⃗ ·θ⃗(x)/v

(
0

v+η(x)√
2

)
. (4.43)

The four real scalar θ⃗ and η have zero vev:

< θk >0=< η >0= 0 (4.44)

and are linear combination of the four components of the complex fields
ϕ+, 0. Let us perform a gauge transformation with

U = e+iτ⃗ ·θ⃗(x)/v . (4.45)

Then

φ → φ′ =

(
0

v+η(x)√
2

)
, (4.46)

ψL → ψ′
L = UψL , ψR → ψ′

R = ψR , (4.47)

τ⃗ · W⃗µ

2
→ τ⃗ · W⃗ ′µ

2
= U

τ⃗ · W⃗µ

2
U−1 +

i

g
(∂µU)U−1 , (4.48)

Xµ → X ′µ = Xµ . (4.49)

Expressing the scalar field lagrangian L3 in terms of φ′ produces a
lagrangian where the degree of freedoms θ⃗ have disappeared and only
the scalar field η(x) appears:

L3(φ′) = (Dφ′)†(Dφ′) − V (φ′) (4.50)

where

Dµφ
′ =

(
∂µ + i g

τ⃗W⃗ ′
µ

2
+ i

g′

2
Xµ

)(
0
1

)
v + η√

2
(4.51)

V (η) =
λ v2η2

2
+
λη4

8
+
λ vη3

2
. (4.52)
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The η field describes a massive neutral particle, the Higgs particle H.
It has the a mass

m2
H = λ v2 (4.53)

and cubic and quartic self-interactions, as shown by (4.52). The other
particles θ⃗ are called would-be Goldstone bosons. They are missing in
the lagrangian but their role is played by gauge bosons. As a matter
of fact let us consider first term in (4.50):

(Dφ′)†(Dφ′) (4.54)

besides the kinetic term of the η field it contains the term

v2

2
(

0 1
)
(

g
τ⃗W⃗ ′

µ

2
+

g′

2
Xµ

)(
g
τ⃗W⃗ ′µ

2
+

g′

2
Xµ

)(
0
1

)
=

=
M2

W

2
(
W+ µW+

µ + W−µW−
µ

)
+

M2
Z

2
ZµZµ (4.55)

where

M2
W =

g2v2

4
, (4.56)

and

M2
Z =

g2 + g′ 2

4
v2 . (4.57)

It follows that the gauge bosons W± and Z are massive while the
photon is massless.

Problem Prove (4.55-4.57).

Problem Using tan θ = g′/g prove that

M2
Z =

e2 v2

4 sin2 θ cos2 θ
. (4.58)

Since the photon is massless, a subgroup U(1), not identical with the
U(1) appearing in SU(2) × U(1), remains unbroken. Therefore, of the
four generators of the symmetry group, only three are broken and to
them would correspond three Nambu-Goldstone bosons, the θ⃗ particles.
However they are only would-be NGBs, because they have been eaten
by the gauge bosons W± and Z; their degrees of freedom appear as
the longitudinal degrees of freedom of W± and Z. Finally the Higgs
particle is massive because the subgroup U(1)em is not spontaneously
broken.

Let us finally note the relation, valid at the tree level

ρ =
M2

W

M2
Z cos2 θ

= 1 (4.59)
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This gives the so called on-shell definition of the mixing angle θ, called
the Weinberg angle. Using mW = 80.419 ± 0.056 GeV and mZ =
91.1882 ± 0.0022 GeV, the relation (4.59) gives

sin2 θ ≈ 0.22 . (4.60)

These relations get small corrections from higher order terms in the
perturbative expansion; in particular from these corrections an esti-
mate of around 100 GeV, with large uncertainty, is obtained for the
mass of the yet undiscovered Higgs particle.

Let us finally determine the electron mass. Starting from (4.36) one
gets

L4 = −fēRφ
†ψL + h.c. = −fē′Rφ

′ †ψ′
L + h.c. =

= −fē′R

(
0 v+η√

2

)( νL

eL

)
+ h.c.

= −meēe − f√
2
η ē e (4.61)

with
me = f

v√
2

. (4.62)

The same term giving the electron a mass also gives a Yukawa coupling
between the Higgs particle η and the electron, the µ, and the τ lepton.

4.4 Problems

1. Compute the total cross section for ν̄µe− → ν̄µe−.

2. Determine the cross section for e+e− → e+e− for
√

s ≈ 90 GeV
including electromagnetic and weak contributions. Show that for√

s ≈ mZ the latter dominates.

3. Compute the cross section for the process

e−e− → e−e−

at the tree level including weak and electromagnetic contribu-
tions.

4. Compute Γ(Z0 → νeν̄e).

5. Compute the cross section for ν̄ee− → ν̄ee− using the effective
current × current theory of section 4.2.
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Chapter 5

Quarks and the
Glashow-Weinberg-Salam
Model

5.1 Quarks and the GWS Model

Analogously to leptons, see eqns.(4.3) and (4.4), quarks are present
in the GWS lagrangian both as doublets ψL and singlets ψR of the
symmetry group organized into three families:

ψL =
(

uL

d′L

)
,

(
cL

s′L

)
,

(
tL
b′L

)
(5.1)

ψR = uR , cR , tR , d′R , s′R , b′R . (5.2)

Differently from the leptonic sector we have 6 right fermion fields since
all quarks have righ-handed components. The fields d , s , b have differ-
ent flavors, but they can mix (analogously to the mixing W 3, X) be-
cause weak interactions can change flavor. Therefore the fields having
definite group properties , i.e. transforming as the second component of
a doublet, are in general linear combinations of the quarks d , s , b and
we denote them as d′ , s′ , b′. The values of the quark weak hypercharge

Y = 2(Q − T3) , (5.3)

see (4.11), is in the following table 5.1, where we have also reported
the values for leptons and scalar field.
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leptons, scalar Y quarks Y
ψL -1 ψL 1/3
ψR -2 uR, cR, tR 4/3
φ +1 d′R, s′R, b′R -2/3

Table 5.1: Weak hypercharge.

Quark fields appear in the lagrangian with terms completely anal-
ogous to (4.15) and (4.15). For example the coupling to W± is

− g√
2

(
Jλ W+

λ + h.c.
)

(5.4)

where the hadronic current is as

Jλ =
(

ūL c̄L t̄L
)
γλ

⎛

⎝
d ′

L
s ′
L

b ′
L

⎞

⎠ (5.5)

Similarly one derives the coupling to electromagnetism and Z.
We have to relate the fields d′, s′, b′ to d, s, b. To do that let us con-

sider the Yukawa coupling that, as we know, gives masses to fermions,
via the spontaneous breaking of the group symmetry. There are in gen-
eral two couplings proportional to two different 3×3 complex matrices
C and C ′:

Lyuk = −
(

d̄ ′
R s̄ ′

R b̄ ′
R

)
C ′

⎛

⎜⎜⎜⎜⎜⎜⎝

φ†
(

uL

d′L

)

φ†
(

cL

s ′
L

)

φ†
(

tL
b ′
L

)

⎞

⎟⎟⎟⎟⎟⎟⎠

+
(

ūR c̄R t̄R
)
C

⎛

⎜⎜⎜⎜⎜⎜⎝

φT ϵ

(
uL

d ′
L

)

φT ϵ

(
cL

s ′
L

)

φT ϵ

(
tL
b ′
L

)

⎞

⎟⎟⎟⎟⎟⎟⎠
. (5.6)

A term ψ̄Rφ†ψL is manifestly invariant under transformations of SU(2)L

since φ is a doublet of this subgroup. But also ψ̄RφT ϵψL, with ϵ = iσ2
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is an invariant. In fact one has ϵσi + σT
i ϵ = 0 and therefore, under an

infinitesimal transformation,

ψ̄Rφ
T ϵψL → ψ̄Rφ

T (1 + αiσ
T
i )ϵ(1 + iσkαk)ψL = ψ̄Rφ

T ϵψL . (5.7)

Let us now perform the following thansformations, with U1, U2, V rank
3 unitary matrices:

⎛

⎝
uR

cR

tR

⎞

⎠→ U1

⎛

⎝
uR

cR

tR

⎞

⎠ ,

⎛

⎝
d̄ ′

R
s̄ ′
R

b̄ ′
R

⎞

⎠→ U2

⎛

⎝
d̄ ′

R
s̄ ′
R

b̄ ′
R

⎞

⎠ ,

⎛

⎜⎜⎜⎜⎜⎜⎝

(
uL

d ′
L

)

(
cL

s ′
L

)

(
tL
b ′
L

)

⎞

⎟⎟⎟⎟⎟⎟⎠
→ V

⎛

⎜⎜⎜⎜⎜⎜⎝

(
uL

d ′
L

)

(
cL

s ′
L

)

(
tL
b ′
L

)

⎞

⎟⎟⎟⎟⎟⎟⎠
(5.8)

These field redefinitions correspond to the following transformations on
C, C ′:

C → C̃ = U †
1CV

C ′ → C̃ ′ = U †
2C ′V . (5.9)

We choose U1, V such that

C̃ = diag(cu, cc, ct) . (5.10)

In fact, since
CC† → U †

1CC†U1 . (5.11)

we can choose U1 requiring that U †
1CC†U1 is diagonal:1

U †
1CC†U1 = diag(c2

u, c2
c , c2

t ) . (5.12)

Because of (5.12) the matrix U †
1C has the form

U †
1C =

⎛

⎝
cu 0 0
0 cc 0
0 0 ct

⎞

⎠W (5.13)

1The eigenvalues of CC† must be positive.
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with2 ci = cu, cc, ct ≥ 0. Choosing

V = W † (5.14)

one gets

C̃ = U †
1CV =

⎛

⎝
cu 0 0
0 cc 0
0 0 ct

⎞

⎠ . (5.15)

We can now repeat the procedure with C ′ to get, instead of (5.13)

U †
2C ′ =

⎛

⎝
cd 0 0
0 cs 0
0 0 cb

⎞

⎠V †
ckm , (5.16)

We cannot render C̃ ′ diagonal since we have already fixed V in (5.14).
We can however apply a new transformation U2 with

U2 = V †
ckm . (5.17)

In conclusion

C̃ ′ = Vckm

⎛

⎝
cd 0 0
0 cs 0
0 0 cb

⎞

⎠V †
ckm . (5.18)

5.2 Cabibbo-Kobayashi-Maskawa matrix

The unitary matrix Vckm in (5.18) is called Cabibbo-Kobayashi-Maskawa
matrix and is written down as follows:

Vckm =

⎛

⎝
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞

⎠ . (5.19)

Let us determine the consequences of its presence in the lagrangian.
We know that the Yukawa term via SSB generates quark masses. In
fact working in the unitary gauge (4.45) the scalar field transforms as
(4.46) and the Yukawa term trasforms as follows

Lyuk = −v + η(x)√
2

×

2If ci are not positive we can multiply them by appropriate phases that make
them positive and reabsorb the phases in W .

104



×
{(

d̄ ′
R s̄ ′

R b̄ ′
R

)
Vckm

⎛

⎝
cd 0 0
0 cs 0
0 0 cb

⎞

⎠V †
ckm

⎛

⎝
d ′

L
s ′
L

b ′
L

⎞

⎠+

+
(

ūR c̄R t̄R
)
⎛

⎝
cu 0 0
0 cc 0
0 0 ct

⎞

⎠

⎛

⎝
uL

cL

tL

⎞

⎠ + h.c.
}

. (5.20)

The term proportional to v is the quark mass term. Taking into account
that

ūRuL + h.c. = ū
1 − γ5

2
u + ū

1 + γ5

2
u = ūu (5.21)

one gets

Lmass = −
{(

d̄ ′ s̄ ′ b̄ ′ )Vckm

⎛

⎝
md 0 0
0 ms 0
0 0 mb

⎞

⎠V †
ckm

⎛

⎝
d ′

s ′

b ′

⎞

⎠+

+
(

ū c̄ t̄
)
⎛

⎝
mu 0 0
0 mc 0
0 0 mt

⎞

⎠

⎛

⎝
u
c
t

⎞

⎠
}

, (5.22)

where we have put
mj =

cj v√
2

(5.23)

Therefore mu, mc, mt are the masses of u, c and t quarks and the cor-
responding fermion fields are mass eigenstates. Clearly d ′, s ′ and b ′

are not mass eigenstates: the mass eigenstates are in fact
⎛

⎝
d
s
b

⎞

⎠ = V †
ckm

⎛

⎝
d ′

s ′

b ′

⎞

⎠ . (5.24)

The CKM matrix does not play a role any longer in the mass term.
However, if we re-express hadronic currents in terms of the mass eigen-
states its elements give the weight Vij for the contribution of the q̄iqj

pair to the current. As a matter of fact we get from (5.5):

Jλ =
(

ūL c̄L t̄L
)
γλVckm

⎛

⎝
dL

sL

bL

⎞

⎠ . (5.25)

We notice that Vckm only appears in the charged currents and not in
the neutral currents giving the coupling of quarks to the photon and
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Z. To a very good numerical approximation the matrix Vij (i, j = 1, 2)
extracted from Vckm can be approximated as follows

Vij =
(

cos θc sin θc

− sin θc cos θc

)
(5.26)

with
sin θc ≈ 0.22 (5.27)

called Cabibbo’s angle. The absolute values of the other matrix ele-
ments are as follows: |Vub| ≈ 3.7 × 10−3, |Vcb| ≈ 4.1 × 10−2, |Vtd| ≈
0.9× 10−2,|Vts| ≈ 4× 10−3,|Vtb| ≈ 1.0. It must be noted that the CKM
matrix is complex and unitary and therefore can be parameterized in
general by three real parameters and one phase.

5.3 Flavor Changing Neutral Currents and the
Glashow-Iliopoulos-Maiani merchanism

The coupling of Z to leptons we wrote in (4.23) holds for all the
fermions of the electroweak model and therefore also for quarks; since
S = Q − T3 we have:

LZψψ = −
[
Zµψ̄L γµ (g cos θ T3 − g′ sin θ S)ψL + L → R

]
=

− e

sin θ cos θ
[
Zµψ̄L γµ (T3 − sin θ2 Q)ψL + L → R

]
(5.28)

Let us consider for example the first doublet

ψL =
(

u
d ′

)

L

≈
(

u
cos θcd + sin θcs

)

L

. (5.29)

In particular there exists the ZdLsL coupling:

e

sin θ cos θ
sin θc cos θc

(
−1
2

+
sin2 θ

3

)
d̄Lγ · ZsL . (5.30)

If we compare it to the charged current coupling

ψLτ+γ · W+ψL (5.31)

where we find
g sin θcūLγ · W+sL (5.32)
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we see that the couplings are of the same numerical order. The coupling
(5.30) would be responsible for the decay K0 → µ+µ− while the cou-
pling (5.32) is responsible for the decay K+ → µ+νµ. Experimentally
one has

Γ(K0
L → µ+µ−)

Γ(K+ → µ+νµ)
∼ O

(
10−8

)
. (5.33)

The explanation for this suppression is in another coupling arising from
the second quark doublet:

Ψ′
L =

(
c
s ′

)

L

≈
(

c
cos θcs − sin θcd

)

L

. (5.34)

The ZdLsL coupling arising from (5.34) exactly cancel the previous
contribution to K0

L → µ+µ−. In conclusion at the tree (no loop) level
there are no Flavor Changing Neutral Currents (FCNC). Also at the
one-loop level, if mc is not too high, there is a strong cancellation.
This mechanism for suppressing FCNC is called GIM and was invented
before the discovery of the charm quark. The discovery in 1973 of the
J/Ψ particle, a c̄c vector meson state represented one of the major
successes of the high energy theoretical physics of the second half of
XX century.

5.4 Hadronic currents and semileptonic decays

If we include quarks the Fermi effective lagrangian becomes

Leff =
GF√

2

(
jλ + Jλ

)(
j†λ + J†

λ

)
(5.35)

where jλ is the leptonic current defined in (4.29) and Jλ is the hadronic
current given in eq. (5.25). The term ∝ jλj†λ is relevant in purely lep-
tonic processes (no hadrons). The term ∝ JλJ†

λ is active in weak non
leptonic processes. The term ∝ jλJ†

λ + h.c. can describe the so called
semileptonic processes (both hadrons and leptons present). Examples:
µ− → e−νµν̄e (leptonic); K+ → π+π0 (non leptonic); n → pe−ν̄e

(semileptonic). In this section we shall consider some examples of
semileptonic decays.

The main problem is the evaluation of the hadronic current Jµ

between hadronic states. Let us consider a few cases.

a): < 0|Jµ|M(p) > (M a pseudoscalar meson of momentum p).
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Only the axial current acts; as a matter of fact, the matrix el-
ement must be proportional to pµ, because it is a 4-vector and
the only available 4-vector is pµ. In the meson rest frame only
the µ = 0 component is non vanishing. On the r.h.s. we have
a scalar; since M is a pseudoscalar meson, J0 must be a pseu-
doscalar, because parity is conserved in strong interactions and
the matrix element is only determined by strong interactions3.
This means that, out of the two currents in Jµ = V µ − Aµ, only
the axial current is active. It follows that we can write

< 0|Aµ|M(p) >= i fM pµ . (5.36)

In particular we have

< 0|ūγµγ5d|π−(p) >= i fπ pµ . (5.37)

The numerical value of fπ can be extracted from Γ(π− → µ−ν̄µ);
one finds fπ ≈ 130 MeV.

If M belongs to a SU(3)f multiplet, we can make use of the
approximate flavor symmetry to relate the leptonic constans fM

of different members of the multiplet, because (5.36) must be a
singlet. For example if M belongs to the pseudoscalar octet we
write

< 0|q̄iTijγ
µγ5qj |M(p) >= i fM pµ Tr(TM) (5.38)

where Mij is the 3 × 3 matrix describing in SU(3)f the pseu-
doscalar meson. In this way we can relate the different leptonic
constants to a unique constant fM . The reason for the Clebsch-
Gordan coefficient Tr(TM) is as follows. Since strong interactions
are SU(3)f symmetric, the matrix element must be invariant un-
der group operations. If U ∈ SU(3)f then T → UTU †, M →
UMU † because both T and M are in adjunct representation.
The only invariant is Tr(TM) → Tr(UTU †UMU †) = Tr(TM).

b):< M ′(p′)|Jµ|M(p) > (M and M ′ pseudoscalar mesons of momenta
p and p′).

Let us consider the crossed m.e. < |Jµ|M(p) M̄ ′(−p′) >. It is a
4-vector; therefore Jµ must be a vector by parity arguments (in

3In fact one has < 0|V 0|M > = < 0|P−1PV 0P−1P |M >= − < 0|PV 0P−1|M >
= − < 0|V 0|M > which implies < 0|V 0|M >= 0. Notice that we used the transfor-
mation law under parity V µ → PV µP−1 = Vµ.
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the meson pair rest frame, for µ = 0 we have a scalar and also
the meson pair is a scalar under parity, therefore J 0 must be a
scalar and this excludes the axial currents. Therefore we have

< M ′(p′)|Jµ|M(p) >= f (+)
MM ′(p + p′) + f (−)

MM ′(p − p′) (5.39)

The factors f (±) are scalar functions and therefore can depend
only on scalar quantities. The only non trivial scalar that can be
constructed using the two momenta p and p′ is q2 = (p′ − p)2,
therefore f (±) = f (±)(q2). The functions f (±)(q2) are called form
factors.
Also in this case we can relate different form factors using sym-
metry arguments. For example if M and M ′ are in the same
SU(3)f octet we have

< M ′(p′)|q̄iTijγ
µqj |M(p) >=

= Tr([M, M ′†]T )
(
f (+)(q2)(p + p′) + f (−)(q2)(p − p′)

)

Notice that if qj in (5.40) are light quarks, then in the SU(3)f

symmetry limit V µ is a conserved current (it is the Noether cur-
rent of the gauge symmetry SU(3)f ). This property is known as
CVC (conserved vector current).
Since ∂µV µ(x) can be expressed via a commutator as shown in
(1.209):

∂µV µ(x) = i[P̂µ, Vµ(x)] (5.40)

we have

0 = < M ′(p′)|∂µV µ(0)|M(p) >=
= i(p′ − p)µ < M ′(p′)|V µ(0)|M(p) >=
= if (+)(q2)(m2

M − m2
M ′) − iq2f (−)(q2) . (5.41)

Therefore, in the symmetry limit m2
M = m2

M ′ and f (−) = 0.
Since also the electromagnetic current is constructed in the same
way, with Tij given in this case by

Q =

⎛

⎝
2/3 0 0
0 −1/3 0
0 0 −1/3

⎞

⎠ , (5.42)

then one can relate the matrix element of the K → πℓνℓ decay
to m.e. of the electromagnetic current between pion states. In
particular we note that

< π±(p′)|q̄Qγµq|π±(p) >= ± f+(q2)(p + p′) , (5.43)
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with f+(0) = 1, whose proof is left to the reader as an exercise.

c): < B′(p′, s′)|Jµ|B(p, s) >: B and B′ are spin 1/2 baryons with mo-
menta p and p′ and spin components s and s′. Since the hadrons
depend on both momentum and spin we can have both vector and
axial currents. The Lorentz structure is as follows (q = p′ − p):

< B′(p′, s′)|V µ|B(p, s) >=
ū(p′, s′)(f1(q2)γµ − if2(q2)σµνqν)u(p, s) ; (5.44)

< B′(p′, s′)|Aµ|B(p, s) >=
ū(p′, s′)

(
g1(q2)γµγ5 + g3(q2)qµγ5

)
u(p, s) , (5.45)

where q = p − p′ and σµν = i
2 [γµ, γν ] and we have assumed

symmetry limit to get rid of other possible Lorentz structures.
We discuss the SU(3)f structure of the form factors in section
5.6.

5.5 Chiral Symmetry

Let us suppose the light quarks massless: mu = md = ms = 0. As
we know this should not be a bad approximation, given the numeri-
cal values of the quark masses, see the footnote in section 3.7. With
vanishing quark masses the strong interaction lagrangian in the light
flavor sector has the global gauge symmetry SU(3)L × SU(3)R (chiral
symmetry) generated by transformations

qL =
1 − γ5

2
q → ULqL = exp(iα⃗L · T⃗ )qL

qR → URqR =
1 + γ5

2
q = exp(iα⃗R · T⃗ )qR . (5.46)

In fact the the only term that is not left invariant is (M =mass matrix)

q̄Mq = (q̄L + q̄R)M(qL + qR) = q̄LMqR + q̄RMqL →
→ q̄LU †

LMURqR + q̄RU †
RMURqL (5.47)

This is different from q̄Mq. However if M = 0 the lagrangian is chiral
symmetric4. Going back to chapter 3 we see that the hadron spectra do

4If M is a multiple of the unity matrix: M = m · 1, and m ≠ 0, then there is
only a subgroup of the chiral group, the vector SU(3)V that is a symmetry group.
This is SU(3)f .
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not show a duplication of multiplets, as one would expect in presence
of chiral symmetry. For example there is an octet of JP = 1− mesons,
but there is not another meson multiplet JP = 1+ degenerate in mass.
We conclude that chiral symmetry is spontaneously broken: it is a
symmetry of the lagrangian but not of the physical states. According
to the Goldstone’s theorem there must be as many Goldstone bosons
as are the broken generators of the symmetry. We expect only 8 broken
generators and indeed we find an octet of light spin 0 mesons, i.e. the 0−

pseudoscalar octet. The fact they have indeed a mass is a consequence
of the fact that quark masses are small but, strictly speaking, mq ≠ 0.
In particular mu, md ≪ ms and the symmetry SU(2)L×SU(2)R should
represent a better approximation. This is confirmed by the smallness
of the pion mass.

We can a confirmation of this conjecture by the following argument.
Let us use (5.37) to compute the divergence of the axial current:

< 0|∂µAµ(0)|π−(p) >= fπm
2
π (5.48)

on the other hand, from the field equations iγ · ∂ψ = mψ + ”colored
terms”:

∂µAµ = ∂µūγµγ5d = i(mu + md)ūγ5d (5.49)

therefore
i(mu + md) < 0|ūγ5d|π−(p) >= fπm

2
π (5.50)

and mu = md = 0 implies m2
π = 0. Note that since in nature mπ is

small but not zero, the axial current is not exactly conserved (∂µAµ ≠
0). One refers to this circumstance as PCAC (partial conservation of
the axial current).

Let us now consider (5.45) with B = n and B ′ = p, and take the
derivative of the axial current. Assuming PCAC, ∂ ·A ∼ 0 and ∂ ·A = 0
if mπ = 0. In the chiral limit (mq → 0) one has

2mN g1(q2) = q2g3(q2) , (5.51)

i.e.
g1(0) =

1
2mN

q2g3(q2)
∣∣∣
q2→0

. (5.52)

From neutron beta decay one knows that g1(0) ∼ 1.24; this implies
that g3(q2) must have a pole at q2 = 0. The origin of this pole can be
understood looking at the Feynman diagram in fig.5.1. Computing the
r.h.s. one gets

√
2gπpnψ̄p(p′)γ5ψn(p)

i

q2 − m2
π
ifπ(p − p′)µ (5.53)
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where the matrix element

iM(n → pπ−) =
√

2gπpnψ̄p(p′)γ5ψn(p) (5.54)

is obtained from the effective interaction lagrangian

LNNπ = −igπpnN̄ τ⃗ · φ⃗πγ5N . (5.55)

From experiment g2
πpn/4π ≃ 14. It is clear that the diagram (5.1) only

contributes to the form factor g3. Therefore near the pole mass

ψ̄p(p′)g3(q2) qµγ5ψn(p) =
√

2gπpnψ̄p(p′)γ5ψn(p)
i

q2 − m2
π
ifπ(−qµ)

(5.56)
i.e., taking into account that we assume mπ = 0:

g3(q2) =
√

2gπpn fπ
q2

(5.57)

As expected the form factor g3 has a pole corresponding to a massless
from scalar.

A
µ

n

π

p pn

A
µ

=

Figure 5.1: Pion pole dominance for q2 → 0.

From (5.52) and (5.57) we get the celebrate Goldberger-Treiman rela-
tion connecting fπ, the axial vector coupling g1(0), the pion-nucleon
coupling constant gπpn and the nucleon mass:

2mNg1(0) =
√

2gπpn fπ . (5.58)

Its violation is only of ∼ 5%.

5.6 Problems

1. Compute Γ(π → µνµ) and compare your result with the experi-
mental value.
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2. Compute Γ = Γ(K → µνµ). Using the experimental value for Γ
determine the ratio fK/fπ.

3. Show that < 0|Jµ|V (p, ϵ) >, where V is a vector meson of mo-
mentum p and polarization vector ϵ can be written using Lorentz
invariance and SU(3)f symmetry as follows:

< 0|Jµ|V (p, ϵ) >=< 0|q̄iTijγ
µqj |V (p, ϵ) >= fV ϵ

µ Tr[TV ] (5.59)

where Vij is the 3 × 3 matrix describing in SU(3)f the vector
meson V .

4. Compute Γ(K+ → π0e+νe) in terms of the CKM matrix elements
and GF . Use SU(3)f symmetry as in the text to evaluate the
hadronic matrix element.

5. Consider eqns (5.44) and (5.45) without the term f2, which is a
good approximation in semileptonic decays, when the momentum
q is small. For the vector form factor we write

f1 = dTr({B, B′†}V )Tr + f([B, B′†]V ) (5.60)

where {, } and [, ] mean respectively anticommutator and com-
mutator. Using the electromagnetic current prove that f = 1
and d = 0. Experimentally f1(q2) = f1(0)/(1 − q2/m2

V )2 with
m2

V ≈ 0.7 GeV2. For the analogous axial form factor a similar
formula holds:

g1(0) = DTr({B, B′†}A)Tr + D([B, B′†]A) (5.61)

Experimentally one has D = 0.76, F = 0.48 and g1(q2) = g1(0)/(1−
q2/m2

A)2 with m2
A ≈ 1.0 GeV2. Prove that

g1(0)
∣∣∣
n→p

= D + F

g1(0)
∣∣∣
Λ→p

= −D + 3F√
6

. (5.62)

6. Compute Γ(Λ → pe−ν̄e) in terms of the CKM matrix elements
and GF .

References
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Chapter 6

Quark Parton Model

6.1 Partons

Deep inelastic processes are inelastic reactions with probes of high vir-
tuality. Examples are

e+e− → X (6.1)
eN → X (6.2)
N N → µ+ µ− X (6.3)
p p̄ → jets (high pT ) + X (6.4)

Since from the first pioneering experiments at SLAC it was realized
(Feynman) that at the very short distances tested by these processes
the hadron participating in the scattering appears constituted by a huge
number of elementary puntiform particles, comoving with the hadron.
On this basis a model was suggested (quark parton model) based on the
following assumptions

1. Hadrons are formed by pointlike massless particles, called par-
tons. They can have spin 1/2, in which case they are identified
with the quarks. The parton momenta have the same direction
of the hadron momentum.

2. Quark-partons have electric charge and therefore interact with
electromagnetic and weak currents. A part from that they are
basically free. However there can be other subcomponents of
the hadrons, with no electric or weak charges and therefore not
directly interacting with the probes. They provide the necessary
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glue that binds partons in the hadrons and are therefore called
gluons1.

3. To compute hadronic cross sections one has to compute the anal-
ogous process off free partons, then multiply by the appropriate
probabilities to find partons in the hadron and finally perform an
incoherent sum over all the partons.

We shall discuss the reactions (6.1), (6.2) (deep inelastic scattering)
leaving some comments on Drell-Yan (6.3) and jet production process
(6.4) to section 6.2 at the end of the chapter.

6.1.1 e+e+ → hadrons

Let us consider the high energy inclusive cross section

e+e+ → hadrons . (6.5)

In the parton model it is computed according to the steps depicted
schematically in fig. 6.1. Now the last factor in the equation repre-

σ 
e e+ - Σ

X
==

= Σ Σ
X

.

e

e

e

e q

q

q
q

q
q

X

q

q

2

2

2

=q X

_

_ _+

+

-

-

γ

γ

Figure 6.1: e+e+ → hadrons.

sented in this picture amounts to unity, as it represents the probability
that the qq̄ pair produces any possible hadronic final state. Therefore

1We have seen that in QCD gluons are the 8 spin 1 vector bosons responsible of
strong interactions between quarks.

116



in the parton model

σ(e+e− → hadrons) =
∑

q

σ(e+e− → qq̄) . (6.6)

It is customary to compare the cross section (6.6) to σ(e+e− → µ+µ−)
by computing the ratio

Re+e− =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

. (6.7)

Now

σ(e+e− → µ+µ−) =
4πα2

3s
, (6.8)

where s = (pe+ + pe−)2.
Problem. Prove that in Quantum Electrodynamics, at the lowest order in the per-

turbative expansion, and for
√

s ≫ e, mµ one has (6.8).

Therefore
Re+e− = 3

∑

q

e2
q . (6.9)

The factor 3 is a color factor due to the fact that, for each flavor q,
three color states are possible for quarks. Eq. (6.9) is confirmed to a
good extent from the data; it presents several important features:

1. It holds for energies large enough that low mass effects can be ne-
glected. For example at

√
s ≃ 770 MeV the process is dominated

by the ρ0 resonance through e+e− → γ → ρ0 → π+π−. Therefore
one observes a peak for s = m2

ρ, due to the Breit-Wigner form of
the ρ0 propagator (Γρ ≈ 150MeV ≪ mρ):

1
s − m2

ρ + imρΓρ
. (6.10)

2. It confirms the hypothesis of the quark-partons as spin 1/2 par-
ticles.

3. It confirms the hypothesis of the color quantum number for quarks.

4. It shows that quarks, once produced by the electromagnetic probe,
behave as free particles. This reflects in the absence of energy de-
pendence in eq. (6.9). This property is called scaling 2. It should

2A function f(s) has the scaling property if it is homogeneous, i.e. if, under a
scale transformation s → λs, one has f(s) → λkf(s). Here R(s) is homogeneous
with k = 0 degree.
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be mentioned that the first experimental data were obtained at
the end of the decade 1960, subsequent more precise data ex-
hibited small deviations from scaling and showed that quarks at
short distances, besides electromagnetic interactions, have also
strong interactions, although very feeble indeed. This feature
is embodied in Quantum-Chromo-Dynamics (QCD), the theory
of quarks and gluons since this theory exhibits the property of
asymptotic freedom; more precisely due to loop effects the physi-
cal coupling constant of strong interactions αs = g2

s/4π depends
on the energy, i.e. s = Q2: αs(Q2). For large Q2 it decreases as

αs(Q2) ∼ const.
ln Q2

Λ2
QCD

(6.11)

where ΛQCD ≈ 200 MeV, as determined by experiment. For
Q2 ≫ Λ2

QCD, αs(Q2) can be very small and the quarks can be
treated as almost free.

5. The sum in (6.9) is extended to all flavors that can be excited for a
given energy. For example for

√
s < 3 GeV only the quarks u, d, s

can be excited and Re+e− = 2; for 3 < GeV
√

s < 9.5 GeV also
the charm quark can be produced and Re+e− = 10/3, while, for√

s > 9.5 GeV, the threshold for bb̄ is opened and Re+e− = 11/3.

6.1.2 Deep Inelastic Scattering

The kinematics of the Deep Inelastic Scattering (see fig. 6.2) is as
follows

kµ = (E, 0, 0, E)
k′µ = (E′, E′ sin θ cosφ, E′ sin θ sinφ, E′ cos θ)

q′µ = kµ − k′µ , Q2 = −q2 = 4EE′ sin2 θ

2
> 0

pµ = (M, 0, 0, 0) . (6.12)

We define the auxiliary variables

ν =
p · q
M

= E − E′ > 0 (energy loss) (6.13)

y =
ν

E
=

p · q
p · k = 1 − E′

E
(fractional energy loss) (6.14)

x =
Q2

2νM
=

Q2

2MEy
=

1
ω

(Bjorken variable) . (6.15)
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. X

e(k)
e(k')

N(p)

(q)γ

Figure 6.2: Deep inelastic scattering of a virtual photon off a nucleon.

The invariant mass of the hadronic final state is

W 2 = m2
X = (p + q)2 = M2 + q2 + 2p · q . (6.16)

Therefore, since 0 ≤ m2
X − M2 = 2p · q − Q2, it follows that

0 ≤ x ≤ 1 . (6.17)

The first DIS experiments were performed at SLAC (1968) then at
FNAL and CERN, with a momentum transfer Q2 as large as 10 GeV2.
The amplitude for this process can be written as follows

iM = (−ie)2 < e(k′)|Jµ
em|e(k) >< X|Jνem|N(p) >

−igµν

q2
(6.18)

and the cross section is as follows

dσ =
d3k′

(2π)32E′
1

4
√

(p · k)2 − m2M2

∑

X

(2π)4δ4(p + k − pX − k′)|iM|2

(6.19)
where m ∼ 0 is the electron mass. Now

|iM|2 =
e4

Q4

∑
spin

< e(k′)|Jνem|e(k) >< e(k)|Jµ
em|e(k′) >

× < X|Jem, ν |N(p) >< N(p)|Jem, µ|X > (6.20)

where
∑

spin means a sum over the final spins and an average over the
initial spins. Moreover, with (k · γ) = kµγµ and neglecting the electron
mass,

∑
spin

< e(k′)|Jνem|e(k) >< e(k)|Jµ
em|e(k′) >=
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=
1
2
Tr(k · γ)γµ(k′ · γ)γν = 2

(
kµk′ν + kνk′µ − k · k′gµν

)

≡ 2 ℓµν . (6.21)

Let us introduce the hadronic tensor

Wµν(p, q) =
∑

X

(2π)3

2
δ4(p + q − pX)

×
∑

spin
< X|Jνem|N(p) >< N(p)|Jµ

em|X > (6.22)

One has therefore

1
4ME

∑

X

(2π)4δ4(p + k − pX − k′)|iM|2 =
2π

ME
ℓµνWµν (6.23)

Since d3k′ = E′2dE′dΩ we finally have

dσ

dE′dΩ
=

2α2

Q4

E′

ME
ℓµνWµν (6.24)

where α = e2/4π is the fine structure constant.
The hadronic tensor satisfies

Wµν(p, q) = W ∗ νµ(p, q)
qµWµν(p, q) = qνW

µν(p, q) = 0 . (6.25)

Problem. Prove eqns.(6.25).

The rank 2 tensor W µν should be constructed using only qµ, pµ, gµν ,
ϵµνλσ and satisfy parity invariance and eqns. (6.25). Therefore it can be
expressed in terms of only two invariant real functions W1, W2 (called
structure functions) that, being scalars, can depend only on scalar kine-
matical variables:

Wµν(p, q) =
(
−gµν +

qµqν

q2

)
W1(ν, q2)

+
(

pν − p · qqν

q2

)(
pµ − p · qqµ

q2

)
W2(ν, q2)

M2
.(6.26)

Problem. Prove eqn.(6.26). Show that a term as follows

iϵµνλσqλpσW3(ν, q2) (6.27)

violates parity. Therefore this term can be present only if parity is not conserved

(i.e. in deep inelastic scattering via weak interactions).
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Using previous expressions, noting that q · k′ = k · k′ = −q · k =
−q2/2, one finally gets

dσ

dE′dΩ
=

4E′ 2α2

MQ4

(
2W1 sin2 θ

2
+ W2 cos2

θ

2

)
. (6.28)

Using the y and x variables defined in (6.14), (6.15) and introducing
new dimensionless structure functions:

F1(Q2, ν) = W1(Q2, ν) , F2(Q2, ν) =
ν

M
W2(Q2, ν) (6.29)

we can express (6.28) as follows:

dσ

dxdy
=

4πα2s

Q4

[
xy2 F1(Q2, ν) +

(
1 − y − M2

Q2

(
x

1 − x

)2
)

F2(Q2, ν

]
,

(6.30)
where s = (p + q)2 = 2ME = (1 − x)Q2/x.
Problem. Prove eqns. (6.28) and (6.30).

Our ignorance about strong interactions is hidden in the hadronic
tensor, in particular in the structure constants Fj . To compute them
let us now apply the hypotheses of the parton model, by which the
scattering of the virtual photon is off a parton qi of momentum ξp, see
fig. 6.3 Clearly to get the hadronic tensor W µν we must first multiply

e(k)
e(k')

q (  p)
i ξ

(q)γ

q (p')
i

Figure 6.3: Deep inelastic scattering of a virtual photon off a nucleon.

the corresponding tensor for the parton qi, i.e. Wµν
i by e2

i , which
gives the relative electromagnetic coupling with respect to the proton.
Then we multiply the result by the probability of finding a quark of
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flavor i and longitudinal fractional momentum ξp in the nucleon, that
we denote as qi(ξ); to it we add q̄i(ξ) the analogous probability for
antiquarks. Finally we sum over all flavors and integrate over ξ:

Wµν =
∑

i

e2
i

∫
dξ [qi(ξ) + q̄i(ξ)] W µν

i (6.31)

Let us compute the hadronic tensor W µν
i adapting to the present case

eq. (6.22). We have

Wµν
i (ξp, q) =

(2π)3

2ξ

∫
d3p′

(2π)32E′ δ
4(ξp + q − p′)

×
∑

spin
< qi(p′)|Jνem|qi(ξp) >< qi(ξp)|Jµ

em|qi(p′) > (6.32)

The only relevant difference, is that, since partons are massless, nor-
malization is to the energy, not the mass and we substitute M → ξE
for the parton energy and analogously M → E for the nucleon. When
expressed by invariant quantities as in (6.30) the factor E vanishes
and we remain with the factor 1/ξ. Now we can compute the matrix
element of the current:

< qi(ξp)|Jµ
em|qi(p′) >= ū(ξp)γµu(p′) (6.33)

so that
∑

spin
< qi(p′)|Jνem|qi(ξp) >< qi(ξp)|Jµ

em|qi(p′) >=

= 2ξ
(
p′µpν + p′νpµ − p′ · p gµν

)
(6.34)

Moreover
∫

d3p′

2E′ δ
4(ξp + q − p′) =

∫
d4p′ δ4(ξp + q − p′)δ(p′ 2) =

1
2p · q δ(ξ − x) .

(6.35)
Therefore, using p′ = ξp + q and neglecting terms proportional to qµ

that are harmless since qµℓµν = 0, one has

Wµν
i (ξp, q) =

δ(ξ − x)
2p

1
p · q (2ξpµpν − p · q gµν) , (6.36)

and using the decomposition (6.26) and the definitions (6.29) one gets

F i
1 =

1
2
δ(ξ − x)
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F i
2 = ξδ(ξ − x) (6.37)

In conclusion

F1(x) =
1
2

∑

i

e2
i [qi(x) + q̄i(x)] (6.38)

F2(x) = 2xF1(x) . (6.39)

Let us comment on these results. First of all we observe that F1 and
F2 do not depend on Q2 and ν but only on the dimensionless ratio x =
Q2/2Mν, i.e. on the Bjorken variable. This means that, analogously to
Re+e− , also these function have the scaling property. A dependence on
both Q2 and x would indicate a scaling violation. This is excluded in
the parton model. In fact here the scattering is off partons, i.e. particles
with no intrinsic scale (they are massless and point-like). Therefore the
dimensionless structure functions can depend by the only non trivial
dimensionless variable, i.e. the Bjorken variable x. In QCD, however,
the renormalization procedure introduces a further scale, ΛQCD and
small scaling violations are admitted 3, so that F1,2 = F1,2(x, Q2).
Second we observe a simple relation between F1 and F2, i.e. eq.(6.39),
called Callan-Gross relation. It is well verified experimentally, a part
again from small scaling violations.

Let us define

u(x) = probability to find a quark up in the proton (6.40)

and analogously d(x), s(x), etc. for the quarks d, s etc. Then

F p
1 =

1
2

(
4
9
[u(x) + ū(x)] +

1
9
[d(x) + d̄(x)] +

1
9
[s(x) + s̄(x)]

)
(6.41)

Using isospin invariance the probabilities to find quarks in the neutron
can be related to those of the proton, e.g.

u ≡ up = dn

d ≡ dp = un

s ≡ sp = sn , (6.42)

which implies

Fn
1 =

1
2

(
4
9
[d(x) + d̄(x)] +

1
9
[u(x) + ū(x)] +

1
9
[s(x) + s̄(x)]

)
(6.43)

3They were indeed discovered in experiments performed about 10 years after the
discovery of the scaling in DIS.
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A number of relations, called sum rules can be derived in the parton
model calculation of DIS. We list them

∫ 1

0
dx [u(x) − ū(x)] = 2 (6.44)

∫ 1

0
dx [d(x) − d̄(x)] = 1 (6.45)

∫ 1

0
dx [s(x) − s̄(x)] = 0 . (6.46)

Another sum rule follows from the very definition of x as fraction of
the nucleon momentum carried by the quark:
∫ 1

0
dxx [u(x) + ū(x) + d(x) + d̄(x) + s(x) + s̄(x)] = 1 − ϵ . (6.47)

Experimentally ϵ ≈ 0.5 and is interpreted as the total momentum car-
ried by gluons.

It is used to separate in the quark distribution functions the contri-
bution of the valence quarks from the contribution of the sea quarks.
Valence quarks are the constituent quarks; they are uud for protons,
udd for neutrons. Sea quarks are the pairs q̄q formed by virtual gluons
surrounding the hadrons. Therefore we write

q(x) = qv(x) + qs(x) . (6.48)

Since we expect that
ū = d̄ = s = s̄ = qs (6.49)

we get from previous equations
∫ 1

0
dxuv(x) = 2 (6.50)

∫ 1

0
dx dv(x) = 1 (6.51)

and the l.h.s. is interpreted as the number of valence quarks of type u
and d in the proton. Also (6.46) becomes obvious due to (6.49), but
it should be remembered that s(x) = s̄(x) is stronger than (6.46) and
depends on the assumption of the quark model, whereas (6.46) is more
general and can be derived using general properties of the hadronic
tensor Wµν in the Bj-limit.
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6.2 Problems

1. Show that the angular distribution for the process e+e− → q q̄
is of the type

1 + cos2 θ . (6.52)

This is the angular distribution of two-jet events found in e+e−

annihilation at high energy. These events are characterized by a
final state where most of the particle momenta are in two cone
regions. The regions are opposite to each other so that P⃗tot = 0
in the center of mass frame and are distributed according the
angular law (6.52). Jet production is interpreted as the effect of
a final state interaction (hadronization) producing hadrons out of
the quark pair.

2. Determine the angular distribution of the jets in the hypothesis
of spin 0 quarks. Comment on the difference with (6.52). The
experimental evidence for the law (6.52) is one of the best reasons
why we believe that quarks have spin 1/2.

3. Show that the Callan Gross relation only holds for spin 1/2
quarks.

4. Derive the momentum sum rule.

5. For the neutrino induced νN → µ−X deep inelastic scattering
prove that the most general form of the hadronic tensor contains
an extra term

F3ϵ
µναβ . (6.53)

Derive an expression for the cross section.

6. Derive the Gross-Llewellyn Smith sum rule (6.3).
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Chapter 7

Problems for the final
exam

1. Prove eq. (1.109):

D(x) = −i

∫
d3k

(2ωk 2π)3

{
e−i(ωkx0 − k⃗ · x⃗) θ(x0) + e+i(ωkx0 − k⃗ · x⃗) θ(x0)

}
.

(7.1)

2. Prove

iD(x−y) =
1

Z[0]

∫
[Dφ]φ(x)φ(y) exp

{
i

∫
ddx

[
−1

2
φ(✷ + m2 − iϵ)φ

]}

(7.2)
and comment on the relation between this equation and the result

iD(x − y) =< 0|T (φ(x)φ(y))|0 > (7.3)

obtained for the propagator in the operatorial approach.

3. Prove that in QED in the massless limit, for e+e− → µ+µ−

1
4

∑

spin

∣∣∣M
∣∣∣
2

=
2e4(t2 + u2)

s2
(7.4)

and for e−µ− → e−µ−

1
4

∑

spin

∣∣∣M
∣∣∣
2

=
2e4(s2 + u2)

t2
. (7.5)

Comment on the crossing symmetry.
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4. Prove (2.34)
δFµν = i[α,Fµν ] (7.6)

5. Prove that if U is a local gauge transformation, Dµ → UDµU †,
from which prove that the gauge fields can appear in the la-
grangian only through gauge covariant derivatives.

6. In SU(3) draw the Young tables and compute the dimensions of
the IRRs defined by: (m, n) = (0, 1), (0, 2), (2, 0), (1, 1), (1, 2),
(2, 1), (3, 0), (0, 3), (0, 4), (4, 0), (1, 3), (3, 1), (2, 2).

7. Prove the Gell-Mann Okubo formula for baryons:

mΞ + mN

2
=

mΣ + 3mΛ

4
. (7.7)

8. Compute the decay rate relative to the process: Z → ℓ+ ℓ−, where
ℓ is a charged lepton. Put mℓ = 0.

9. Compute the decay rate relative to the process: Z → νℓ ν̄ℓ.

10. Compute the decay rate relative to the process: H → W +W−.

11. Compute the decay rate relative to the process: H → Z0Z0.

12. Compute the decay rate relative to the process: H → f f̄ , where
f is a fermion; put mf ≠ 0.

13. Compute Γ(µ−(p1) → e−(p2)ν̄e(k2)νµ(k1)). Use the Fermi ap-
proximation.

14. Compute the cross section relative to the scattering process: νµ(k)d(p) →
µ−(k′)u(p′). Use the Fermi approximation.

15. Compute σ(ν̄µ(k)u(p) → µ+(k′)d(p′)). Use the Fermi approxi-
mation.

16. Compute Γ(K+ → π0e+νe) in terms of the CKM matrix elements
and GF . Use SU(3)f symmetry as in the text to evaluate the
hadronic matrix element.

17. Consider eqns (5.44) and (5.45)

< B′(p′, s′)|V µ|B(p, s) >=
ū(p′, s′)(f1(q2)γµ − if2(q2)σµνqν)u(p, s) ; (7.8)
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< B′(p′, s′)|Aµ|B(p, s) >=
ū(p′, s′)

(
g1(q2)γµγ5 + g3(q2)qµγ5

)
u(p, s) , (7.9)

where q = p − p′ and σµν = i
2 [γµ, γν ]. Justify the neglect of the

term f2 in semileptonic decays. Using SU(3)f symmetry justify

f1 = dTr({B, B′†}V )Tr + f([B, B′†]V ) (7.10)

where {, } and [, ] mean respectively anticommutator and com-
mutator, with f = 1 and d = 0. For the analogous axial form
factor prove:

g1(0) = DTr({B, B′†}A)Tr + D([B, B′†]A) (7.11)

Prove that

g1(0)
∣∣∣
n→p

= D + F

g1(0)
∣∣∣
Λ→p

= −D + 3F√
6

. (7.12)

18. Compute Γ(Λ → pe−ν̄e) in terms of the CKM matrix elements
and GF .

19. Prove the equation

dσ

dE′dΩ
=

4E′ 2α2

MQ4

(
2W1 sin2 θ

2
+ W2 cos2

θ

2

)
. (7.13)

Using the y and x variables defined in (6.14), (6.15) and introduc-
ing the dimensionless structure functions:F1(Q2, ν) = W1(Q2, ν),
F2(Q2, ν) = ν

M W2(Q2, ν) derive:

dσ

dxdy
=

4πα2s

Q4

[
xy2 F1(Q2, ν) +

(
1 − y − M2

Q2

(
x

1 − x

)2
)

F2(Q2, ν

]

(7.14)
where s = (p + q)2 = 2ME = (1 − x)Q2/x.

20. Derive the cross section for the neutrino induced νN → µ−X
deep inelastic scattering in terms of the structure functions F1, F2, F3.

21. Derive the Gross-Llewellyn Smith sum rule.
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