

MARE

PROJECT 8

Direct neutrino mass searches

KATRIN and other approaches

Neutrino Oscillation Workshop - NOW 2012

Guido Drexlin, Institut für Experimentelle Kernphysik

Direct neutrino mass searches

KATRIN and other approaches

Neutrino Oscillation Workshop - NOW 2012

Guido Drexlin, Institut für Experimentelle Kernphysik

- introduction

- ß-spectroscopy: bolometers & spectrometers
- bolometric approaches: MARE
- KATRIN experiment: design & status
- novel approaches: Project 8 & ¹⁶³Ho EC experiments
- Conclusion

in memoriam **Jochen Bonn** experimental physicist par excellence 1944 - 2012

Introduction & ß-spectroscopy

motivation: v's in astroparticle physics

5

6

degeneracy between m_v and dark energy equation of state w

motivation: \mathbf{v} 's in astroparticle physics **cosmology:** role of relic-v's as hot dark matter (Ω_{v}) calculated anisotropies of the CvB for $m_v = 10 \text{ meV}$ idea: capture of relic neutrinos on (S. Hannestad, 2009) Σm $< 6.6 \, \text{eV} (3v)$ ß-unstabile isotope (³H, ¹⁸⁷Re): 0.1 $\nu_e + {}^{3}H \rightarrow {}^{3}He + e^{-}$ e.g. advantage: no threshold! $\Sigma m_i < 0.6 \text{ eV} (3v)$ 0.01 CvB dipole 0.8 0.001 0.6 $\Sigma m_i > 0.05 \text{ eV} (1v)$ $m(v_e) = 0 eV$ $E_0 + m(v_e)$ 0.4 experimental challenges in case of ³H: 0.2 a) >10⁶ KATRIN T₂ target mass required $m(v_e) = 1 eV$ $(\sim 100 \text{ g})$, 24 g T₂ are on site at TLK 0 b) resolution $\Delta E < 50$ meV for 18.6 keV ß's -3 -2 0 -1 E - E₀ [eV] would severely cut solid angle of source

9 Sep. 10, 2012 G. Drexlin – NOW 2012

KIT-KCETA

motivation: v's in astroparticle physics

cosmology: role of sterile v's as warm dark matter (see talk by M. Lindner)

idea: sterile v's in the 1-10 keV mass regime would constitute warm dark matter (WDM)

sterile neutrino v_s would manifest itself as a tiny kink (10⁻⁷-10⁻¹⁰) deep in the ß-spectrum %need reliable calculation of spectral shape

DM & dwarf statellites

$$\frac{\mathrm{d}\Gamma_i}{\mathrm{d}E} = C \cdot p \cdot (E + m_e) \cdot (E_0 - E) \cdot \sqrt{(E_0 - E)^2 - m_i^2} \cdot F(E, Z) \cdot \theta(E_0 - E - m_i)$$

$$\frac{\mathrm{d}\Gamma_i}{\mathrm{d}E} = C \cdot p \cdot (E + m_e) \cdot (E_0 - E) \cdot \sqrt{(E_0 - E)^2 - m_i^2} \cdot F(E, Z) \cdot \theta(E_0 - E - m_i)$$

ß-spectroscopy

experimental challenges, requirements and characteristics of micro-bolometers and electrostatic spectrometers for highprecision ß-spectrocopy

	calorimeters	spectrometers
source	metallic Re, dielectric AgReO ₄	high-purity molecular gaseous T ₂
ß-energy	arrays of crystal bolometers	MAC-E filter: electrostatic retardation
activity	low: <10 ⁵ ß/s	high: ~10 ¹¹ ß/s
response	entire decay energy	(longitudinal) kinetic energy of electrons
interval	entire ß-decay spectrum	very narrow interval close to E ₀
method	differential spectrum	integral spectrum (ToF mode possible)
set-up	modular, size can be upscaled	integral design, spectrometer size limits
resolution	$\Delta E \sim few eV (FWHM)$	ΔE = 0.93 eV (100%)

spectrometer & calorimeter techniques complementary (different systematics)

bolometric approaches: MARE

PS-1, Wed. 18.00-18.20 Elena Ferri Nu mass with 187-Re and 163-Ho in MARE

bolometer experiments for ¹⁸⁷Re

bolometer experiments

¹⁸⁷ Re-experiments (MANU, MIBETA, MARE)						
¹⁸⁷ Re as ß-emitter: na	¹⁸⁷ R	e: unique 1 st				
¹⁸⁷ Re \rightarrow ¹⁸⁷ Os + e ⁻ + \bar{v}_e	$5/2^+ \rightarrow 1/2^-$ 'unique' 1 st forbidden	E ₀	2.47 keV			
85 86 °	transition (shape factor), BEFS	t _{1/2}	43.2 Gy			
 previous ¹⁸⁷Re-experiments MANU, MIBETA MANU: metallic Rhenium group in Genova MIBETA: dielectric AgReO₄ crystals group in Milano 						
<u>₩</u> 30	- analysis of ¹⁸⁷ Re-Kur	 analysis of ¹⁸⁷Re-Kurie plot 				
	$6.2 \cdot 10^{6}$ ¹⁸⁷ Re ß-deca m(v) < 15 eV (2004	ays: 1)				
	- several months of m	neasuring	g time			
1 1.5 2 2. e	5 3 3.5 nergy [keV]					

MARE experiment

general strategy to increase sensitivity to sub-eV regime:

- deploy large arrays of cryogenic micro-bolometers up-scaling of source intensity with 1 mg Re ≈ 1 decay/s
- avoid pulse pile-up: develop faster detectors
- develop multiplexed read-out technologies
- improve energy resolution to 1 eV-level

MARE-I ~ 10⁹-10¹⁰ ß-decays

- set-up small bolometer array: v-mass sensitivity $m(v_e) \sim few eV$
- test & select different isotopes (¹⁶³Ho-EC/¹⁸⁷Re-ß-decay) and read-out/sensor techniques (TES, Si-thermistor, MMC, ...)

MARE-II ~ 10¹⁴ ß-decays

- full set-up, large bolometer array with 10⁴-10⁵ pixels
- aim for statistical v-mass sensitivity $m(v_e) \sim 0.1-0.2 \text{ eV}$

MARE experiment: phase-I

Genova $m(v_e) \sim 2 eV$

- metallic Re absorbers, up to 300 - m = (0.2-0.3) g $> \sim 0.25$ Bq
- TES sensors (Ir-Au bi-layer), multiplexed SQUID read-out
- $-\Delta E \sim 11 \text{ eV}$
- τ_{rise} ~ 160 µs

Milano-Bicocca $m(v_e) \sim 3-4 eV$

- 6x6 arrays of AgReO4 crystals (up to 8 arrays can be housed in cryostat) -m = 0.5 mg $\odot 0.27 Bq$ - readout: Si-implanted thermistors - ΔE ~ 25 eV - $\tau_{rise} \sim 250 \ \mu s$ 600 um

KATRIN – design & status

Troitsk & Mainz experiments

Troitsk experiment

windowless gaseous tritium source

2011 re-analysis of selected data from 1994-2004: no evidence for Troitsk anomaly

 $m^2(v_e) = (-0.67 \pm 1.89 \pm 1.68) eV^2$

 $m(v_e) < 2.05 \ eV$

V.N. Aseev et al., Phys. Rev. D 84 (2011) 112003

Mainz experiment

quench condensed tritium source

2004 final analysis of Mainz phase II data from 1998-2001: analysis of last 70 eV

 $m^2(v_e) = (-0.6 \pm 2.2 \pm 2.1) eV^2$

 $m(v_e) < 2.3 \, eV$

C. Kraus et al., Eur. Phys. J. C 40 (2005) 447

tritium-bearing components

electrostatic spectrometers & detector

KArlsruhe TRItium Neutrino experiment

- a large-scale, next-generation direct neutrino mass experiment
- currently being installed at Tritium Laboratory Karlsruhe at KIT
- push spectrometer technology to limits, sensitivity $m(v_e) = 200 \text{ meV}$

KATRIN tritium throughput per year is equivalent to ITER fusion facility

tritium source is operated as closed cycle: thoughput of 40 kg/year

WGTS – windowless gaseous tritium source

WGTS

 a molecular tritium source of highest luminosity highest stability

WGTS	design value	precision
luminosity	1.7 × 10 ¹¹ Bq	
injection rate	5 × 10 ¹⁹ mol/s	± 0.1 %
column density pd	5 × 10 ¹⁷ mol/cm ²	± 0.1 %
tritium purity	> 95%	± 0.1 %
magnetic field	3.6 T	± 2%

WGTS – windowless gaseous tritium source

WGTS

one of the world's most complex cryostats: tritium – cryo – magnet issues

12 cryogenic circuits 6 cryogenic fluids

instrumentation:
500 sensors for
temperature (4 – 600 K),
B-field, pressure,
gas flow, liquid levels

objectives of measurements

- demonstrate feasibility of novel 2-phase (LNe/GNe) beam tube cooling system
- WGTS-BT requirements:
 - a) operation at $T_{BT} = 28-32$ K b) ∆T=±**30 mK**
 - - stability (1h)
 - homogeneity (10 m)

objectives of measurements

- demonstrate feasibility of novel 2-phase (LNe/GNe) beam tube cooling system
- WGTS-BT requirements:
 - a) operation at $T_{BT} = 28-32 \text{ K}$ b) $\Delta T = \pm 30 \text{ mK}$
 - stability (1h)
 - homogeneity (10 m)

tritium retention techniques

tritium flow rate out of the WGTS has to be reduced by factor > 10¹⁴

tritium retention techniques

tritium flow rate out of the WGTS has to be reduced by factor > 10¹⁴

differential pumping section DPS active pumping by TMPs

reduction $R = 2.5 \cdot 10^4$ achieved @RT

DPS

cryogenic pumping section CPS cryosorption on Ar-frost

CPS

main spectrometer

- ultra-precise energy analysis of ß-decay electrons close to endpoint E_0 with ´energy resolution´ $\Delta E = 0.93 \text{ eV}$ (0% \rightarrow 100% transmission)
- features: Ø = 10 m, length = 24 m, surface = 690 m², volume = 1240 m³, p < 10⁻¹¹ mbar (world's largest UHV recipient) inner electrode system & external Helmholtz-type air coil system

large Helmholtz coil system

LFCS

.

main spectrometer vessel EMCS

Ø = 12.7 m

inner electrode system – objectives

a double-layered inner electrode system for ß-spectroscopy

#1: background suppression

inelastic reactions of cosmic muons
 ✤ low-energy secondary electrons
 from the 690 m² inner surface are
 repelled electrostatically

#2: fine forming of retarding field

- precision HV power supplies: intrinsic HV precision ~1 ppm
- dipole/ECR mode: eject particles stored in Penning traps

KASSIOPEIA: signal & background

KASSIOPEIA: detailed simulation of electron trajectories

radon induced background

²¹⁹Rn emanation from St707 NEG getter strips (3 · 1 km) in pump ports of

KASSIOPEIA: signal & background

passive background reduction: LN2-cooled baffles to cryocondense ²¹⁹Rn

KASSIOPEIA: background reduction

^{219,220}Rn emanation from bulk material of vessel: need active bg-suppression

KASSIOPEIA: background reduction

ECR-tests at pre-spectrometer very successful: promise of low bg!

Relative Reduction stored multi-keV electrons: 0.5 amplitude rapid cyclotron motion full amplitude intermediate axial oscillation slow magnetron drift • 10 15 20 25 30 35 40 Magnetic field [Gauss] energy [eV] **ECR technique**: 60000 stochastic heating 40000 by short RF pulses 20000 with $\omega_{RF} = \omega_{cycl}$

KATRIN sensitivity

sterile neutrinos: (sub-)eV scale

- Karlsruhe Institute of Technology
- Hannestad et al. initial estimates of KATRIN sensitivity for sterile v's assume very light active neutrinos m(v_e) ~ 0 eV, mixed with sterile m (v_s)
- 3 σ detection of 'kink' by m_{sterile} if active-sterile mixing |U_{es}|² ≥ 0.055 3+2 scenarios can also be disentangled, measure absolute value m (v_s)

novel approaches: Project 8 & ¹⁶³Ho EC experiments

Project 8 – a novel technology ansatz

basic concept
- source:(J. Formaggio, B. Monreal et al.)
WGTS in an NMR-type constant B-field
max. ß-intensity: ~10° Bq (~10°2 of KATRIN)IIII (IIII)
 \square - spectroscopy:array of microwave antennae to pick up
coherent cyclotron radiation of single electrons
as $\Delta \omega \sim 1/t_s$ long sampling time $t_s \sim 40 \ \mu s$ for $\Delta E = 1 \ eV$
 $\ base trapping in magnetic bottle$

Doppler effect: array picks up blue- & red-shifted signals

B. Monreal, J. Formaggio, Phys. Rev. D 80, 051301(R) (2009)

basic parameters:

$$\omega(\gamma) = \frac{\omega_0}{\gamma} = \frac{e \cdot B}{m_e + E_{e,kin}}$$

- precise measurement of ω
 yields electron kinetic energy

Project 8 – a novel technology ansatz

experimental challenges:

 very small power P of emitted synchrotron radiation by single keV-electron, requires adequate antennae & amplifier technologies

$$P(\beta,\gamma) = \frac{1}{4\pi\varepsilon_0} \cdot \frac{2e^2 \cdot \omega_0^2}{3c} \cdot \frac{\beta^2 \cdot \sin^2 \theta}{1-\beta^2} \quad P_{\text{signal}} \sim 10^{-15} \text{ W} \quad (1\text{T, 18.6 keV}) \\ P_{\text{noise}} \sim 10^{-17} \text{ W} \quad (\text{thermal noise ampl.})$$

MC simulation: 30 µs measuring interval with 10⁵ ß-decay electrons

Project 8 – a novel technology ansatz

experimental status:

- prototype experiment running at UW Seattle
- aim: detect cyclotron emission from single electron
- source: 17.8 keV electrons from ^{83m}Kr (K32-line)
- cryostat: B = 1T, small magnetic bottle ($V = 1 \text{ mm}^3$)

R&D on:

- antenna technology
- receiver & DAQ technology
- study Doppler shifts

Project 8 aims for

sensitivity m(v) =100 meV (90% CL)

a lot of R&D work still to be performed

electron capture & v-mass

electron capture: non-zero m(v_e) value affects the EC de-excitation spectrum EC of ¹⁶³Ho is suitable candidate: ¹⁶³Ho + e⁻ $\rightarrow v_e$ + ¹⁶³Dy^{*} \rightarrow ¹⁶³Dy + E_c

¹⁶³Ho experiments

- ¹⁶³Ho EC-decay parameters: $Q_{EC} \sim 2.5$ keV, $t_{1/2} = 4570$ y detection of de-excitation of ¹⁶³Dy* (Dysprosium) by micro-calorimeters
- MARE groups in Genova and Milano (& collaborators)
- ECHO collaboration (Electron Capture ¹⁶³Ho experiment): Uni Hd, MPIK, Saha Inst. of Nucl. Phys., CERN – ISOLDE, Petersburg
- interesting and promising new detector technology:
 MMC: magnetic micro-calorimeters with paramagnetic sensor Au:Er

¹⁶³Ho experiments

¹⁶³Ho experiments

micro-fabrication of MMC detectors

- absorber: ¹⁶³Ho ion implantation at CERN ISOLDE
- test results: magnetic & thermal properties as expected $\Delta E_{FWHM} = 11.8 \text{ eV}$, latest designs $\Delta E_{FWHM} < 3 \text{ eV}$ fast rise-time: $\tau_R = 90 \text{ ns}$
- extracted end-point value $Q_{EC} = (2.8 \pm 0.1) \text{ keV}$

Conclusions

- studies of ß-decay/EC kinematics the only model-independent method to determine absolute v-mass scale
- KATRIN will probe cosmologically relevant scale down to m(v_e) = 200 meV studies for phase II to go beyond this value

- calorimetric experiments (MARE, ECHO) will provide an independent check advantage: scalable approach, still a lot of R&D work for m(v_e) = 200 meV new ideas: Project 8 and others
- KATRIN next steps:
 - electromagnetic tests of main spectrometer
 - commissioning of CPS (end of 2013) and WGTS (end of 2014)

Conclusions

the complete picture of neutrino masses is obtained only by comparing high-precision results from direct neutrino mass searches with 0vßß experiments and cosmological studies

backup slides

history of tritium ß-decay experiments

ITEP	m _v	
T ₂ in complex molecule magn. spectrometer (Tret'yakov)	17-40 eV	experimental results for m_v^2
Los Alamos		100
gaseous T ₂ - source magn. spectrometer (Tret'yakov)	< 9.3 eV	√ ⁵⁰ I I
Tokio	< 12.1 oV	
T - source magn. spectrometer (Tret'yakov)	< 13.1 ev	$ \tilde{E}_{-50} = $
Livermore		100 Los Alamos
gaseous T ₂ - source magn. spectrometer (Tret'yakov)	< 7.0 eV	-150 Mainz Tokio
Zürich		• Troitsk
T ₂ - source impl. on carrier magn. spectrometer (Tret'yakov)	< 11.7 eV	-200 - Troitsk (step) ▲ Zürich
Troitsk (1994-today)		-250 - electrostatic
gaseous T ₂ - source electrostat. spectrometer	< 2.05 eV	-300 magnetic spectrometers
Mainz (1994-today)		
frozen T ₂ - source	< 2.3 eV	1986 1988 1990 1992 1994 1996 1998 2000
electrostat. spectrometer		year

techniques in ß-spectroscopy

background sources

- ß-decay electrons from areas with different electrostatic potentials
- ß-decays from T⁻/T⁺ ions, clusters X-rays, gammas & electrons from natural radioactivity or scattered ß-decay electrons (beam-halo)

systematic effects – I

- precise measurement of experimental response function
- special unfolding technique to derive cross section σ_{inel} at E = 18.6 keV
- narrow analysis window around E₀ to maximise no-loss electron fraction

systematic effects - II

- stabilisation of ρd : injection pressure, beam tube T = 27K, Laser-Raman
- cyclic scans of pd: high-intensity electron gun
- monitoring of pd: rear detector/system, forward beam monitor

$\Delta m_v^2 = -2\sigma_{syst}^2 \qquad -\text{min}$

general relation for tritium-ß-decay

hysteresis effects from HV and ρd scanning

- minimisation of trapped particles from scanning of column density ρd
- optimised scanning strategy
- randomized steps of HV

systematic effects – III

- stabilisation of plasma: neutralise ions ($\Phi < 20 \text{ mV}$), injection of meV-e⁻
- cyclic scans of plasma: high-intensity electron gun runs at different pd
- monitoring of plasma: rear detector/system

sterile neutrinos: (sub-)eV scale

- Single β decay experiments (MARE, Project8, KATRIN) can detect a sterile neutrinos signature.
- KATRIN: for $m_{sterile} > 3.2 \text{ eV}$ a 3σ detection could be made for any mixing angle.
- Single β decay offers a complementary input, independent of CP phases.

- Use TES arrays with 32x32 pixels
- Resolution 1 2 eV FWHM
- Need 5 TES arrays for 0.2 eV/c² sensitivity
 - Makes 5000 pixels (vs. 50000 for Re)
- ¹⁶³Ho production has been demonstrated
- Embedding process is under investigation
- Readout developed and tested as prototype
- Next: TDR for funding

F. Gatti, ISAPP 2011 and J Low Temp Phys (2008) 151

