The Long-Baseline Neutrino Experiment Kate Scholberg, Duke University NOW 2012

Long-Baseline Neutrino Experiment Collaboration

Alabama: S.Habib, I.Stancu

Argonne: M.D'Agostino, G.Drake.Z.Djurcic, M.Goodman, V.Guarino, S.Magill, J.Paley, H.Sahoo, R.Talaga, M.Wetstein

Boston: E.Hazen, E.Kearns, S.Linden

Brookhaven: M.Bishai, R.Brown, H.Chen, M.Diwan, J.Dolph, G.Geronimo, R.Gill, R.Hackenburg, R.Hahn, S.Hans, Z.Isvan, D.Jaffe, S.Junnarkar, S.H.Kettell, F.Lanni, Y.Li, L.Littenberg, J.Ling, D.Makowiecki, W.Marciano, W.Morse, Z.Parsa, V.Radeka, S.Rescia, N.Samios, R.Sharma, N.Simos, J.Sondericker, J.Stewart, H.Tanaka, H.Themann, C.Thorn, B.Viren, S.White, E.Worcester, M.Yeh, B.Yu, C.Zhang

Caltech: R.McKeown, X.Qian

Cambridge: A.Blake, M.Thomson

Catania/INFN: V.Bellini, F.La Zia, F.Mammoliti, R.Potenza,

Chicago: E.Blucher, M.Strait

Colorado: S.Coleman, R.Johnson, S.Johnson, A.Marino, E.Zimmerman

- Colorado State: M.Bass, B.E.Berger, J.Brack, N.Buchanan, D.Cherdack, J.Harton, W.Johnston, W.Toki, T.Wachala, D.Warner, R.J.Wilson
- Columbia: R.Carr, L.Camillieri, C.Y.Chi, G.Karagiorgi, C.Mariani, M.Shaevitz, W.Sippach, W.Willis

Crookston: D.Demuth

Dakota State: B.Szcerbinska

Davis: M.Bergevin, R.Breedon, D.Danielson, J.Felde, C.Maesano, M.Tripanthi, R.Svoboda, M.Szydagis

Drexel: C.Lane, S.Perasso

Duke: T.Akiri, J.Fowler, A.Himmel, Z.Li, K.Scholberg, C.Walter, R.Wendell

Duluth: R.Gran, A.Habig

Fermilab: D.Allspach, M.Andrews, B.Baller, E.Berman, R.Bernstein, V.Bocean, M.Campbell, A.Chen, S.Childress, A.Drozhdin, T.Dykhuis, C.Escobar, H.Greenlee, A.Hahn, S.Hays, A.Heavey, J.Howell, P.Huhr, J.Hylen, C.James, M.Johnson, J.Johnstone, H.Jostlein, T.Junk, B.Kayser, M.Kirby, G.Koizumi, T.Lackowski, P.Lucas, B.Lundberg, T.Lundin, P.Mantsch, A.Marchionni, E. McCluskey, S.Moed Sher, N.Mokhov, C.Moore, J.Morfin, B.Norris, V.Papadimitriou, R.Plunkett, C.Polly, S.Pordes, O.Prokofiev, J.L.Raaf, G.Rameika, B.Rebel, D.Reitzner, K.Riesselmann, R.Rucinski, R.Schmidt, D.Schmitz, P.Shanahan, M.Stancari, A.Stefanik, J.Strait, S.Striganov, K.Vaziri, G.Velev, T.Wyman, G.Zeller, R.Zwaska

Hawai'i: S.Dye, J.Kumar, J.Learned, J.Maricic, S.Matsuno, R.Milincic, S.Pakvasa, M.Rosen, G.Varner Houston: L.Whitehead

Houston: L. whitehead

Indian Universities: V.Singh (BHU); B.Choudhary, S.Mandal (DU); B.Bhuyan [IIT(G)]; V.Bhatnagar, A.Kumar, S.Sahijpal(PU)

Indiana: W.Fox, C.Johnson, M.Messier, S.Mufson, J.Musser, R.Tayloe, J.Urheim

Iowa State: I.Anghel, G.S.Davies, M.Sanchez, T.Xin

IPMU/Tokyo: M.Vagins

Irvine: G.Carminati, W.Kropp, M.Smy, H.Sobel

Kansas State: T.Bolton, G.Horton-Smith

LBL: B.Fujikawa, V.M.Gehman, R.Kadel, D.Taylor

Livermore: A.Bernstein, R.Bionta, S.Dazeley, S.Ouedraogo

London: A.Holin, J.Thomas

Los Alamos: M.Akashi-Ronquest, S.Elliott, A.Friedland, G.Garvey, E.Guardincerri, T.Haines, D.Lee, W.Louis, C.Mauger, G.Mills, Z.Pavlovic, J.Ramsey, G.Sinnis, W.Sondheim, R.Van de Water, H.White, K.Yarritu

Louisiana: J.Insler, T.Kutter, W.Metcalf, M.Tzanov

Maryland: E.Blaufuss, S.Eno, R.Hellauer, T.Straszheim, G.Sullivan

Michigan State: E.Arrieta-Diaz, C.Bromberg, D.Edmunds, J.Huston, B.Page Minnesota: M.Marshak, W.Miller

MIT: W.Barletta, J.Conrad, B.Jones, T.Katori, R.Lanza, A.Prakash, L.Winslow

NGA: S.Malys, S.Usman

New Mexico: J.Mathews

Notre Dame: J.Losecco

Oxford: G.Barr, J.de Jong, A.Weber Pennsylvania: S.Grullon, J.Klein, K.Lande, T.Latorre, A.Mann, M.Newcomer, S.Seibert, R.vanBerg

Pittsburgh: D.Naples, V.Paolone

Princeton: Q.He, K.McDonald

Rensselaer: D.Kaminski, J.Napolitano, S.Salon, P.Stoler

Rochester: L.Loiacono, K.McFarland, G.Perdue

Sheffield: V.Kudryavtsev, M.Richardson, M.Robinson, N.Spooner, L.Thompson

SDMST: X.Bai, C.Christofferson, R.Corey, D.Tiedt

SMU .: T.Coan, T.Liu, J.Ye

South Carolina: H.Duyang, B.Mercurio, S.Mishra, R.Petti, C.Rosenfeld, X Tian

South Dakota: D.Barker, J.Goon, D.Mei, W.Wei, C.Zhang

South Dakota State: B.Bleakley, K.McTaggert

Syracuse: M.Artuso, S.Blusk, T.Skwarnicki, M.Soderberg, S.Stone

Tennessee: W.Bugg, T.Handler, A.Hatzikoutelis, Y.Kamyshkov

Texas: S.Kopp, K.Lang, R.Mehdiyev

Tufts: H.Gallagher, T.Kafka, W.Mann, J.Schnepps

UCLA: K.Arisaka, D.Cline, K.Lee, Y.Meng, A.Teymourian, H.Wang

Virginia Tech.: E.Guarnaccia, J.Link, D.Mohapatra

Washington: H.Berns, S.Enomoto, J.Kaspar, N.Tolich, H.K.Tseung

Wisconsin: B.Balantekin, F.Feyzi, K.Heeger, A.Karle, R.Maruyama, B.Paulos, D.Webber, C.Wendt

Yale: E.Church, B.Fleming, R.Guenette, K.Partyka, A.Szelc

347 Members 59 Institutions 25 US States 5 Countries

Physics Motivations

- Mass hierarchy and CP violation
- Baryon number violation
- Atmospheric neutrinos (oscillations)

- Supernova burst neutrinos
- Supernova relic neutrinos
- Solar neutrinos

LBNE: Next-Generation Oscillation Experiment in the U.S.

MINOS(2005-~2015) → NOvA(2013-~2022)

LBNE beam

 v_{μ} CC spectrum at 1300km, Δm_{31}^2 = 2.5e-03 eV ²

LBNE Physics Study

The 2010 Interim Report of the Long-Baseline Neutrino Experiment Collaboration Physics Working Groups

The LBNE Collaboration: T. Akiri, D. Allspach, M. Andrews, K. Arisaka, E. Arrieta-Diaz, M. Artuso, X. Bai, B. Balantekin, B. Baller, W. Barletta, G. Barr, M. Bass, A. Beck, B. Becker, V. Bellini, O. Benhar, B. Berger, M. Bergevin, E. Berman, H. Berns, A. Bernstein, F. Beroz, V. Bhatnagar, B. Bhuyan, R. Bionta, M. Bishai, A. Blake, E. Blaufuss, B. Bleakley, E. Blucher, S. Blusk, D. Boehnlein, T. Bolton, J. Brack, R. Bradford, R. Breedon, C. Bromberg, R. Brown, N. Buchanan, L. Camilleri, M. Campbell, R. Carr, G. Carminati, A. Chen, H. Chen, D. Cherdack, C. Chi, S. Childress, B. Choudhary, E. Church, D. Cline, S. Coleman, R. Corey, M. D'Agostino, G. Davies, S. Dazeley, J. De Jong, B. DeMaat, D. Demuth, A. Dighe, Z. Djurcic, J. Dolph, G. Drake, A. Drozhdin, H. Duan, H. Duyang, S. Dye, T. Dykhuis, et al. (264 additional authors not shown)

(Submitted on 27 Oct 2011)

In early 2010, the Long-Baseline Neutrino Experiment (LBNE) science collaboration initiated a study to investigate the physics potential of the experiment with a broad set of different beam, near- and far-detector configurations. Nine initial topics were identified as scientific areas that motivate construction of a long-baseline neutrino experiment with a very large far detector. We summarize the scientific justification for each topic and the estimated performance for a set of far detector reference configurations. We report also on a study of optimized beam parameters and the physics capability of proposed Near Detector configurations. This document was presented to the collaboration in fall 2010 and updated with minor modifications in early 2011.

Comments: Corresponding author R.J.Wilson (Bob.Wilson@colostate.edu); 113 pages, 90 figures

Subjects: High Energy Physics – Experiment (hep-ex)

Cite as: arXiv:1110.6249v1 [hep-ex]

A lot has happened since then...

34 kton LAr ~ 200 kt WCD because of better LAr efficiency: detector sizes for technology choice set for ~ equal oscillation sensitivity

Sensitivity to oscillation parameters

Signal	Energy range	Expected Signal Rate per kton of LAr (s ⁻¹ kton ⁻¹)
Beam neutrinos (CP violation/ mass hierarchy)	~ GeV	5 x 10 ⁻⁴ osc ν _e in beam window
Proton decay	$\sim { m GeV}$	< 2 x 10 ⁻⁹
Atmospheric neutrinos	0.1-10 GeV	~10-5
Supernova burst neutrinos	few-50 MeV	~3 @ 10 kpc over ~30 secs
Solar neutrinos	few-15 MeV	4 x 10 ⁻⁵
Supernova relic neutrinos	20-50 MeV	< 2 x 10 ⁻⁹

Signal		Energy range	Expected Signal Rate per kton of LAr	
			(s ⁻¹ kton ⁻¹)	Easy to pick from
Beam neut (CP violation mass hiera	rinos on/ rchy)	~ GeV	5 x 10 ⁻⁴ osc v_e in beam window	bg due to beam time & direction
Proton dec	ay	~ GeV	< 2 x 10 ⁻⁹	Easy to pick from bg, but highly intolerant of bg
Atmospher neutrinos	ric	0.1-10 GeV	~10-5	Easy to pick,
Supernova neutrinos	burst	few-50 MeV	$\sim 3 @ 10 \text{ kpc}$ over ~30 secs	tolerant of bg
Solar neut	rinos	few-15 MeV	~4 x 10 ⁻⁵	
Supernova neutrinos	relic	20-50 MeV	$< 2 \times 10^{-9}$	Potentially harder to select (esp. low energy end)
				but arrive in a
Very hard to select and intolerant of bg			Hard to select <i>and</i> intolerant of bg	(and bg can be well known)

Dr. Brinkman (DOE Office of Science Director) to Pier Oddone (Fermilab Director):

Based on our considerations, we cannot support the LBNE project as it is currently configured. This decision is not a negative judgment about the importance of the science, but rather it is a recognition that the peak cost of the project cannot be accommodated in the current budget climate or that projected for the next decade.

In order to advance this activity on a sustainable path, I would like Fermilab to lead the development of an affordable and phased approach that will enable important science results at each phase.

LBNE Reconfiguration

http://www.fnal.gov/directorate/lbne_reconfiguration

Report of Reconfiguration Steering Committee, 3 viable options

- Using the existing NuMI beamline in the low energy configuration with a 30 kton liquid argon time projection chamber (LAr-TPC) surface detector 14 mrad off-axis at Ash River in Minnesota, 810 km from Fermilab.
- Using the existing NuMI beamline in the low energy configuration with a 15 kton LAr-TPC underground (at the 2,340 ft level) detector on-axis at the Soudan Lab in Minnesota, 735 km from Fermilab.
- Constructing a new low energy LBNE beamline with a **10 kton** LAr-TPC **surface detector** on-axis at Homestake in South Dakota, **1,300 km** from Fermilab.

Mass hierarchy and CP violation reach

CPV Significance vs δ_{CP} NH(IH considered), sin^2(2\theta_{13})=0.07 to 0.12

CPV Significance vs δ_{CP} NH(IH considered), sin²(2 θ_{13})=0.07 to 0.12

Comparison of Phase 1 Options

	Homestake		Soudan		Ash River
•	Excellent mass ordering reach. Good CPV reach with no <i>a priori</i> knowledge of ordering.	•	Broadest Phase 1 physics program. Includes both beam and underground physics.	•	Best Phase 1 CPV sensitivity for current value of θ_{13} in combination with T2K and NOVA results.
•	Explicit reconstruction of oscillations due to long distance and broad band.	•	CR muon background risk mitigated Weaker beam physics	•	Excellent mass ordering sensitivity in half the δ_{CP} range.
•	Potential for underground physics, but would cost ~15% more. Possible delay		based program due to shorter baseline and on- axis beam.	•	No potential for underground physics in Phase 1.
•	until Phase 2. Clear Phase 2 path. Beam upgradable to full Project-X intensity, underground lab available.	•	Existing beam, but not upgradable to full Project X intensity without significant investment. Phase 2 could include additional mass at Soudan	•	Possible CR muon risk on surface. Existing beam, but not upgradable to full Project X intensity without significant investment.
	more expensive than other options. Possible CR muon risk on surface.		or Ash River.	•	Phase 2 could include additional mass at Soudan or Ash River

Comparison of Phase 1 Options

	Homestake	Soudan	Ash River
	Excellent mass ordering	Broadest Phase 1 physics	Best Phase 1 CPV
k Ç	pest for beam osc jood upgrade potentia o Phase 1 non-beam	al Includes both d underground physics	sensitivity for current value of θ_{13} in combination with T2K and NOVA results.
n	nost expensive CR on surface	background risk I beam physics	 Excellent mass ordering sensitivity in half the δ_{CP} range.
	 Potential for undergrou physics, but would cost We would cost We until Phase 2. Clear Phase 2 path. Bea 	eakest for beam osc eak upgrade potentia oad non-beam physi id-range cost	No potential for underground physics in Phase 1. CS Possible CR muon risk on surface
	 upgradable to full Project-X intensity, underground lab available. Surface could be ~10% more expensive than other options. Possible CR muon risk on surface. 	X intensity without significant investment. Phase 2 could include additional mass at Souda or Ash River.	good for beam osc weak upgrade potentia no non-beam physics lowest cost CR on surface

10 kton LAr on the surface at Homestake

Costs after Reconfiguration

Scope	Cost (TPC)	
LBNE 34 kTon@4850L and near detector	\$1.440B	\$135M extra
LBNE Phase I, 10 kTon surface	\$0.789B	and recover
+Place Underground	\$0.924B	accelerator physics
+ Near Detector	\$1.054B	

LBNE Phase 1 Schedule

- This is the technically driven schedule. Current funding profile is expected to cause 11 month delay.
- The period up to far detector construction start offers good opportunity to seek major non-DOE and international partners.
- Deep placement of far detector as well as a near detector expansion can be accommodated in the current plan by CD2.

Summary

LBNE reconfiguration due to funding constraints: 10 kt LAr on the surface at 1300 km; still has excellent CP & MH reach

Resources to go deep would vastly enrich the program; significant potential for collaboration

Original plan was scaled back due to insufficient funding... but final result still pretty good!

lbne.fnal.gov/symposium-oct2012.shtml

LBNE International Symposium

Symposium on Scientific Opportunities within LBNE

October 3, 2012 at Fermilab

In conjunction with the 13th Annual <u>Next Generation Nucleon Decay and Neutrino Detectors International Workshop (NNN12)</u> to be held at <u>Fermilab</u> Oct. 4 - 6, 2012, LBNE will hold a symposium on Wednesday, Oct. 3, one day before the workshop. The primary purpose of the NNN workshop is to discuss future detectors for research on neutrino physics and nucleon decays. The symposium will focus on LBNE.

The LBNE symposium will start with a series of talks on the status of LBNE. The talks will be followed by discussions regarding potential international partnerships and research opportunities, and the impact on the LBNE science program. This symposium is planned as the first in a series, to be held over the next few years as development of LBNE continues and construction begins.

See the Agenda for more information.

Registration coming soon.

All NNN workshop participants and other scientists interested in neutrino physics are invited to attend this special one-day LBNE symposium.

Backups/Extras

Dhaco 1		15 kton	30 kton	10 kton
Ontion		Soudan	Ash River	Homestake
Option		(underground)	(surface)	(surface)
	Mass Hierarchy:	0.17	0.47	0.81
	fraction of δ_{CP} at 3σ	(0.38)	(0.50)	(1.00)
	CP Violation:	0.05	0.27	0.27
Phase 1	fraction of δ_{CP} at 3σ	(0.23)	(0.55)	(0.45)
Science	Resolution of δ_{CP}	23°, 30°	18º, 29º	17°, 30°
Capabilities	δ = 0, 90°	(14°, 26°)	(13°, 25°)	(12°, 25°)
assuming	Proton Decay p \rightarrow Kv 90% CL in 10 years	1 x 10 ³⁴ years	No	No
6 x 10 ²¹	Number of observed neutrinos			
protons on	from a supernova explosion at a	1,300	No	No
target	distance of 10 kiloparsecs			
	Atmospheric neutrinos	15 σ	No	No
or	Mass Hierarchy in 10 years	1.50	NO	
	Precision Measurements:			
10 years	$\sigma(\theta_{13})$ for $\delta = \pi/2$	0.60°	0.40°	0.40°
with 700 kW	Neutrino $\sigma(\theta_{23})$	1.1°	0.74°	0.69°
	Anti neutrino $\sigma(\theta_{23})$	1.3°	1.1º	0.97°
	Neutrino $\sigma(\Delta m_{31}^2)$ (10 ⁻³ eV ²)	0.036	0.035	0.025
	Anti neutrino $\sigma(\Delta m_{31}^2)$ (10 ⁻³ eV ²)	0.055	0.050	0.040
		Geotechnical	Cosmic ray	Cosmic ray
Phase 1	Work in progress	studies for the	hackgrounds in a	hackgrounds in a
Risks	Work in progress	underground	surface detector	surface detector
		detector	Surface actector	Surface detector

With these options, LBNE CD1 review planned for Oct/Nov 2012

Good for beam oscillation physics, but non-beam physics lost in Phase I

Mass hierarchy and CP sensitivity vs. baseline

Cost of LBNE reconfiguration options

Non-beam physics, possible underground

