Cosmogenic neutrinos and gamma-rays and the
redshift evolution of UHECR sources

R. Aloisio®  D. Boncioli¢!  A. di Matteo??  C. Evoli®
A.F. Grillo® S. Petrera®

E-mail: armando.dimatteo@aquila.infn.it

9Gran Sasso Science Institute (INFN), L’Aquila, Italy
bINAF/Osservatorio Astrofisico di Arcetri, Firenze, Italy
¢INFN/Laboratori Nazionali Gran Sasso, Assergi, Italy
4INFN and Department of Physical and Chemical Sciences, Univ. of L’Aquila, L’Aquila, Italy

Neutrino Oscillation Workshop,
4-11 September 2016, Otranto, Lecce, Italy

!Now at DESY, Zeuthen, Germany
2Now at ULB, Brussels, Belgium
A. di Matteo (INFN L’Aquila) Cosmogenic v and ~ and UHECR source evol. NOW 2016


mailto:armando.dimatteo@aquila.infn.it

Outline

@ Ultra-high-energy cosmic rays
@ Propagation through intergalactic space
@ The secondary particles produced
@ Open questions

© Multi-messenger studies
@ Experimental limits on EeV fluxes and measured GeV-PeV fluxes
@ Simulated expected neutrino and ~-ray fluxes in various scenarios

© Conclusions

A. di Matteo (INFN L’Aquila) Cosmogenic v and ~ and UHECR source evol. NOW 2016 2/20



0 Ultra-high-energy cosmic rays

@ Propagation through intergalactic space
@ The secondary particles produced
@ Open questions

© Multi-messenger studies

@ Experimental limits on EeV fluxes and measured GeV-PeV fluxes
@ Simulated expected neutrino and v-ray fluxes in various scenarios
© Conclusions

«O0)>» «F>» «=)>» « » Q>



Ultra-high-energy cosmic rays

@ Ultra-high-energy cosmic rays (UHECRs) are particles of
extraterrestrial origin with energy above 108 eV.

@ They are protons and possibly other atomic nuclei, with stringent
upper limits on the fraction of photons and neutrinos.

@ Their origin is unknown, but most likey extragalactic (at least at
the highest energies).
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Processes affecting UHECR propagation

During their trip to Earth, extragalactic cosmic rays can:

@ lose energy adiabatically due to the expansion of the universe
(redshift);

@ interact with background photons:

Relevant backgrounds (e = photon energy in lab frame)
e < 3 meV (MW): cosmic microwave background (CMB)
1 meV < e <10 eV (IR to UV): extragalactic background light (EBL)

Main processes (¢ = photon energy in nucleus rest frame)
¢ 2 1 MeV: pair production, N +v — N +e™ + e~
¢ > 8 MeV: disintegration, e.g. ZA + v — 741 +n

¢ > 150 MeV: pion production, e.g. p+y — p + 7°

@ be deflected by intergalactic and galactic magnetic fields.
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Pion production

p+y—=p+a’, n+y—-n+a’, p+y—nda", n+y—opta

@ Affects nucleons with:
» E > 40 EeV (CMB photons; A ~ 10 Mpc — GZK cutoff);
» E > 4 EeV (EBL photons; A ~ a few Gpc — minor impact on proton
fluxes but potentially lots of secondaries).
@ Subsequently:
» 70 — 4+ 4, each with ~ 10% of initial nucleon energy
» 1t =t 4y,
pt — et + v, + ve, each with ~ 5% of initial nucleon energy
» N — p+ e + I, each with ~ 0.05% of initial nucleon energy
@ The neutrinos can reach Earth (with E ~ a few PeV — a few EeV)
without further interacting, even from z ~ 10.
@ The photons will undergo v + ycpmurs — €™ + e~ within ~ 1 Mpc,
initiating EM cascades of (eventually) < 1 TeV photons.
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Photodisintegration

AZ 4+ v =417 4 n, AZ 4y =AY Z—-1) +p,
AZ + v = A47HZ — 2) + *He, and various combinations thereof

o Affects nuclei with:
» E/A 2 2 EeV (CMB photons; A\ ~ few Mpc — “GZK” or “GR” cutoff);
» E/A 2 0.2 EeV (EBL photons; A ~ 100 Mpc).

@ Important effects on energy spectrum and mass composition of
UHE nuclei, but few direct multi-messenger implications

@ (Energy of beta-decay neutrinos < 1 PeV, subdominant w.r.t. those
from EBL pion production)
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Pair production

N+v—N+et +e

@ Affects protons and nuclei with:
» E/A 2 0.2 EeV (CMB photons; A ~ 1 Mpc).
@ Electrons with E ~ a few PeV, undergo inverse Compton
scattering/synchrotron ratiation initiating EM cascades of
(eventually) < 1 TeV photons.

@ The shape of the energy spectrum of cascade photons at Earth
doesn’t depend on the initial photon/electron energy
(e.g. cascades from ten 1 PeV electrons same as from one 10 PeV
electron), only on the redshift of the production point.
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Open questions

@ Where and how are UHECRSs accelerated?
@ Why the ankle?

» Pair production dip?
» Superposition of two populations?
» Something else?

@ Why the cutoff?

» Effects of propagation?
» Maximum acceleration rigidity?
» Both?
@ Mass composition at the highest energies:
» Protons?
» Medium/heavy nuclei?
» Both?
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Why multi-messenger?

@ No matter how much energy they start with, no protons or nuclei

from z > 1 will reach Earth with E > 1 EeV
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o All information about sources at z > 1 is lost.
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Why multi-messenger?

@ Neutrinos can reach Earth no matter how far away they originated.
» Their flux also depends on the emissivity of sources at high z.

@ Also, charged cosmic rays are deflected by magnetic fields
(possibly by several tens of degrees), whereas neutral particles
arrive to us straight from their production point.

» Cascades broadened by magnetic fields, but still centered around
production point

@ In principle, neutrinos carry more information than cascade
gamma rays, but they are harder to detect.
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Experimental limits on EeV neutrinos and gamma rays
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Measurements of PeV neutrinos and TeV gamma rays
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Figure: Gamma-ray background
detected by Fermi-LAT,
from arXiv:1410.3696

Figure: Astrophysical neutrinos
detected by IceCube,
from arXiv:1607.08006
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Our Monte Carlo simulation code

SimProp v2r0: only photodisintegration treated stochastically
(25 Oct 2011, arXiv:1204.2970)

SimProp v2rl: pion production on the CMB also treated stochastically
(07 Feb 2013, arXiv:1307.3895)

SimProp v2r2: pion production on the EBL also treated stochastically
(06 May 2015, arXiv:1505.01347)

SimProp v2r3: photodisintegration also ejecting alpha particles
(03 Feb 2016, arXiv:1602.01239)

SimProp v2r4: secondary electrons/positrons from pair production, so
that cascades can be computed with external tools
e.g. ELMAG (coming soon)

Available upon request to:

@ SimProp-dev@aquila.infn.it
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Cosmogenic neutrinos in “dip-model” scenario
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Figure: Neutrino fluxes simulated with SimProp v2r2 in proton-only scenario,
assuming constant, SFR, AGN source emissivity evolution,
from arXiv:1505.04020
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Cosmogenic neutrinos in “two-component” scenario
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Figure: Neutrino fluxes simulated with SimProp v2r2 in high-metallicity
scenario, assuming constant, SFR, AGN source emissivity evolution,
from arXiv:1505.04020
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Gamma-ray background from cascades

@ Mostly coming from
1-4 EeV CRs, which
everybody agrees are
mostly protons
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Figure: Gamma-ray cascades simulated with arXiv:1608.07530

SimProp v2r4 + ELMAG and data from
Fermi-LAT on diffuse gamma-ray background
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Conclusions

@ “Top-down” models as the source of most UHECRs below 100 EeV
have been ruled out for quite a long time now.

@ EeV neutrinos only produced if there are protons among
highest-energy CRs

@ Cosmogenic neutrino fluxes at all energies strongly dependent on
UHECR source emissivity evolution

» We can already rule out models with source emissivity too strongly
increasing with redshift (decreasing with time).

@ Same applies to gamma-ray fluxes — the interpretation is more
complicated, but the limits we can put on source emissivity are
more stringent.
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