

Planck constraints on secret neutrino interactions

Francesco Forastieri

Department of Physics and Earth Science, University of Ferrara and INFN Ferrara

Work made in collaboration with M.Lattanzi and P.Natoli

NOW, Otranto, 05/09/2016

Summary

- Standard neutrino cosmology
- Non-standard interactions
 - Pseudoscalar interaction
 - Results
 - COrE forecast
- Conclusions

< E

э

Neutrinos are neutral, weak-interacting particles

Decoupling:

At
$$T \sim 1 \text{MeV}$$
 since $\Gamma_w = n_\nu < \sigma_w \nu >= H$

Their contribution is parametrized into the relativistic energy density:

$$\rho_r = \rho_{\gamma} + \rho_{\nu} = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{\frac{4}{3}} N_{eff}\right] \rho_{\gamma}$$

The standard value for $N_{eff} = 3.046$ [Mangano et al., 2005]

Planck bounds [Planck 2015 XVI] are:

 $N_{eff} = 3.13 \pm 0.32 (PlanckTT + lowP)$ $N_{eff} = 2.99 \pm 0.20 (PlanckTT, TE, EE + lowP)$

One extra relativistic degree of freedom is excluded at $3-5\sigma$

Non-standard interactions: Pseudoscalar

Two main classes:

- Pseudoscalar interaction
- Fermi like (4 points) interaction

Lagrangian

$$\mathcal{L} = h_{ij} \bar{\nu}_i \nu_j \phi + g_{ij} \bar{\nu}_i \gamma_5 \nu_j \phi + h.c.$$

This induces a series of processes mediated by a massless scalar (h_{ij}) or pseudoscalar (g_{ij}) boson.

If ν s are relativistic, the cross section has the form:

$$\sigma_{
u
u}\sim rac{g_{ij}^4}{s}\simeq rac{g_{ij}^4}{T^2}$$

and the scattering rate:

$$\Gamma_{
u
u} \sim < \sigma_{
u
u} v > n_{
u} \simeq g_{ij}^4 T$$

We use an effective parametrization:

$$\bar{}_{eff} = g_{eff}^4 T \tag{2}$$

Neutrinos recouple at "late" times

Cosmology : [FF, M. Lattanzi, P.Natoli, 2014]

 $g_{eff}^{(mass)} \le 1.7 \cdot 10^{-7} \, 95\% c.l.$

Cosmology : [Archidiacono, Hannestad, 2014]

$$g_{ij} \leq 1.2 \cdot 10^{-7} \, 95\% c.l.$$

Supernovae: [M. Kachelriess et al., 2000]

Excluded region (Majoron case):

$$3{\cdot}10^{-7} < g_{ij}^{(\textit{flavour})} < 2{\cdot}10^{-5}$$
 (inside medium)

 $0\nu 2\beta$ decay: A. Gando et al. 2012 [KamLAND-Zen Collaboration]

$$g^{(flavour)} < (0.8 - 1.6) \, 10^{-5}$$

Francesco Forastieri

5 / 19

Behaviour of the interaction rate

$$g_{eff} = 10^{-7} g_{eff} = 2 \cdot 10^{-7} g_{eff} = 4 \cdot 10^{-7} Recombination$$

Relaxation time approximation :

$$\left. \frac{\partial f}{\partial \tau} \right|_{coll} = -\frac{f}{\tau_{coll}} \quad \text{where} \quad \tau_{coll} = \frac{1}{\Gamma}$$

Add interaction to fluid hierarchy

$$\begin{split} \dot{\delta} &= -\frac{4}{3}\theta - \frac{2}{3}\dot{h}, \\ \dot{\theta} &= k^2 \left(\frac{1}{4}\delta - \Pi\right), \\ \dot{\Pi} &= \frac{4}{15}\theta - \frac{3}{10}kF_3 + \frac{2}{15}\dot{h} + \frac{4}{5}\dot{\eta} - a\Gamma\Pi, \\ \dot{F}_{\ell} &= \frac{k}{2\ell + 1} \Big[\ell F_{\ell-1} - (\ell+1)F_{\ell+1}\Big] - a\Gamma F_{\ell} \quad (\ell \geq 3). \end{split}$$

The collisional term reduces the anisotropic stress Π (l = 2) and enhances the density perturbation δ (l = 0).

イロン イ団と イヨン イヨン

э

Impact on Cosmological perturbations

Impact on Angular Power Spectrum

Dataset

Planck 2015 data

- Third-generation CMB ESA satellite
- \sim Low Frequency Instrument (LFI) observing at 30, 44, 70 GHz
- \checkmark High Frequency Instrument (HFI) observing at 100, 143, 217, 353, 545 and 857 $\rm GHz$
- $\scriptstyle {\scriptstyle \bullet} \,$ Angular resolution form 30 $^{\prime}$ to 5 $^{\prime}$
- $\frac{\Delta T}{T} \sim 2 \cdot 10^{-6}$
- Latest public data release in Feb 2015, a full sky in temperature (PlanckTT) and polarization (PlanckTP)

Planck lensing power spectrum reconstruction

Results [Λ CDM + g_{eff}]

< ≥ > < ≥

2

Results, [PlanckTP] focus on n_s and H0

Results, [Λ CDM + g_{eff} + Yhe]

 $- \Lambda CDM + g_{eff} + Yhe [PlanckTT]$ $- \Lambda CDM + Yhe [PlanckTT]$

Constraints:

 $\begin{array}{l} Yhe = 0.252 \pm 0.023 \; [\text{Planck } 2105 \; \text{XVI}] \\ Yhe = 0.240 \pm 0.021 \\ g_{eff} \leq 1.6 \cdot 10^{-7} \; 95\% \textit{cl.} \\ n_s = 0.968 \pm 0.011 \end{array}$

Results, [Λ CDM + g_{eff} + Yhe]

Results, [Λ CDM + g_{eff} + r]

Results, [Λ CDM + g_{eff} + r]

[PlanckTP]

Francesco Forastieri

 $g_{eff} \leq 1.4 \cdot 10^{-7} \, 95 \,\% \, c.l.$

 $n_s = 0.972 \pm 0.007$

17 / 19

Constraints:

g _{eff}	\leq	9.4	10^{-8}	95% <i>cl</i> .	[<i>LiteCOrE</i> 80]
g_{eff}	\leq	9.2	10^{-8}	95% <i>cl</i> .	[LiteCOrE 120]
g _{eff}	\leq	9.2	10^{-8}	95% <i>cl</i> .	[COrE+]

Channel [G	Hz] FWMH [arcmin]	$\Delta T [\mu K \text{ arcmin}]$	$\Delta P [\mu K \text{ arcmin}]$				
	LiteCORE-80, lm	$f_{sky} = 2400, f_{sky} = 0$).7				
80	20.2	8.8	12.5				
90	17.8	7.1	10.0				
100	15.8	8.5	12.0				
120	13.2	6.7	9.5				
140	11.2	5.3	7.5				
166	8.5	5.0	7.0				
195	8.1	3.6	5.0				
LiteCORE-120, $l_{max} = 3000, f_{sky} = 0.7$							
80	13.5	8.8	12.5				
90	11.9	7.1	10.0				
100	10.5	8.5	12.0				
120	8.8	6.7	9.5				
140	7.4	5.3	7.5				
166	6.3	5.0	7.0				
195	5.4	3.6	5.0				
$CORE+, l_{max} = 3000, f_{sky} = 0.7$							
100	8.4	6.0	8.5				
115	7.3	5.0	7.0				
130	6.5	4.2	5.9				
145	5.8	3.6	5.0				
160	5.3	3.8	5.4				
175	4.8	3.8	5.3				
195	4.3	3.8	5.3				
220	3.8	5.8	8.1				

- 4 回 > - 4 回 > - 4 回 >

æ

- All models studied are consistent with no interaction (free-streaming neutrinos)
- $\scriptstyle {\scriptstyle \bullet}$ The goodness of fit for all considered models is comparable with the ΛCDM ones
- The effective strength of non-standard interactions is constrained at 95% c.l. $g_{eff} \leq 1.5 \cdot 10^{-7}$ for [PlanckTT]
- Polarization data seem to prefer a non zero value for g_{eff} peaked at $g_{eff} = 1.2 \cdot 10^{-7}$ Considering a specific model in which the pseudoscalar boson is a Nambu-Goldstone boson, the Majoron, the constraint becomes:

$$g \le 4.74 \cdot 10^{-7}$$
 95% c.l. [PlanckTT] $g = 3.8 \cdot 10^{-7}$ best fit [PlanckTP]

- Using polarization data, all models seems to prefer higher values of n_s and H0.
- Future generation experiments like COrE will improve the constraints on g_{eff} going below 10^{-7}