

KATRIN

Neutrino Oscillation Workshop – NOW2016 Otranto, September 4-11, 2016

Guido Drexlin, Institute for Experimental Nuclear Physics, Department of Physics

- Introduction
- ß-spectroscopy with MAC-E-filters
- KATRIN components
- Results of 2014/15 SDS campaigns
- First Light measurements 2016 & beyond
- Conclusions

S HERE

KATRIN experiment

Karlsruhe Tritium Neutrino Experiment

- direct v-mass experiment at Tritium Laboratory (TLK) of KIT
- international collaboration: from 6 countries:
- ~130 members D, US, CZ, RUS, F, ES

KATRIN experiment – science case

physics programme

- model-independent effective electron (anti-)neutrino mass: $m(v_e) = 200 \text{ meV}$ (90% CL)
- search for light... heavy sterile neutrinos: sub-eV ... keV mass scale
- constrain local relic-v density, search for Lorentz violation, exotic currents, BSM physics ...

KATRIN overview: 70 m long beamline

Project milestones 2015 - CPS Karlsruhe Institute of Technology KATRIN July 30: delivery of ASG CPS cryostat Superconductors

MAC-E principle: high-intensity tritium ß-spectroscopy

Magnetic Adiabatic Collimation & Electrostatic Filter: scan high-intensity T2 source

MAC-E principle: high-resolution tritium ß-spectroscopy

MAC-E principle: high-resolution tritium ß-spectroscopy

MAC-E principle: integrated ß-spectrum close to E0

- MAC-E filter: count all ß-decay electrons with E > U₀ in focal plane detector
 - requires excellent source stability (and diagnostics), R&D on differential read-out ongoing

 Rear Section: an indispensible tool for diagnostics of source & spectrometer
 angular selective photoelectron gun: spectrometer transmission & energy losses in source
 Rear Wall: definition of source potential, neutralization of cold WGTS tritium plasma, online monitoring of tritium ß-decay activity via X-rays (BIXS)

WGTS – source cryostat

IT

WGTS – source cryostat

complex tritium source cryostat: 16 m length, 27 t total weight, ~ 40.000 pieces

- 7 s.c. solenoids for adiabatic guiding of ß-decay electrons (3.6 5.6 T)
- 7 cryogenic fluids for tritium operation (BT: 30-120K) & liquid He bath for magnets (4 K)
- tritium beam tube @30K with stability and homogeneity of 0.1%
- extensive instrumentations: >800 sensors (B, T, p, level, flow, ...)

source-related challenges - overview

source challenges: injection & gas flow calculation

differential pumping - DPS

differential pumping section DPS2-F:

- serial pumping with TMPs $\rightarrow 10^5$ reduction
- ion elimination with $E \times B \rightarrow 10^7$ reduction

DPS instrumentation for ions: FT-ICR (ion diagnostics) dipoles (ion elimination) ring electrode (ion blocking)

WGTS

cryogenic pumping - CPS

cryogenic pumping section CPS:

- 3K section with Ar-frost layer \rightarrow >10⁷ reduction of T2

CPS instrumentation:

- condensed ^{83m}Kr-source (calibration)
- forward beam monitor (ß-activity)

LFCS low-field fine-tuning

EMCS

earth field compensation

main spectrometer vessel

Ø = 12.7 m

a large Helmholtz coil system for fine-shaping of low-B-field region

inner electrode system (24.000 wires) mounting precision: 200 µm!

Focal Plane Detector system

Detection of transmitted electrons with Si-PIN detector array

- 148 pixels (A = 44 mm² each) with ~ 100 nm top deadlayer in 500 μ m wafer
- 12 rings, each consisting of 12 pixels each, central 4-pixel bullseye
- active scintillator μ -veto & passive (Pb, Cu) shielding, PAE: + 10 kV

Karlsruhe Institute of Technology

spectrometer commissionng measurements 2013-15

over 12 months of continuous spectrometer measurements to verify:

- functionality of all components: UHV, HV, B-fields, SC, DAQ,...
- MAC-E filter characteristics via egun transmission studies
- refine background model & optimisation of bg-reduction methods

Main spectrometer: MAC-E characteristics

- **Main spectrometer** works as high-resolution MAC-filter:
 - sharp transmission function for 18.6 keV electrons from egun, HV precision on 10 mV scale

width still limited by finite egun emission energy spectrum

small

angular

spread

Radon-induced baclground

- main spectrometer background: no contributions observed from
 - µ-induced secondaries
 - environmental γ 's
- Background stems only from neutral, unstable atoms in UHV
- ²¹⁹Rn atoms emanate from large surface of NEG pumps (2 km strips)
 - eV...keV electrons from α -decay
 - correspnding bg-rate: ~0.5 cps
- countermeasure (factor 20):
 - 3 LN2-cooled Cu-baffles in front of NEG
 - cryotrap eliminates ²¹⁹Rn-propagation
 - remaining bg level: ~0.5 cps

²⁰⁶Pb-recoil induced H-Rydberg states

highly excited H-atoms (Rydberg states) produced by Pb-206 recoils

- long-term forced ventilation of spectrometer, 222 Rn α -decays results in 210 Pb implantation
- single ²⁰⁶Pb recoil ions generate large clouds of H-Rydberg states, which propagte in UHV
- small number of H*- atoms is ionized in UHV by thermal BBR from spectrometer
- isotropic generation of low-energy (<1 eV) electrons in active flux tube volume (0.5 cps)

Rydberg-background: mitigation strategies

extended bake-out phase of MS:

Source and Transport System – STS

Karlsruhe Institute of Technology

= 180 K (today)

Commissioning of source components:

- **RS**: assembly of egun, preparing for "First Light" via UV-illumination of Rear Wall
- **WGTS**: active cool-down, ongoing preparations for tests of s.c. magnet system (4 K today!!) & long-term tests of 2-phase BT cooling system
- **DPS**: magnet filling with LHe & pumping of BT-vacuum, test of instrumentation
- **CPS**: successful cryogenic & magnet commissioning, full thermal cycle $RT \rightarrow 3K \rightarrow RT$
- **Loops**: ongoing manufacture of piping & PCS7 control

October 2016: all STS components ready for "First Light" measurements

KATRIN First Light: Alignment & Ion Systematics

 Ion systematics: low-energy pencil beam of deuterium ions to study ion blocking & ion removal via E×B drift

KATRIN future: tritium loops in Q1-Q2/2017 IT Karlsruhe Institute of Technology Loop installation works (KATRIN – TLK conncetion) completed March, 8 2017 ⇒ commissioning with D2, then T2 by mid-2017 1,8 mbar_{l/s} <10⁻² mbarℓ/s <10⁻⁷ mbarℓ/s <10⁻¹⁴ mbarℓ/s WGTS DPS2-F CPS RS DPS1-R DPS1-F tube

KATRIN - reference neutrino mass sensitivity

KATRIN reference v-mass sensitivity for 3 'full beam' (5 calendar) years:

sensitivity $m(v_e) = 0.2 \text{ eV} (90\% \text{ CL})$ 0.35 eV (5 σ)

- very moderate impact of an enhanced background level due to shape analysis and specific coutermeasures:
 - optimized scanning strategy
 - range of spectral analysis
 - reduced flux tube volume for bg-level of 2015 with 0.5 cps: $m(v_e) = 0.24 \text{ eV} (90\%) \text{ CL}$ expect further bg-reduction!

KATRIN: Upgrade plans to improve sensitivity for $m(v_e)$

KATRIN sensitivity of m(v_e) = 200 meV can be improved substantially to push for m(v_e) ~ 100 meV and below, on-going R&D for
 differential read-out (encouraging 1st measurements)) via ToF-technique & also other methods
 aim: bg-free scanning of tritium spectrum
 novel source concepts (atomic tritium source,...)

novel source concepts

differential read-out: ToF, ...

A STAR

KATRIN: Upgrade plans to hunt for keV-scale $\nu \acute{}s$

B-decay shape modification by keV-mass sterile neutrinos with mass m_s TRISTAN: a novel Si-pixel detector array to cover entire T phase space

Conclusions & Outlook

experimental status:

- all source components on-site, smooth on-going cool-down phase
- spectrometer: excellent MAC-E filter characteristics, ongoing mitigation plans against remaining bg-level

near future:

- "first light" measurements mid-October 2016
- final commissioning until mid-2017
- first tritium runs in Q3-2017:
 best limits on kev-scale sterile v's (~10⁻³ level and below)

mid-term future:

- few months of tritium runs: sub-eV result (end of 2017)
- Iong-term future:
 - upgrades for keV-scale sterile \mathbf{v} 's, push down to 100 meV...

