Recent MicroBooNE Results

Andy Furmanski NOW2016 7th September 2016

Fermilab Short Baseline Programme

- Unprecedented sensitivity to eV-scale sterile neutrino oscillations
 - In both appearance and disappearance channels

Fermilab Short Baseline Programme

- Unprecedented sensitivity to eV-scale sterile neutrino oscillations
 - In both appearance and disappearance channels

A short history of MiniBooNE

- MiniBooNE was designed to search for v_e appearance in a v_μ beam
 - At short distances -> eV-scale sterile oscillations
- MiniBooNE saw an excess of electron-like events at low energies
- MiniBooNE had almost no separation between electrons and photons

Why MicroBooNE?

- Liquid argon TPC is a very different detector technology to mineral oil Cerenkov
- Fine-grained tracking reveals more about the neutrino interaction

– Low-energy particles?

 Vertex separation and dE/dx provide electron/ photon separation

MicroBooNE

- MicroBooNE is the first detector in the SBN programme
- It will run for 3 years by itself before being joined by SBND and ICARUS
- Main goals of the 3-year run:
 - Investigate MiniBooNE low energy excess
 - Study/measure neutrino cross sections on argon
 - Demonstrate liquid argon technology required for DUNE (cold electronics, argon purity, etc)

The detector

- 170 tons of liquid argon
- Cylindrical cryostat
- Rectangular TPC inserted
 - Contains ~90 tons of liquid argon
- Passive insulation

The (charge) detector

- Particles ionise argon atoms
- Free electrons drift in high electric field to the wire planes

The (charge) detector

- Particles ionise argon atoms
- Free electrons drift in high electric field to the wire planes

The (charge) detector

- Particles ionise argon atoms
- Free electrons drift in high electric field to the wire planes
- Induce signals on the wire planes

The (light) detector

- 32 eight-inch PMTs
- Placed behind the anode wires
- Reconstruct flashes from scintillation light
- Determine tracks t₀
 from flash time

Argon purity

- For free electrons to survive the drift distance the free electron lifetime needs to be >3ms
 - This requires very pure argon!
 - We have achieved >9ms electron lifetime!
 - (and kept it there)

MicroBooNE event display

- Cosmic tracks seen in MicroBooNE shortly after turning the drift field on!
- Very detailed images of showers!
 Millimetre scale resolution

Optical signals

- Pulses identified in PMT waveforms to form hits
- Hits close together in time and space are grouped into flashes

- Flashes characterised by amplitude, time, and location
- Small flashes are very common, large flashes are usually caused by cosmic muons, cosmic showers, or beam interactions

TPC signals

TPC reconstruction

 For each wire plane, signals are noise-filtered, deconvolved, and calibrated

– Produces gaussian-like hits in all planes

- Clustering algorithms group nearby hits that likely originate from the same particle
- 3D reconstruction matches between planes
 Based on time and wire-intersections
- Produces 3D tracks and vertices

Cosmic tracks

- In every event, there are many cosmic muons visible
- Long drift time + surface detector!

Finding Michel electrons

- Find stopping-and-decaying cosmic muons in MicroBooNE
- Test **reconstruction**, **calorimetry**, of low-energy electrons
- Sample very relevant for understanding supernova neutrinos!
- Look for hard 'kink'
- Look for muon Bragg peak

Michel energy spectrum

The Booster Neutrino Beam

- 8 GeV protons taken from the booster accelerator
- Hit a Beryllium target
 - Produces a spray of mainly pions, some kaons
- A single focusing horn focuses the right-sign pions
- On-axis flux peaks at around 600 MeV
- Wide-band beam
- Very low wrong-sign background

Beam!

- The BNB was turned on in October 2015
- Beam ran extremely well
 - Beam turned off in August after delivering 3.57e20 POT!

Neutrino peak

- Distribution of flashes over 50 PE
- Excess at the right place, and the right width

NuMI peak

- MicroBooNE is also exposed to the NuMI beam
- MicroBooNE is very off-axis
- Allows us to study an alternative flux

Neutrinos!

- Requiring a flash in time with the beam and some simple cuts
- Neutrino candidates found with
 fully automated reconstruction
- All three planes working well
 (same event shown in 3 views)

Working towards a low-energy excess

How do you check MiniBooNE with MicroBooNE?

CC-inclusive event selection(s)

- Two selections developed
- Selection I:
 - Fully contained
 - Intended to be simple
- Selection II:
 - Single-track contained
 - Multi-track contained
 - Multi-track uncontained
 - Intended to increase efficiency
- Both start with a >50PE flash within the beam spill

Performance

- Global efficiencies and purities:
 - Selection 1 12% efficiency, 55% purity
 - Selection 2 30% efficiency, 65% purity
- Efficiencies include acceptances only 1/3 of events are contained
- Selections pick up **different topologies**, so only ~30% overlap

Event distributions

$CC\pi^0$ selection

- Critical on the path to a low-energy excess search
- First steps in:
 - Shower reconstruction
 - Calorimetry
 - Estimation of NC π^0 background
- Multiple paths taken
 - 2D-only reconstruction
 - Full 3D reconstruction
 - Image processing and pattern recognition

PiO event displays

MicroBooNE public notes

- All the results described here, and more, are available on the MicroBooNE public notes page
- This page provides much more detailed information
- Find it here:
 - <u>http://www-microboone.fnal.gov/publications/</u> <u>publicnotes/index.html</u>

Future work

Summer upgrades

- Cosmic Ray Tagger system
 - Can't bury MicroBooNE, but we can tag entering cosmic muons
- Hardware noise filtering
 - Additional HV supply filter
 - These, and more, are being implemented between August and Modified front end electronics boards
- Improved beam timing system

Octobe

Event rates

Future cross section programme

v_u CC-inclusive Differential cross section soon v_u CC-exclusive measurements – CC-0π – CC-Nπ Track multiplicity Proton kinematics analyses underway! Kaon production **v**_u**NC** measurements NC-elastic _ critical for oscillation analysis NC-π⁰ Many more! $- v_e$ CC-inclusive NuMI measurements!

Conclusions

 MicroBooNE is now running and our detector is performing very well

- Now making good progress analysing run 1 data

- Many detector physics and cross section results to come
- **CC-inclusive** sample produced
 - Will be used to constrain (flux) x (xsec) in an oscillation analysis
- Michel electron and neutral pion samples identified
 Demonstrates shower reconstruction, calorimetry
- All of this is progress towards a low-energy excess search
 - Requires further tool development and more data

Thank you

Backup slides

Selection I distributions

(c) (Run 5975, Subrun 85, Event 4262)

(d) (Run 6058, Subrun 177, Event 8877)

Radiative photon losses

Noise level (ENC)

• Noise post-filtering rises linearly with wire length Wire Noise Level in MicroBooNE

