SOLAR MODELS AND NEUTRINOS: WHAT'S NEW UNDER THE SUN?

ALDO SERENELLI (ICE/CSIC-IEEC)

NEUTRINO OSCILLATION WORKSHOP (NOW) 2016 @ Otranto, Italy, September 2016

Solar abundances and solar models

Recap on solar abundance problem

Updates in physical inputs to SSMs: opacities, nuclear rates, etc.

A new generation of SSMs: Barcelona 16 (B16) results for helioseismology and updated solar neutrino fluxes

3 free parameters

convection parameter - $\alpha_{\rm MLT}$ initial helium – Y_{ini} initial metallicity – Z_{ini}

3 observational constraints

solar radius – R_{\odot} solar luminosity – L_{\odot} surface metal to hydrogen abundances ratio – (Z/X) $_{\odot}$

 R_{\odot} and L_{\odot} well known – (Z/X) $_{\odot}$ has changed dramatically (> 30%) in last 15 years

Solar abundances based on 3D atmospheres

Fluctuations around mean + nonlinearity of Planck function (T) and line formation (T & ρ)

-- > spectral analysis in 3D cannot be represented by 1D (Uitenbroek & Criscuoli 2011)

Solar abundances based on 3D atmospheres (+NLTE + atomic data)

Element	GS98	AGSS09+met
С	8.52	8.43
Ν	7.92	7.83
Ο	8.83	8.69
Ne	8.08	7.93
Mg	7.58	7.53
Si	7.56	7.51
Ar	6.40	6.40
Fe	7.50	7.45
Z/X	0.0229	0.0178

 $\log(n_x/n_H)+12$

"Sub-solar" solar metallicity CNO(Ne)~30-40% refractories~10%

Helioseismology

Inversion of profiles of solar properties: c², r, Γ_1 , Y

 r/R_{\odot}

acoustic standing waves (p-modes) typical period 5 minutes (~ 3 mHz) amplitudes ~ few cm/s in radial velocity ~ parts per million in brightness

Solar Abudance Problem

Discrepancies with low-Z solar composition show up in:

Solar neutrinos

Model fluxes based on Solar Fusion II (Adelberger et al. 2011)

The role of radiative opacities

Helioseimic probes and ν s from pp-chains not directly sensitive to Z, but to radiative opacity -- > degeneracy exists between composition and κ

Sound speed and pp-chain neutrinos -- > recover GS98 "like" values

All probes sensitive to temperature profile not composition

Opacities: theoretical calculations

Opacities: theoretical calculations

Opacities: experimental results

@Sandia lab – Z-facility – conditions close to solar (factor 4 too low in density) Iron opacity measurements

Are experimental results robust?

Recent developments in SSM inputs

Solar composition

Almost full revision of AGSS09 – Scott et al. 2015 A&A 573, 25&26 Photospheric abundance of refractories closer to meteoritic abundances Meteoritic abundances (once again) robust -- > keep using them CNO & Ne have not been revised (yet)

Equation of state

EoS always consistent with Z used in models but not with mixture i.e. mixture always the same no matter if model had AGSS09 or GS98 Now EoS consistent – small, but measurable impact in some helioseismic qnts.

Nuclear reaction rates

p+p: new calculation includes now S and P waves – full determination of S(E) increase ~ 1.5% (Marcucci et al. 2013) p+⁷Be: more general assessment of models for extrapolating to S(0) increase ~ 2% (Zhang et al. 2015) p+14N: new determination of $S_{GS}(0)$ by LUNA decrease ~ 4% (Marta et al. 2011)

Radiative opacities

more generous estimate of uncertainty (7% at convective envelope – before 2.5%) implementation of flexible scheme based on opacity kernels (Tripathy et al. 1998)

New SSMs – Barcelona 16 (B16)

B16-AGSS09met : 2.5 σ for Y_s – 2 σ for R_{cz} due to larger opacity errors (before 3.4 σ and 3 σ)

B16 SSMs – ν fluxes

Fractional variations – few % for ⁸B and ⁷Be 6 - 8% for ¹³N and ¹⁵O

B16 SSMs – ν fluxes

Better discrimination of SSMs by pp-chain fluxes important to check consistency with helioseismic view on the Sun

Nuclear uncertainties need be reduced (S_{34}, S_{17}) – systematics better understood but opacity uncertainty remain a difficult issue (dominant for ⁸B ~8%)

$CN \nu$ fluxes

Very important because

Extra linear dependence on C+N abundance due to their catalyzing role (not through opacity) and due to dominance of nuclear energy from pp-chains

	Model	$^{13}\mathrm{N}$		$^{15}\mathrm{O}$	
Time evolution	BP00	5.56		4.88	
	BS05 (LUNA $^{14}N+p$)	3.11		2.38	
		GS98	AGSS09	GS98	AGSS09
	SFII	2.96	2.23	2.17	1.56
	B16	2.78	2.05	2.05	1.44

Borexino upper limit for $\Phi(^{13}N+^{15}O) = 7.7 \times 10^8 \text{ cm}^{-2} \text{ s}^{-1}$

$CN \nu$ fluxes

Discriminates compositions to ~ 3- σ before adding CN experimental error

Summary

Presentation of B16 SSMs Better treatment of EoS Updated nuclear reaction rates Modified treatment of opacity uncertainties

Small changes in helioseismic results

Small changes in vs from pp-chains – slightly better agreement for GS98 (high-Z) models

Overall picture – solar abundance problem – remains Wrong composition?

Missing opacity? 5 atomic calculations agree within 5% experimental result on Fe opacity hints at 7% deficit in models exp. results questioned by community

CN fluxes still very important – complemented with ⁸B offer a unique probe of solar core composition