

Status and results of the COSINUS project

Natalia Di Marco for the COSINUS Collaboration

LNGS - INFN

INSTITUTE OF HIGH ENERGY PHYSICS

WIEN

χ

Dark Matter: direct search

Assumption

Dark matter particles (WIMPs) scatter off the nucleus and induce nuclear recoils

Signature

- Earth revolution gives seasonal modulation with a period of 1 year and a phase peaking at June the 2nd
- Due to the solar system movement in the galaxy, the DM flux is expected to be anisotropic @earth (*directionality*)

The DAMA/LIBRA results

- 250 Kg Nal(Tl)
- Threshold 1 KeVee
- Running since 1996

Total exposure: 2.17 tonne years (phase 1 + 2) Statistical significance: >11.9 σ (combined with DAMA/Nal: 2.46 tonne years and 12.9σ !!!!) Phase: 25th May +/- 5 days (cosine peaking June 2nd)

Total exposure: 2.17 tonne years (phase 1 + 2)

Statistical significance: >11.9 σ

(combined with DAMA/Nal: 2.46 tonne years and 12.90 !!!!) Phase: 25th May +/- 5 days (cosine peaking June 2nd) arXiv:1805.10486v1 [hep-ex] 26 May 2018 2-6 keV 0.06 DAMA/LIBRA-phase1 (1.04 ton×yr) DAMA/LIBRA-phase2 (1.13 ton×yr)

Positive evidence for the presence of DM particles in the galactic halo

The **DAMA/LIBRA** results

- 250 Kg Nal(Tl)
- Threshold 1 KeVee
- Running since 1996

NOW 2018

N. Di Marco

GLOBAL LANDSCAPE OF DM Direct Search

Null results shown as 90% C.L. upper limits on the spin-independent DM particle-nucleon cross section

DAMA/LIBRA: 3o allowed parameter space

Long-reigning contradicting situation in the dark matter sector: the positive evidence for the detection of a dark matter modulation signal claimed by the DAMA/LIBRA collaboration is (under standard assumptions) **inconsistent with the null-results** reported by most of the other direct dark matter experiments (using different targets Xe, Ge, CaWO₄).

WHAT ARE THE UNKNOWNS?

$$\frac{dR}{dE_r} = N_N \frac{\rho_0}{m_\chi} \int_{v_{min}}^{v_{max}} d\vec{v} f(\vec{v}) v \frac{d\sigma}{dE_r}$$

- $N_N \rightarrow$ number of target nuclei
- $\rho_0 \rightarrow \text{local WIMP density}$
- $f(\vec{v}) \rightarrow \text{WIMP}$ velocity distribution

$$v_{min} = \sqrt{\frac{m_N E_{th}}{2m_r^2}}$$

 $v_{max} \rightarrow$ escape velocity

 $\frac{d\sigma}{dE_r}$ \rightarrow WIMP-nucleus differential cross section

WHAT ARE THE UNKNOWNS?

- $N_N \rightarrow$ number of target nuclei
- $\rho_0 \rightarrow \text{local WIMP density}$
- $f(\vec{v}) \rightarrow \text{WIMP}$ velocity distribution

$$v_{min} = \sqrt{\frac{m_N E_{th}}{2m_r^2}}$$

 $v_{max} \rightarrow$ escape velocity

 $\frac{d\sigma}{dE_r}$ \rightarrow WIMP-nucleus differential cross section

WHAT ARE THE UNKNOWNS? Astrophysics r vmax dR $d\sigma$ ρ_0 dvf $\overline{dE_r}$ dE_r m_{ν} v_{min} $N_N \rightarrow$ number of target nuclei **Particle/Nuclear Physics** $\rho_0 \rightarrow \text{local WIMP density}$ $f(\vec{v}) \rightarrow$ WIMP velocity distribution $m_N E_{th}$ $v_{min} =$ $v_{max} \rightarrow$ escape velocity $\frac{d\sigma}{dE_r}$ \rightarrow WIMP-nucleus differential cross section

WHAT ARE THE UNKNOWNS? Astrophysics r vmax dR $d\sigma$ 0_{0} $d\vec{v}f(\vec{v})v$ $\overline{dE_r}$ $\overline{dE_r}$ mχ vmin $N_N \rightarrow$ number of target nuclei **Particle/Nuclear Physics** $\rho_0 \rightarrow \text{local WIMP density}$ $f(\vec{v}) \rightarrow$ WIMP velocity distribution **Detector Properties** $m_N E_{th}$ $v_{min} =$ $v_{max} \rightarrow$ escape velocity $\frac{d\sigma}{dE_r}$ \rightarrow WIMP-nucleus differential cross section

WHAT ARE THE UNKNOWNS? Astrophysics cv_{max} dR $d\sigma$ 0_{0} $d\vec{v}f($ $(\vec{v})v$ $\overline{dE_r}$ $\overline{dE_r}$ m_{χ} vmin $N_N \rightarrow$ number of target nuclei **Particle/Nuclear Physics** $\rho_0 \rightarrow \text{local WIMP density}$ $f(\vec{v}) \rightarrow$ WIMP velocity distribution **Detector Properties** $v_{min} = \frac{m_N E_{th}}{2m_s^2}$ $v_{max} \rightarrow$ escape velocity **Target material dependence:** $\frac{d\sigma}{dE_r}$ \rightarrow WIMP-nucleus differential cross section test DAMA with Nal experiment(s)

GLOBAL NAI EFFORTS

GLOBAL NAI SEARCHES

GLOBAL NAI SEARCHES

N. Di Marco NOW 2018

www.cosinus.it

- R&D project
- funded by the "CSN 5" of Istituto Nazionale di Fisica Nucleare (INFN, Italy)
- 3 years for prototype development [2016 2018]

- prolongation for one year (2019) in CSN 5 requested
- Eur. Phys. J. C (2016) 76:441

LOW-TEMPERATURE CALORIMETER

Nal-based SCINTILLATING CALORIMETER

Nal-based SCINTILLATING CALORIMETER

Nal-based SCINTILLATING CALORIMETER

COSINUS DETECTOR DESIGN

5

Nal Target Crystal

- scintillator
- multi-element target
- mass: ~ 30 200 g
- hygroscopic

Carrier Crystal

- carries the thermometer (TES)
- glue/oil as interface and link for phonons

COSINUS DETECTOR DESIGN

Light absorber

- beaker-shaped HP silicon
- 40 mm diameter & height
- equipped with TES optimized for light detection
- \rightarrow high light collection efficiency
- → fully active veto to reject surface backgrounds
 - (e.g. alpha-induced nuclear recoils)

PERFORMANCE GOALS

SIMULATED DATA

LIGHT YIELD = LIGHT SIGNAL HEAT SIGNAL

Eur. Phys. J. C (2016) 76:441 DOI 10.1140/epjc/s10052-016-4278-3 Exposure before cuts: 100 kg-days

- black events: flat background: 1 /(keV kg d) + ⁴⁰K background: 600µBq/kg
- recoils off Na

 → light quenching factor ~ 0.3
- recoils off I
 → light quenching factor ~ 0.1

(values for quenching factors from: Tretyak, Astropart. Phys. 33, 40 (2010))

 Red: 10 GeV/c² WIMP with 2E-04 pb as from Savage et al.

COSINUS R&D

COSINUS R&D

1st measurement of a Nal as cryogenic calorimeter

linear relation between light output and deposited energy

Nal threshold: 10 keV

3.7% detected in light

G. Angloher et al. JINST 12 P11007 (2017)

13 % detected in light Schäffner, K. et al. J Low Temp Phys (2018). <u>https://doi.org/10.1007/s10909-018-1967-3</u>

2nd PROTOTYPE (2016/17)

successful test of complete

COSINUS detector design

energy resolution at zero

Nal threshold: 8.3 keV

energy : 15 eV

🗲 Si beaker LD

epoxy resin

Nal

2nd PROTOTYPE DETECTOR

- interface: epoxy resin
 - beaker-shaped Si light absorber
- Nal crystal: 66 g

2nd PROTOTYPE DETECTOR

- Nal energy threshold is (8.26 ± 0.02 (stat.))keV
- width of the ²⁴¹Am peak is (4.508 ± 0.064 (stat.)) keV
- carrier events identified by pulse shape

Schäffner, K. et al. J Low Temp Phys (2018). https://doi.org/10.1007/s10909-018-1967-3

LONG DECAY TIMES – PULSE MODEL

F. Pröbst et al., J. Low Temp. Phys. 100, 69 (1995):

$$\Delta T_e(t) = \Theta(t) [A_n(e^{-t/\tau_n} - e^{-t/\tau_{\rm in}}) + A_t(e^{-t/\tau_t} - e^{-t/\tau_n})]$$

This example: 1st prototype: G. Angloher et al. JINST 12 P11007 (2017) Same result: 2nd prototype: F. Reindl et al., arXiv 1711.01482

COSINUS R&D

COSINUS R&D

- 1st measurement of a Nal as cryogenic calorimeter
- linear relation between light output and deposited energy
- Nal threshold: 10 keV
- 3.7% detected in light

G. Angloher et al. JINST 12 P11007 (2017)

Si beaker LD Nal epoxy resin

successful test of complete COSINUS detector design

2nd PROTOTYPE (2016/17)

- energy resolution at zero energy : 15 eV
- Nal threshold: 8.3 keV

13 % detected in light

Schäffner, K. et al. J Low Temp Phys (2018). <u>https://doi.org/10.1007/s10909-</u>018-1967-3

changed interface to thin layer of silicon oil

commissioning of: in-house electronics and DAQ from MIB

Nal threshold: 6.5 keV

$4^{\text{th}} \rightarrow 7^{\text{th}} \text{ PROTOTYPE (2017/18)}$

test of new batch of Nal/Nal(Tl) crystals from SICCAS

test of new TES-concept for the Nal crystal

Work ongoing!

Assuming spin-independent interaction and a Maxwell-Boltzmann velocity distribution, COSINUS should be able to exclude the DAMA region by about two orders of magnitude in cross section with an exposure of 100 kg days

> What about sensitivity in case of less restrictives assumptions?

JCAP 1805 (2018) no.05, 074

COSINUS exclusion power, defined as the bound on the total rate (or equivalently the total exposure with zero observed events) that COSINUS must achieve for excluding DAMA in a halo-independent way, as a function of the assumed threshold in COSINUS for different DM masses.

COSINUS has the unique potential to clarify a nuclear recoil origin of the DAMA/LIBRA signal

CONFIRM

+ not too exotic dark matter

Good chance for exposure of O (100 kg days)

10 detector modules about 50 g each

1 year of data taking 50% overall efficiency (cryostat refills, calibration, cuts, ...)

Low-background cryogenic facility underground lab, passive shields, dilution refrigerator

RULE-OUT

O (100 kg days): strong statement

O (1000 kg days): fully model-independent

Model-independent comparison of annual modulation and total rate with direct detection experiments

F. Kahlhoefer et al. JCAP 1805 (2018) no.05, 074

SUMMARY

- 1997: DAMA presents at TAUP first evidence for the modulation
 → after more than 20 years the DAMA/LIBRA observation is still not cross-checked by a same-target experiment
- numerous Nal-based experiments à la DAMA in data taking or being set up *radiopure Nal crystals is still the key-issue for all DAMA-like experiments*
- COSINUS develops the first Nal dark matter detector with particle discrimination
- COSINUS is on a good way to achieve the performance goals. If we succeed:

COSINUS-1 π : comparatively little exposure (O(100kg days)) is needed to give insight whether **DAMA sees a nuclear recoil signal**, or not

COSINUS- 2π : with a significantly increased target mass the COSINUS technique is also able to include the possibility for modulation detection

BACKUP

Nal EXPERIMENTS

DM-Ice17

South pole 17 kg Nal

energy: 4 keV_{ee}

3.5 y physics run no hint

ANAIS-112

LSC - Spain 112.5 kg Nal

energy: < 1 keV_{ee}

spring 2017

COSINE-100

Y2L Korea KIMS Nal + DM-Ice 106 kg

energy: ~ 2 keV_{ee}

since Sept. 2016

Gran Sasso/Australia 40-50 kg Nal

construction phase Proof of Principle in 2018

26

BACKGROUND

MUST HAVE TO PROOF DAMA/LIBRA

- energy threshold of < 2 keVee
- radiopure crystal: ~ 1 count / (keV kg day)
 > in particular very low ⁴⁰K content
- large detector mass O (10 kg)

- liquid scintillator veto to suppress ⁴⁰K background
- muon veto to reject muon-induced background
- particle discrimination (nuclear recoils – electron/gammas)

LIMITATIONS: thermodynamic fluctuations

Temperature pulse

N is the total excitations which have a mean energy k_BT

$$N \propto CT / k_B T$$
 and $\delta N = \sqrt{N}$

$$\delta E = \delta N k_{\rm B} T = \sqrt{k_{\rm B} T^2 C}$$

noise comes from **irreducible random thermodynamic fluctuations** in energy due to transport across the thermal link

Ultimate energy resolution is determined by how well you can measure **T** against thermodynamic fluctuations:

```
low temperatures \rightarrow better energy sensitivity
```

low heat capacity \rightarrow careful selection of materials with low C

COMPARE DAMA TO COSINUS

REMARK: QUENCHING FACTORS

Nal as TARGET MATERIAL

53 ¹¹Na Sodium lodide

- multi-target compound: light Na and heavy I
- very good scintillator at room temperature (> 15 p.e. / keV)
- Nal doped with thallium has suitable wavelength for Photomultipliers (PMTs)
- crystal is "easy" to grow and available as >10 kg blocks

NOW 2018

N. Di Marco

... but Nal is not that Nalce!

hygroscopic nature

handle in controlled atmosphere:

- glove box
- special container for cooldown in dilution refrigerator

Properties	Nal(pure)	Csl(pure)	$CdWO_4$	$CaWO_4$
Density [g/cm ³]	3.67	4.51	7.9	6.12
Melting point [°C]	661	894	1598	1650
Structure	CsCl	CsCl	Wolframite	Scheelite
λ_{max} at 300 K [nm]	\sim 300	\sim 315	${\sim}475$	420-425
Hygroscopic	yes	slightly	no	no
Θ_D [K]	169	125	-	335
Photons per keV at 3.4 K	19.5 ± 1.0	58.9±5.6	-	-
Mean energy of emitted photon [eV]	3.3	3.9	-	3.14

typically high contamination with ⁴⁰K

dangerous background is the 3 keV Auger electrons emitted together with the 1.46 MeV gamma quantum

PREPARE FOR:

small signal amplitudes

- develop highly sensitive W-TES
- surface of Nal optically polished

DAMA/LIBRA crystal [ppb]		
~ 13		
< 0.35		
0.5 – 7.5 x 10 ⁻³		
0.7 – 10 x 10 ⁻³		

CYRSTAL PROGRAM

- collaboration with I. Dafinei from INFN, Roma 1 in Italy
- Yong Zhu from SICCAS joined the COSINUS collaboration
- Nal / Nal(TI) grown from Astrograde-powder at SICCAS:

→ very promising radiopurity:

5-9 ppb of K at crystals' nose and 22-35 ppb at crystals' tail (3-inch crystal @ SICCAS)

CYRSTAL PROGRAM

- collaboration with I. Dafinei from INFN, Roma 1 in Italy
- Yong Zhu from SICCAS joined the COSINUS collaboration
- Nal / Nal(TI) grown from Astrograde-powder at SICCAS:

→ very promising radiopurity:

5-9 ppb of K at crystals' nose and 22-35 ppb at crystals' tail (3-inch crystal @ SICCAS)

IN THE QUEUE:

- Nal(TI) grown with internal samarium "contamination" to study alpha quenching factor
- Nal(TI) with different amount of thallium dopant to study nuclear quenching factors

NOW 2018

N. Di Marco

QUENCHING FACTOR MEASUREMENT

• Meier-Leibnitz Laboratorium - Tandem accelerator at

Technical University in Munich

- 11 MeV mono-energetic neutrons
- dilution cryostat available
- small Nal scintillating cryogenic calorimeter

STATUS:

- successfully measured an undoped Nal crystal in April 2018
- measurement of a TI-doped Nal scheduled for Nov. 2018

 \rightarrow beam time already assigned!

arXiv:1802.10175v4

DAMA/LIBRA PhaseII

Figure 9. Best-fit recoil spectra in DAMA for low-mass DM (left), corresponding to scattering dominantly on sodium, and high-mass DM (right), corresponding to scattering dominantly on iodine. In both cases we have included the first twelve bins from the combined data sets of DAMA/NaI, DAMA/LIBRA-phase1 and DAMA/LIBRA-phase2.

Any interpretation of the DAMA signal in terms of DM requires **non-standard interactions** or **non-standard astrophysical distributions** (or both), independently of (but already implied by) the exclusion bounds from other experiment

Central idea: The modulation amplitude (in a given experiment) cannot exceed the mean rate: $\overline{R} \geq S$

F. Kahlhöfer, K. Schmidt-Hoberg, K. Schäffner, F. Reindl and S. Wild , JCAP 1805 (2018) no.05, 074

Central idea: The modulation amplitude (in a given experiment) cannot exceed the mean rate: $\overline{R} \ge S$

DAMA phase 1:

Best fit $S = (2.34 \pm 0.28) \cdot 10^{-2} \text{ kg}^{-1} \text{ days}^{-1}$ (in [2.5keVee,3.5keVee]) Minimal Mod. Ampl. (95% C.L.) $S = 1.78 \cdot 10^{-2} \text{ kg}^{-1} \text{ days}^{-1}$

F. Kahlhöfer, K. Schmidt-Hoberg, K. Schäffner, F. Reindl and S. Wild , JCAP 1805 (2018) no.05, 074

Central idea: The modulation amplitude (in a given experiment) cannot exceed the mean rate: $\overline{R} \geq S$

$$\frac{\epsilon_{\text{COSINUS}}^{\text{T}}(E_{\text{R}})}{R_{\text{COSINUS}}^{\text{bound}}} > \frac{\epsilon_{\text{DAMA}}^{\text{T}}(E_{\text{R}})}{S_{\text{DAMA}}^{\text{bound}}}$$

T: target nucleus

 ϵ : efficiency to see nuclear recoils of energy E_R

F. Kahlhöfer, K. Schmidt-Hoberg, K. Schäffner, F. Reindl and S. Wild , JCAP 1805 (2018) no.05, 074

MOST GENERAL CASE

F. Kahlhöfer, K. Schmidt-Hoberg, K. Schäffner, F. Reindl and S. Wild , JCAP 1805 (2018) no.05, 074

RESULT

F. Kahlhöfer, K. Schmidt-Hoberg, K. Schäffner, F. Reindl and S. Wild , JCAP 1805 (2018) no.05, 074

RESULT

F. Kahlhöfer, K. Schmidt-Hoberg, K. Schäffner, F. Reindl and S. Wild , JCAP 1805 (2018) no.05, 074

Model-independent comparison of annual modulation and total rate with direct detection experiments

F. Kahlhoefer et al. JCAP 1805 (2018) no.05, 074

COSINUS has the unique potential to clarify a nuclear recoil origin of the DAMA/LIBRA signal

Assuming:

- a threshold of ~1.8keV with a resolution of 0.2keV
- a bound on the rate of 0.01 kg⁻¹ days⁻¹
- Exclude DAMA/LIBRA signal in a model-independent way:
 - Halo-independent
 - For arbitrary <u>nuclear recoil</u> interactions

Outlook: Cut and count only \rightarrow Make use of spectral information for potentially stronger bounds