RECENT RESULTS FROM GERDA PHASE II

Christoph Wiesinger
Neutrino Oscillation Workshop, 14-Sep-2018

SEARCH FOR OVBB OF 76GE

- peak @ $Q_{\beta\beta}$ = 2039 keV in summed electron spectrum
- > physics beyond standard model ($\triangle L = 2$)
- > Majorana mass

- **HPGe detectors** enriched in ⁷⁶Ge
- > semiconductor
 -> energy resolution 0(0.1)% @ Q_{ββ}
- > high density
 -> e⁻ absorbed within O(1)mm

- > source = detector
 -> high detection efficiency
- > high purity
 -> no intrinsic background
 [Astropart.Phys. 91 (2017) 15-21]

SEARCH FOR OVBB OF 76GE WITH GERDA

- data blinding @ Q_{BB} ± 25 keV
- background expectation < 0.2 cts in $Q_{\beta\beta}$ ± 2σ

"high resolution background-free Ονββ search"

> GERDA PHASE II

@ LNGS 3500 m.w.e. plastic scintillator panels lock system clean room 64 m³ LAr cryostat 590 m³ ultra-pure water

GERDA PHASE II

Phase II:

- 7 enriched (semi-)coaxial (15.6 kg)
- 30 enriched BEGe (20.0 kg)
- 3 natural semi-coaxial (7.6 kg)

Phase II upgrade:

- 5 enriched inverted coaxial (9.5 kg)
 - + new LAr veto instrumentation
 - + cleaner materials

GERDA Phase II goals

background ~10⁻³ cts/(keV·kg·yr)

exposure ≥100 kg·yr

sensitivity $T^{0\nu}_{1/2}\stackrel{>}{_{\sim}}10^{26}~yr$

> RECENT RESULTS

DATA TAKING / DUTY CYCLE

- from Dec-2015 to Apr-2018 -> **834.8 d** live time
- 92.9% duty cycle, 80.4% data quality
- > **58.9 kg·yr** (82.4 kg·yr with Phase I)

"largest ⁷⁶Ge exposure ever achieved"

ENERGY RECONSTRUCTION / RESOLUTION

- weekly calibrations with ²²⁸Th
- every 20 s test pulse injection for gain stability measurement
- "zero area cusp"(ZAC) filter[Eur. Phys. J. C75 (2015) 255]

FWHM @ $Q_{\beta\beta}$ coaxials 3.6(1) keV BEGe 3.0(1) keV

BACKGROUND MODEL

- full GERDA setup is reproduced in GEANT4
- **Bayesian fit** of multiple datasets (BEGe, coaxial, multiplicity=2, ⁴⁰K/⁴²K tracking) with Monte Carlo PDFs, **screening measurements** as priors
- $> \alpha$ from ²¹⁰Po/(²²²Ra), β from ⁴²K, γ from ²⁰⁸Tl/²¹⁴Bi

ACTIVE BACKGROUND SUPPRESSION

differentiate point like (single site) ββ topology from:

- multi-detector interactions
- interactions with **coincident energy deposition** in surroundings
- multi-site/surface interactions

LAR VETO

- channelwise (PMT/SiPM)anti-coincidence condition
- thresholds at ~0.5 P.E.
- acceptance determined from random triggers

0νββ acceptance

Phase II

97.7(1) %

Compton suppression by
 LAr veto -> almost pure
 2νββ continuum

LAR VETO

- channelwise (PMT/SiPM)anti-coincidence condition
- thresholds at ~0.5 P.E.
- acceptance determined from random triggers

0νββ acceptance Phase II **97.7(1)** %

Compton suppression by
 LAr veto -> almost pure
 2νββ continuum

PULSE SHAPE DISCRIMINATION FOR BEGE'S

- mono-parametric cut based on current pulse amplitude
 A and total energy E (A/E)
 [Eur. Phys. J. C73 (2013) 2583]
- normalized to single-site events
- cut value determined from calibration data (low cut @ 90% DEP acceptance, high cut @ 40)

 $0 \vee \beta \beta$ acceptance

BEGe (87.6±2.5)%

PULSE SHAPE DISCRIMINATION FOR BEGE'S

- mono-parametric cut based on current pulse amplitude
 A and total energy E (A/E)
 [Eur. Phys. J. C73 (2013) 2583]
- normalized to single-site events
- cut value determined from calibration data (low cut @ 90% DEP acceptance, high cut @ 40)

0νββ acceptance

BEGe (87.6±2.5)%

PULSE SHAPE DISCRIMINATION FOR COAXIALS

- artificial neural network
 (ANN) trained on
 ²⁰⁸Tl DEP (signal) and
 ²¹²Bi SEP (background)
- acceptance from pulse shape simulations, cross-checked with 2νββ events

0νββ acceptance

coaxials

(84±5)%

PULSE SHAPE DISCRIMINATION FOR COAXIALS

- artificial neural network
 (ANN) trained on
 ²⁰⁸Tl DEP (signal) and
 ²¹²Bi SEP (background)
- acceptance from pulse shape simulations, cross-checked with 2νββ events

0νββ acceptance

coaxials (84±5)% x (85±1)%

- additional α rejection based on (fast) signal rise time, tuned after ANN MSE rejection
- acceptance from 2νββ events

BACKGROUND INDEX

background ~10⁻³ cts/(keV·kg·yr) ✔

≳100 kg·yr

GERDA Phase II goals

sensitivity $T_{1/2}^{0\nu} \gtrsim 10^{26} \text{ yr}$

exposure

- ullet in [1930,2190] keV, excl. ±5 keV around 208 Tl (SEP), 214 Bi (FEP) and $Q_{_{\mathrm{BB}}}$
- > enriched coaxial: $5.7^{+4.1}_{-2.6} \cdot 10^{-4}$ cts/(keV·kg·yr) enriched BEGe: $5.6^{+3.4}_{-2.4} \cdot 10^{-4}$ cts/(keV·kg·yr)

STATISTICAL ANALYSIS

GERDA Phase II goals

background $\sim 10^{-3} \text{ cts/(keV·kg·yr)}$ \checkmark exposure $\gtrsim 100 \text{ kg·yr}$ sensitivity $T^{0}_{1/2} \gtrsim 10^{26} \text{ yr}$ \checkmark

combined (+ Phase I) unbinned
maximum likelihood fit (flat
background + gaussian signal)
[Nature 544, 47 (2017)]

Frequentist:

- best fit N^{0} = 0
- $T_{1/2}^{0v} > 0.9 \cdot 10^{26} \text{ yr}$ (median sensitivity $T_{1/2}^{0v} > 1.1 \cdot 10^{26} \text{ yr}$) @ 90% C.L.

Bayesian (flat prior on $1/T^{0}_{1/2}$):

- $T_{1/2}^{0v} > 0.8 \cdot 10^{26}$ yr (median sensitivity $T_{1/2}^{0v} > 0.8 \cdot 10^{26}$ yr) @ 90% C.I.
- Bayes factor $P(H_{signal+bkg})/P(H_{bkg}) = 0.054$

CONCLUSIONS

"GERDA performs a high resolution background-free $0\nu\beta\beta$ decay search approaching $T^{0\nu}_{1/2}$ beyond 10^{26} yr"

- recent result: T⁰v > 0.9·10²⁶ yr @ 90% C.L.
- > upper limit on

 m_{ββ} < (0.11-0.26) eV

 NME range from [Rept.Prog.Phys. 80
 (2017) no.4, 046301]</pre>
- GERDA keeps taking data
- **LEGEND-200** is in preparation to explore $T^{0\nu}_{1/2}$ beyond 10^{27} yr

> BACKUP

PHYSICS SPECTRUM

PHYSICS SPECTRUM

PHYSICS SPECTRUM

STATISTICAL ANALYSIS

	exposure [kg*yr]	FWHM [keV]	total efficiency	<pre>background index [cts/(keV*kg*yr)]</pre>
Phase I golden	17.9	4.3(1)	0.57(3)	(1.1±0.2)*10 ⁻²
Phase I silver	1.3	4.3(1)	0.57(3)	(3.0±1.0)*10 ⁻²
Phase I BEGe	2.4	2.7(2)	0.66(2)	$(5.4^{+4.0}_{-2.5}) * 10^{-3}$
Phase I extra	1.9	4.2(2)	0.58(4)	$(4.6^{+4.3}_{-2.5}) \times 10^{-3}$
Phase II EnrCoax	5.0	3.57(1)	0.52(4)	$(3.5^{+2.1}_{-1.5}) \times 10^{-3}$
Phase II EnrCoax_2	23.1	3.57(1)	0.48(4)	(5.7 ^{+4.1} _{-2.6})*10 ⁻⁴
Phase II EnrBEGe	30.8	2.96(1)	0.60(2)	(5.6 ^{+3.4} _{-2.4})*10 ⁻⁴
	02.4			

total 82.4

combined unbinned maximum likelihood fit (flat background + gaussian signal)

- Frequentist: test statistics and method à la [Nature 544, 47 (2017)]
- Bayesian: flat prior on $1/T_{1/2}^{0v}$ between 0 and 10^{-24} yr^{-1}
- systematic uncertainties folded as pull terms by Monte Carlo