Brief overview of neutrino mass measurements

Stefano Dell'Oro

INFN, Gran Sasso Science Institute

G S S I

Third International Meeting for Large Neutrino Infrastructures

May 31, 2016 - KEK, Tsukuba, Japan

Outline

See Bellini, Inoue & Piepke's talks

See Murayama's talks

Review on direct measurement: G. Drexlin *et al.*, Adv. High En. Phys. 2013, 293986 Review on $0\nu\beta\beta$: S. D., S. Marcocci, M. Viel, F. Vissani, Adv. High En. Phys. 2016, 2162659

What we (don't) know about neutrino masses

- what is the absolute neutrino mass scale?
- what is the neutrino mass ordering?
- what is the nature of the neutrino?
- what is the origin of neutrino masses?
- how many neutrinos besides the 3 known ones?

A starting point: thanks to oscillations, we know that neutrinos have masses (Physics Nobel Prize 2015 to T. Kajita & A. B. McDonald)

Assessing neutrino masses

- direct measurement of neutrino mass
 - model independent: pure kinematics
 - \Box sensitive to effective electron neutrino mass: $\langle m_{\nu} \rangle \equiv \sqrt{\sum_{i} |U_{ei}^2|} m_i^2$
- search for neutrinoless double beta decay
 - requires neutrinos to be Majorana particles
 - large theoretical uncertainties
 - \Box sensitive to effective Majorana mass: $m_{\beta\beta} \equiv |\sum_i U_{e_i}^2 m_i|$
- cosmology
 - \Box strong model dependence (ACDM, ...)
 - very stringent bounds
 - \square sensitive to sum of neutrino masses: $\Sigma \equiv \sum_{i} m_{i}$

•

3-flavor oscillations

- we know 3 light neutrinos: $\nu_{\rm e}$, ν_{μ} and ${\nu_{\tau}}^*$
- the flavor eigenstates do not coincide with the mass eigenstates
 it is possible to pass from the flavor basis to the mass basis by setting

$$|
u_\ell
angle = \sum_{i=1}^3 U^*_{\ell i} \, \ket{
u_i}$$

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\phi} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\phi} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\phi} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\phi} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\phi} & c_{13}c_{23} \end{pmatrix}$$

 $s_{ij}, c_{ij} \equiv \sin \theta_{ij}, \cos \theta_{ij}, \phi = CP$ -violating phase

•
$$\delta m^2 = m_2^2 - m_1^2$$
, $\Delta m^2 = m_3^2 - \frac{m_1^2 + m_2^2}{2}$

* These will be the only considered ones throughout this work.

5 / 33 Intro

Oscillation parameters

Parameter	Best fit	3σ range	
NH			νε μνμ τ
$ \begin{array}{c} \sin^{2}(\theta_{12}) \\ \sin^{2}(\theta_{13}) \\ \sin^{2}(\theta_{23}) \\ \delta m^{2} \ [eV^{2}] \\ \Delta m^{2} \ [eV^{2}] \end{array} $	$\begin{array}{c} 2.97 \cdot 10^{-1} \\ 2.14 \cdot 10^{-2} \\ 4.37 \cdot 10^{-1} \\ 7.37 \cdot 10^{-5} \\ 2.50 \cdot 10^{-3} \end{array}$	$\begin{array}{c}(2.50-3.54)\cdot 10^{-1}\\(1.85-2.46)\cdot 10^{-2}\\(3.79-6.16)\cdot 10^{-1}\\(6.93-7.97)\cdot 10^{-5}\\(2.37-2.63)\cdot 10^{-3}\end{array}$	Δm^{2} δm^{2} v_{1}
IH			
$\sin^2(heta_{12})\ \sin^2(heta_{13})\ \sin^2(heta_{23})$	$\begin{array}{c} 2.97 \cdot 10^{-1} \\ 2.18 \cdot 10^{-2} \\ 5.69 \cdot 10^{-1} \end{array}$	$\begin{array}{c}(2.50-3.54)\cdot10^{-1}\\(1.86-2.48)\cdot10^{-2}\\(3.83-6.37)\cdot10^{-1}\end{array}$	δm^2
$\delta m^2 [eV^2] \Delta m^2 [eV^2]$	$\begin{array}{c} 7.37 \cdot 10^{-5} \\ 2.46 \cdot 10^{-3} \end{array}$	$\begin{array}{c}(6.93-7.97)\cdot10^{-5}\\(2.33-2.60)\cdot10^{-3}\end{array}$	ν ₃

F. Capozzi et al. Nucl. Phys. B 908, 218 (2016)

6 / 33 Introduction

Constraints from oscillations

Direct measurement

 $m_{\beta\beta} = \left|\sum_{i=1}^{3} U_{\mathrm{e}i}^{2} m_{i}\right|$

 bands due to Majorana phases (free)

 $\Sigma \equiv \sum_{i=1}^{3} m_i$

7 / 33

Direct neutrino mass determination

- neutrino mass by relativistic energy-momentum relationship $E^2 = p^2 + m^2 \implies$ sensitive to neutrino mass squared
- 2 methods if investigation
 - □ time-of-flight measurements
 - requires very long base-lines ⇒ very strong sources
 - only cataclysmic astrophysical events (e.g. core-collapse supernovae)
 - precision investigations of weak decays

Lepton	Mass limit (95% C. L.)	Reaction	Reference
$ \frac{ \nu_{e}}{ \nu_{\mu}} \nu_{ au} $	2.05 eV 0.17 MeV 18.2 MeV	$ \begin{array}{c} {}^{3}\mathrm{H} \rightarrow {}^{3}\mathrm{He} + \mathrm{e}^{-} + \bar{\nu_{\mathrm{e}}} \\ \pi^{+} \rightarrow \mu^{+} \nu_{\mu} \\ \tau^{-} \rightarrow 2\pi^{-} \pi^{+} \nu_{\tau} \\ \tau^{-} \rightarrow 3\pi^{-} 2\pi^{+} (\pi^{0}) \nu_{\tau} \end{array} $	V. N. Aseev et al., Phys. Rev. D 84, 112003, (2011) K. Assamagan et al., Phys. Rev. D 53, 6065, (1996) R. Barate et al., Eur. Phys. J. C 2, 395 (1998)

the most powerful way is the study of the β -decay spectrum

eta-decay and neutrino mass

- study of the visible energy of the decay

$$(E \equiv E_{
m e} - m_{
m e}, \quad E_0 \equiv \max{(E)} \text{ for } m_{
u} = 0)$$

- choice of an appropriate β-emitter
 - □ the total count rate rises strongly with E_0 (larger e⁻ phase space)
 - □ the count rate in the region close to E_0 decreases with E_0
 - □ *experimentally*, it is easier to get better
 - ΔE at lower energies

Requirements:

- low E_0
- short half-lives

Candidate isotopes

- ³H: ³H \rightarrow ³He + e⁻ + $\bar{\nu}_{e}$ (β^{-})
 - \Box end-point: $E_0 = 18.6 \text{ keV}$
 - half-life time: 12.3 yr

super-allowed transition (no lepton carries away angular momentum)

rather simple electronic structure also for molecular T₂

■ ¹⁶³Ho: ¹⁶³Ho + e⁻ → ¹⁶³Dy +
$$\nu_{e}$$
 (*EC*)
□ end-point: $E_{0} = 2.83 \text{ keV}$
□ half-life time: 4570 yr
■ de-excitation spectrum of
intermediate ¹⁶³Dy* (→ series of lines)
■ ¹⁸⁷Re: ¹⁸⁷Re → ¹⁸⁷Os + e⁻ + $\bar{\nu}_{e}$ (β^{-})
□ $E_{0} = 2.47 \text{ keV}$, $t^{1/2} = 4.3 \cdot 10^{10} \text{ yr}$
(*EC*)

10 / 33

Experimental search

- task: resolve the tiny change of the spectral shape close to E_0
 - \Rightarrow tight requirements for a high sensitivity experiment
 - □ high energy resolution
 - low background rate
 - $\hfill\square$ large $\beta\text{-decay}$ source strength and acceptance
- experimental techniques
 - □ spectrometers (³H) MAINZ TROITSK KATRIN
 - □ low temperature detectors (¹⁸⁷Re, ¹⁶³Ho) MARE ECHo

```
HOLMES NUMECS
```

□ microwave-antennas (³H) PROJECT 8

Sensitivity on $\langle m_{\nu} \rangle$

- \blacksquare present: $\sim 2\,\text{eV}$
- near future: sub-eV region
- furhter future:
 - hierarchy discrimination
 - $\hfill\square$ R&Ds and new ideas

Osc. parameters: F. Capozzi et al., Nucl. Phys. B 908, 218 (2016) MAINZ: C. Kraus et al., Eur. Phys. J. C 40, 447 (2005) TROITSK: V. N. Aseev et al., Phys. Rev. D 84, 112003, (2011) KATRIN: J. Angrik et al., KATRIN design report 2004 PROJECT 8: P. J. Doe et al., arXiv:1309.7093 [nucl-ex] (2013) ECHo: C. Enss, Presentation at ECT^{*} (2016) HOLMES: A. Nucciotti, Adv. High En. Phys. 2016, 9153024 NUMECS: A. Nucciotti, Adv. High En. Phys. 2016, 9153024

Majorana neutrinos

E. Majorana (1937):
theory of massive and real fermions
$$\chi = C\bar{\chi}^t$$
 ($\bar{\chi} \equiv \chi^{\dagger}\gamma_0$, $C\gamma_0^t = 1$)
 $\mathcal{L}_{Majorana} = \frac{1}{2}\bar{\chi}(i\partial - m)\chi$
 $\chi(x) = \sum_{\mathbf{p},\lambda} [a(\mathbf{p}\lambda) \ \psi(x;\mathbf{p}\lambda) + a^*(\mathbf{p}\lambda) \ \psi^*(x;\mathbf{p}\lambda)]$
 \rightarrow for any value of \mathbf{p} , there are 2 helicity states: $|\mathbf{p}\uparrow\rangle$ and $|\mathbf{p}\downarrow\rangle$

- L will be violated by the presence of Majorana mass
- the Majorana hypothesis can be implemented in the SM $\Box \ \chi \equiv \psi_L + C \bar{\psi}_L^t$

 \Box to obtain the "usual" SM field: $\psi_L \equiv P_L \chi$ (P_L

$$L\equiv\frac{1-\gamma_5}{2}\right)$$

Effective Majorana mass

the Majorana mass in the Lagrangian density can be written as

$$\mathcal{L}_{ ext{mass}} = rac{1}{2} \sum_{\ell,\ell'= ext{e},\mu, au}
u_\ell^t \ \mathcal{C}^{ ext{-1}} \mathcal{M}_{\ell\ell'} \
u_{\ell'} + h. \ c.$$

- the only term that violates the electronic number by 2 units is M_{ee}
- diagonalization: $M = U^t \operatorname{diag}(m_1, m_2, m_3) U^{\dagger}$ $(U U^{\dagger} = 1)$
- in the $0
 u\beta\beta$ the observable is not $M_{\rm ee}$, but just $|M_{\rm ee}|$
 - □ 1 CP-violating + 2 new *physical* phases (Majorana phases)
 - \Box we can rewrite: $m_{\beta\beta} = |M_{ee}| = \left|\sum_{i=1}^{3} e^{i\xi_i} |U_{ei}^2| m_i\right|$

$$\Box \ \ \, U \equiv U|_{\scriptscriptstyle \mathsf{osc.}} \cdot \mathsf{diag}\left(1,\,\mathsf{e}^{-i\xi_2/2},\,\mathsf{e}^{i\phi-i\xi_3/2}\right)$$

ightarrow recall that oscillations cannot probe the Majorana phases

$0\nu\beta\beta$ half-life time

- $0\nu\beta\beta$ is first of all a nuclear process
 - □ 2nd order transition: $(A, Z) \rightarrow (A, Z + 2)$
 - \square even-even nuclei: β -decay can be suppressed
- half-life expression can be factorized as

 $\left[t_{0\nu}^{1/2}\right]^{-1} = G_{0\nu} \left|\mathcal{M}\right|^2 \left|f(m_i, U_{ei})\right|^2$

- \Box $G_{0\nu}$ = phase space factor (atomic physics)
- $\square \mathcal{M} =$ nuclear matrix element (nuclear physics)
- $\Box f(m_i, U_{ei}) = \text{mechanism (particle physics)}$

(Some) particle physics mechanisms

$$\left[t_{0\nu}^{1/2}
ight]^{-1} = G_{0\nu} |\mathcal{M}|^2 |f(m_i, U_{ei})|^2$$

ī.

light neutrino exchange:

$$f(m_i, U_{ei}) \equiv \frac{m_{\beta\beta}}{m_e} = \frac{1}{m_e} \left| \sum_{i=1,2,3} U_{ei}^2 m_i \right|$$

heavy neutrino exchange:

$$f(m_i, U_{e_i}) \equiv m_p \langle M_H^{-1} \rangle = m_p \left| \sum_{I=heavy} U_{e_I}^2 \frac{1}{M_I} \right|$$

16 / 33

Models for the nuclear matrix elements

Nucleus = p and n interacting, bound in a potential well

- $\hfill\square$ definition of the valence space
- derivation of an effective Hamiltonian
- $\hfill\square$ ground state wave functions by solving the equations of motion
- different theoretical models
 - Quasiparticle Random Phase Approximation
 - Intermediate Boson Model
 - Interacting Shell Model

□ ...

QRPA / IBM-2 within $\sim 30\%$

QRPA-Tü: F. Šimkovic *et al.*, Phys. Rev. C 87, 045501 (2013)
 IBM-2: J. Barea *et al.*, Phys. Rev. C 91, 034304 (2015)
 ISM: J. Menéndez *et al.*, Nucl. Phys. A 818, 139 (2009)

Assessing the uncertainties

a convenient parametrization for the NME can be:

$$\mathcal{M}\equiv g_A^2\,\mathcal{M}_{0
u}=g_A^2\left(\mathcal{M}_{GT}^{(0
u)}-\left(rac{g_V}{g_A}
ight)^2\mathcal{M}_F^{(0
u)}+\mathcal{M}_T^{(0
u)}
ight)$$

 $\square \mathcal{M}_{0\nu}$ mildly depends on g_A

- $\hfill\square$ relatively small intrinsic error of $\sim 20\%$
- $\hfill\square$ still hard to give an overall error including all the models
- differences between calculations and rates ≫ 20% for other processes "similar" to 0νββ (β, EC, 2νββ)
- important role of g_A
 - $\hfill\square$ any uncertainty on its values \Rightarrow a larger uncertainty factor on $\mathcal M$

Relevance of g_A for the experimental searches

$$[t_{0\nu}^{1/2}]^{-1} = \frac{g_A^4}{G_{0\nu}} |\mathcal{M}_{0\nu}|^2 |f(m_i, U_{ei})|^2$$

- let us suppose that the axial coupling in the nuclear medium is decreased by a factor δ: g_A → g_A · (1 − δ)
- the expected decay rate (⇒ the number of signal events S) will also decrease: S → S · (1 − δ)⁴
- compensation by increasing the time of data taking T

□ but $\frac{S}{\sqrt{B}} \sim \sqrt{T}$ (statistical significance of the measurement) □ $T \rightarrow (1 - \delta)^{-8} T$

• example: $\delta = 10\%$ (20%) \Rightarrow T' = 2.3 (6) T

Size of g_A

- $g_A \simeq 1.27$ in weak interactions and decays of nucleons (measured)
- renormalization in nuclear medium, value appropriate for quarks
- strong quenching: g_A < 1
 - $\hfill\square$ limited model space of the calculation
 - contribution of non-nucleonic degrees of freedom
 - $\hfill\square$ renormalization of the GT operator due to two-body currents
- still unknown if the quenching in $0\nu\beta\beta$ and $2\nu\beta\beta$ is the same

a conservative description of the uncertainty

should consider (at least) the 3 cases:

$$g_{\mathcal{A}} \stackrel{?}{=} \begin{cases} g_{\mathcal{A}, \text{ nucleon}} &= 1.269 \\ g_{\mathcal{A}, \text{ quark}} &= 1 \\ g_{\mathcal{A}, \text{ phen.}} &= 1.269 \cdot \mathcal{A}^{-0.18} \quad (\text{fit from } 2\nu\beta\beta) \end{cases}$$

20 / 33

Search for $0\nu\beta\beta$

0 uetaeta signature

- detection of the 2 emitted e⁻
 - \square monochromatic peak at $Q_{\beta\beta}$
- background events in the region of interest can mask the 0νββ signal
 - cosmic rays
 - \Rightarrow go underground
 - environmental radioactivity
 - $\square 2\nu\beta\beta$ (unavoidable)

Choice of the isotope

- high Q_{ββ} → influences the bkg
 2.6 MeV γ-line from ²⁰⁸TI
 3.3 MeV β-line from ²¹⁴Bi
- high isotopic abundance
 ease of enrichment
- compatibility with a suitable detection technique
- maximization of PSF and NME
 no preferred isotope ...

⁴⁸Ca ⁷⁶Ge ⁸²Se ⁹⁶Zr ¹⁰⁰Mo ¹¹⁶Cd ¹³⁰Te ¹³⁶Xe ¹⁵⁰Nd

R. G. H. Robertson, Mod. Phys. Lett. A 28, 1350021 (2013)

Half-life time Sensitivity

in the (fortunate) event of a peak in the energy spectrum

$$t_{0
u}^{1/2} = \ln 2 \cdot T \cdot \varepsilon \cdot rac{N_{etaeta}}{N_{ ext{peak}}} \qquad \left(rac{\delta t_{0
u}^{1/2}}{t_{0
u}^{1/2}} = rac{\delta N_{ ext{peak}}}{N_{ ext{peak}}}
ight)$$

if no peak is detected*

$$S_{0\nu}^{1/2} = \ln 2 \cdot T \cdot \varepsilon \cdot \frac{n_{\beta\beta}}{n_{\sigma} \cdot n_{B}} = \ln 2 \cdot \varepsilon \cdot \frac{1}{n_{\sigma}} \cdot \frac{x \eta N_{A}}{\mathcal{M}_{A}} \cdot \sqrt{\frac{M T}{B \Delta}}$$

 \square zero background condition: *M* T *B* $\Delta \lesssim 1$

$$S_{0\nu,\,0B}^{1/2} = \ln 2 \cdot T \cdot \varepsilon \cdot \frac{N_{\beta\beta}}{n_{\sigma} \cdot n_{B}} = \ln 2 \cdot \varepsilon \cdot \frac{x \eta N_{A}}{\mathscr{M}_{A}} \cdot \frac{M T}{N_{s}}$$

^{*} the sensitivity is defined as the process half-life corresponding to the maximum signal that could be hidden by the bkg fluctuations n_B

Experimental limits on $m_{\beta\beta}$

 $m_{etaeta} \leq rac{m_{
m e}}{g_{A}^2 \, \mathcal{M}_{0
u} \sqrt{G_{0
u} \, S_{0
u}^{1/2}}}$

Isotope	$S_{0 u}^{1\!/2}$ (90% C. L.) [yr]	m^{\min}_{etaeta} [eV]
¹³⁰ Te ⁷⁶ Ge ¹³⁶ Xe	$\begin{array}{c} 4.0\cdot 10^{24} \\ 3.0\cdot 10^{25} \\ 1.1\cdot 10^{26} \end{array}$	$\begin{array}{c} 0.36 \pm 0.03 \\ 0.25 \pm 0.02 \\ 0.08 \pm 0.01 \end{array}$

Osc. parameters: F. Capozzi et al., Nucl. Phys. B 908, 218 (2016) NMEs (IBM-2): J. Barea et al., Phys. Rev. C 91, 034304 (2015) PSFs: J. Kotila, F. lachello, Phys. Rev. C 85, 034316 (2012) $g_A=1.269$

Experiment sensitivities:

¹³⁰Te: K. Alfonso *et al.*, Phys. Rev. Lett. 115, 102502 (2015)
 ⁷⁶Ge: M. Agostini *et al.*, Phys. Rev. Lett. 111, 122503, (2013)
 ¹³⁶Xe: A. Gando *et al.*, arXiv:1605.02889 [hep-ex] (2016)

24 / 33 Search for $0\nu\beta\beta$

Near future sensitivity (summary)

Experiment	lsotope	$S_{0 u}^{1\!/2}$ [yr]	$m^{ m min}_{etaeta}$ [eV]	Reference
CUORE	¹³⁰ Te	$9.5\cdot10^{25}$	$\textbf{0.073} \pm \textbf{0.008}$	D. R. Artusa <i>et al.</i> , Adv. High En. Phys. 2015, 879871
GERDA-II	⁷⁶ Ge	$1.5\cdot10^{26}$	0.11 ± 0.01	R. Brugnera and A. Garfagnini, Adv. High En. Phys. 2013, 506186
LUCIFER	⁸² Se	$1.8\cdot10^{25}$	$\textbf{0.20}\pm\textbf{0.02}$	L. Pattavina, Presentation at TAUP 2015
MAJORANA D.	⁷⁶ Ge	$1.2\cdot10^{26}$	$\textbf{0.13}\pm\textbf{0.01}$	N. Abgrall <i>et al.</i> , Adv. High En. Phys. 2014, 365432
NEXT	¹³⁶ Xe	$5.0\cdot10^{25}$	0.12 ± 0.01	A. Laing, Presentation at TAUP 2015
AMoRE	¹⁰⁰ Mo	$5.0\cdot10^{25}$	0.084 ± 0.008	Y.H. Lim, Presentation at TAUP 2015
nEXO	¹³⁶ Xe	$6.6\cdot10^{27}$	0.011 ± 0.001	I. Ostrovsky, Presentation at TAUP 2015
SNO+	¹³⁰ Te	$9.0\cdot10^{25}$	0.076 ± 0.007	S. Andringa <i>et al.</i> , Adv. High En. Phys. 2016, 6194250
SuperNEMO	⁸² Se	$1.0\cdot 10^{26}$	0.084 ± 0.008	R. Arnold <i>et al.,</i> Phys. Rev. D 92, 072011, (2015)

Effect of the nuclear uncertainties: Xe case

- different NMEs / fixed g_A
 - \Box 73 meV < $m_{\beta\beta}$ < 147 meV

- different g_A / fixed NMEs
 - □ 73 meV < $m_{\beta\beta}$ < (147) 535 meV

the main uncertainty consists in the determination of the "true value" of g_A

26 / 33 Search for $0\nu\beta\beta$

Bounds on Σ : evolution

- cosmology is producing more and more stringent bounds on Σ
- requirements/evidences for Σ ≠ 0 involve always smaller values
- today, the bound is pushed down to hundreds or tens of meV
- all the predictions are model dependent. A cautious attitude is advisable

F. Vissani, The 2015 Neutrino Mass Crash

Bounds on Σ : today

- data probing different scales (CMB, BAOs, Lyman-lpha, lensing, \dots)
- Iimits within the ACDM model

Implication for the $0\nu\beta\beta$ search (I)

Σ < 140 meV (95% C. L.) by combining different data:</p>

- Lyα-forest 1-D power spectrum from Baryon Oscillation Spectroscopic Survey (BOSS) of SDSS-III (N. Palanque-Delabrouille *et al.*, Astron. Astrophys. 559, A 85 (2013))
- CMB data from Planck 2013 (P. Ade et al., Astron. Astrophys. 571, A 16 (2014))
- BAO data from BOSS (L. Anderson et al., Mon. Not. R. Astron. Soc. 441, 24 (2014))

N. Palanque-Delabrouille et al., J. Cosm. Astropart. Phys. 1502, 045 (2015)

$$\Delta \chi^2(\Sigma) \simeq rac{(\Sigma - 22 \, {
m meV})^2}{(62 \, {
m meV})^2}$$

$$\Sigma < 84 \,\mathrm{meV} \,(1\sigma\,\mathrm{C.\,L.})$$

$$\Sigma < 146 \,\mathrm{meV}$$
 (2 σ C. L.)

 $\Sigma < 208 \,\mathrm{meV}$ (3 σ C. L.)

Implication for the $0\nu\beta\beta$ search (II)

•
$$\Sigma = m_1 + m_2 + m_3$$

 $= m_l + \sqrt{m_l^2 + a} + \sqrt{m_l^2 + b}$
 \Box NH: $a = \delta m^2$
 $b = \Delta m^2 + \delta m^2/2$
 \Box IH: $a = \Delta m^2 - \delta m^2/2$
 $b = \Delta m^2 + \delta m^2/2$

it is possible to include the new constraints on Σ by considering:

$$\frac{(y - m_{\beta\beta}(\Sigma))^2}{(n \, \sigma[m_{\beta\beta}(\Sigma)])^2} + \frac{(\Sigma - \Sigma(0))^2}{(\Sigma_n - \Sigma(0))^2} < 1$$

Implication for the $0\nu\beta\beta$ search (III)

$$rac{(y-m_{etaeta}(m))^2}{(n\,\sigma[m_{etaeta}(m)])^2}+rac{m^2}{m(\Sigma_n)^2}<1$$

Mass spectrum	$m^{ ext{max}}_{etaeta}$ [meV] (C. L. on Σ)		
	1σ	2σ	3σ
NH	16	41	64
IH	-	57	75

The IH region is excluded at 1σ

S. D., S. Marcocci, M. Viel, F. Vissani, J. Cosm. Astropart. Phys. 1512, 023 (2015)

Further future prospects

- let us require a sensitivity m_{ββ} = 8 meV (hierarchy discrimination)
 - $\Box MTB\Delta \lesssim 1 \text{ (zero bkg condition)}$

 $\Box t_{0\nu}^{1/2} \sim M T$

lsotope	$t_{0 u}^{1/2}$ [yr]	Exposure [ton · yr]	$(B \cdot \Delta)_{0B}$ [kg ⁻¹ · yr ⁻¹]
g _{A, nucleon}			
⁷⁶ Ge ¹³⁰ Te ¹³⁶ Xe	$\begin{array}{c} 2.3 \cdot 10^{28} \\ 6.8 \cdot 10^{27} \\ 9.7 \cdot 10^{27} \end{array}$	4.1 2.1 3.2	$2.4 \cdot 10^{-4} \\ 4.7 \cdot 10^{-4} \\ 3.2 \cdot 10^{-4}$
gA, phen.			
⁷⁶ Ge ¹³⁰ Te ¹³⁶ Xe	$\begin{array}{c} 5.1 \cdot 10^{29} \\ 2.3 \cdot 10^{29} \\ 3.3 \cdot 10^{29} \end{array}$	93 71 109	${\begin{aligned}&1.1\cdot 10^{-5}\\&1.4\cdot 10^{-5}\\&9.2\cdot 10^{-6}\end{aligned}}$

Ton (many-ton) scale detectors would be needed!

S. D., S. M., F. Vissani, Phys. Rev. D 90, 033005 (2014)

Summary

- a series of open question are still open concerning neutrino masses
- the direct measurement is the only model-independent approach to determine the neutrino mass value

 $\hfill\square$ we will soon enter the sub-eV mass region

• $0\nu\beta\beta$ is a unique tool to study *L*-violation and neutrino masses

 \Box we need a better understanding of the uncertainties (especially of g_A)

- cosmology is making impressive progress and it is producing stringent bounds on $\boldsymbol{\Sigma}$

 $\hfill\square$ the IH region is excluded at $1\sigma,$ but a cautious attitude is advisable

 probing IH will require a strong experimental effort for both the studies of β and 0νββ decays, but the sensitivities are improving

Neutrino mass limit from SN1987A

 1987-02-23: detected vs from SN1987A (Large Magellanic Cloud, L = 50 kpc)

$$\Box \ \overline{\nu}_{e} + p \rightarrow n + e^{+}$$

•
$$\Delta t = L \frac{m^2}{2E^2} \left(m^2 = E^2 - p^2 \rightarrow \beta = 1 - \frac{m^2}{2E^2} \right)$$

- expected hyperbolas E vs. $\sqrt{t_{\text{arrival}}}$ for each ν_i if the emission is sharp
- bound on neutrino mass: 5.8 eV (95% C. L.)
 (G. Pagliaroli et al., Astropart. Phys. 33, 287 (2010))
- main limiting factors: time and energy spectra of the neutrino emission of a core-collapse SN

G. Drexlin et al., Adv. High En. Phys. 2013, 293986

L-violation in the SM

■ in the SM language, the violation of *L* (and *B*) can be expressed as:

$$\mathcal{H}_{\text{Weinberg}} = \frac{(I_{\text{L}}H)^2}{M} + \frac{I_{\text{L}}q_{\text{L}}q_{\text{L}}q_{\text{L}}}{M'^2} + \frac{(I_{\text{L}}q_{\text{L}}d_{\text{R}}^{\text{C}})^2}{M''^5}$$

- □ the first (dimension-5) operator generates Majorana neutrino masses $(m_{\nu} < 0.1 \, {\rm eV} \Rightarrow M < 10^{11} \, {\rm TeV})$
- \square the dimension-6 operator leads to proton decay ($\rightarrow {\it M'} > 10^{12}\,{\rm TeV})$
- □ the dimension-9 operator contribution can be relevant if the scale of *L*-violation is low ($\rightarrow M'' > 5 \text{ TeV}$)
- if the scale of new physics is ≫ than the electroweak scale
 → light neutrinos exchange "behind" a L-violating process

0 uetaeta detector requirements

- good energy resolution
 - \square only protection against the bkg from the $2\nu\beta\beta$ spectrum tail

J. J. Gómez-Cadenas et al., PoS (GSSI2014), 004 (2015)

- very low background
 - underground location
 - □ radio-pure materials for detector and surrounding parts $((10^9-10^{10}) \text{ yr from natural chains } vs. \gtrsim 10^{25} \text{ yr of } 0\nu\beta\beta)$
- large isotope mass
 - $\hfill\square$ present: some tens of kg up to a few hundreds kg
 - tons required to cover the IH region

$0\nu\beta\beta$ search: experimental techniques (I)

- Ge-diodes
 - □ high-purity
 - $\hfill\square$ high-energy resolution

Heidelberg-Moscow IGEX GERDA Majorana Demonstrator

- bolometers
 - □ large source masses
 - □ good energy resolution (close to Ge-diodes)
 - $\hfill\square$ many compounds with 0 $\nu\beta\beta$ emitters

Cuoricino CUORE-0 AMoRE LUCIFER CUORE

$0\nu\beta\beta$ search: experimental techniques (II)

Xe liquid and gaseous TPC
 lower energy resolution
 event topology reconstruction
 EXO-200 NEXT nEXO

- liquid scintillators loaded with $0\nu\beta\beta$ isotope
 - □ poor energy resolution
 - huge amount of material
 - very low background

KamLAND-Zen SNO+

- tracker + calorimeter (external $0\nu\beta\beta$ source)
 - □ low energy resolution
 - large isotope masses hardly achievable
 - event topology reconstruction

NEMO-3 SuperNEMO

39 / 33

Search at accelerators: mixing vs. heavy ν mass

- observation of a 0\nu\beta\beta signal in the next generation of experiments

 other mechanisms with faster decay rate at work (e. g. Type I ss \nusus)

 $\begin{bmatrix} t_{0\nu}^{1/2} \end{bmatrix}^{-1} = \mathcal{G}_{0\nu} \left| \mathcal{M}_{0\nu} \sum_{i=1}^{3} U_{ei}^{2} \frac{m_{i}}{m_{e}} + \mathcal{M}_{0N} \sum_{I} V_{ei}^{2} \frac{m_{p}}{M_{I}} \right|^{2}$
 $\begin{bmatrix} \sum_{I} \frac{V_{ei}^{2}}{M_{I}} \\ \end{bmatrix} < \frac{1.2 \cdot 10^{-8}}{m_{p}} \left[\frac{67}{\mathcal{M}_{Xe}} \right] \left[\frac{1.1 \cdot 10^{26} \, \text{yr}}{t^{1/2}} \right]^{1/2}
 $
 - theoretical uncertainties (in particular those from nuclear physics) still play a significant role

Plot: S. Alekhin et al., arXiv:1504.04855 [hep-ph] (2015) [updated]

The interplay between $0\nu\beta\beta$ and searches at accelerators can be powerful!

Backup slides