Observation in the BaBar Experiment of a Narrow Meson in the $D_s^+\pi^0$ System at 2.32 GeV/c^2 .

Antimo Palano

INFN and University of Bari

Representing the BaBar Collaboration

SLAC Seminar April 28, 2003

1

Outline.

- Introduction.
- A few words on the BaBar experiment.
- Event selection.
- Observation of $D_{sJ}^{*+}(2317) \rightarrow D_s^+ \pi^0$
- Search for other Decay modes: $D_s^+\gamma$, $D_s^+\gamma\gamma$, $D_s^{*+}(2112)\gamma$, $D_s^+\pi^0\pi^0$, $D_s^+\pi^0\gamma$.
- Conclusions and Outlook.

(Charge conjugation is implied through all this work.)

Introduction.

 \Box The expected spectrum of the $c\bar{s} D_s$ mesons still contains empty slots.

 \Box For example, the Godfrey-Isgur-Kokoski potential model predicts the $J^P = 0^+$ member at a mass of 2.48 GeV (DiPierro and Eichten at 2.487), with a width 270–990 MeV decaying mainly to $D^0 K$. The large width would make it difficult to observe.

 \Box However, if the mass of this state is below the D^0K threshold, it could be very narrow.

 \Box The model also predicts two 1⁺ states at masses of 2.55 and 2.56 GeV (DiPierro and Eichten at 2.535 and 2.605). Only one of these two states has been observed up to now.

Spectroscopy of D_s mesons.

 \Box Potential model expectations and experimental status for D_s mesons.

 \Box Remarkably good agreement up to now.

 \square Exception: the newly discovered state at 2.317 GeV.

The BaBar Experiment.

 \square The power of BaBar for Charm Physics is based on:

- Relatively small combinatorial in e^+e^- interactions.
- Good tracking and vertexing.
- Good Particle Identification.
- Detection of all possible final states, with charged tracks and γ 's.
- Very high statistics.

Data Set.

 \Box The data sample consists of 91.5 fb^{-1} (on and off peak) from the 1999-2002 data sample.

2003/04/24 06.48

PID Performance.

 \Box Particle Identification obtained by combining dE/dx from the Drift Chamber and Silicon Vertex Detector with the DIRC information.

 \Box In the present analysis the PID algorithm used gives $\approx 90 \%$ K identification efficiency with $\approx 2 \% \pi$ mis-identification as K.

 \Box Efficiency for K and π mis-identification as a function of lab. momentum.

Charm Physics in BaBar.

□ Cross Section Scan from BaBar in the region of the $\Upsilon(4S)$. □ The $\Upsilon(4S)$ Resonance sits on a large continuum background . □ Effective cross sections at the energy of the $\Upsilon(4\underline{S})_{\#(\text{multihadron candidates}) / \#(Bhabha candidates})$

 \Box Charm Analyses are performed on data corresponding to continuum $\bar{c}c$ production.

$$e^+e^- \to c\bar{c}$$

Study of D_s^+ in BaBar.

 \Box Example from BaBar: mass distribution and p^* momentum spectrum for $D_s^+ \to \phi \pi^+.$

Filled/open points: normalized on/off peak data.

 \square By using inclusive continuum events combinatorial background is strongly reduced.

 \Box Kinematical selection: the center of mass momentum $(p^*) > 2.5 \text{ GeV/c}$.

Data selection.

 \Box In this work we search for resonances decaying to:

$$D_s^+\pi^0$$

 $\Box D_s^+$ mesons are selected through the $\phi \pi^+$ and $\overline{K^{*0}}K^+$ decay modes, therefore the final state to reconstruct is:

$$K^+ K^- \pi^+ \gamma \gamma \qquad (+c.c.)$$

 \Box This final state has been selected using the following procedure:

- All combinations of three charged tracks with total charge ± 1 , an identified K^+K^- pair, and a third track which is not a K^{\pm} , have been considered.
- Each D_s^+ candidate has been fitted to a common vertex requiring a fit probability > 0.1 %.
- The D_s^+ candidate was traced back to the interaction region in order to obtain the production vertex.

Data selection.

- All pairs of γ 's, each γ having energy > 100 MeV, have been fitted to a π^0 with mass constraint and a probability cut > 1 % was applied.
- Each π^0 candidate has been fitted twice:
 - to the $K^+K^-\pi^+$ vertex, to investigate the decay mode $D_s^+ \to K^+K^-\pi^+\pi^0$;

 π^{1}

K⁺

- to the production vertex, to investigate the $D_s^+\pi^0$ mass distribution.

 \Box Qualitative sketch, not to scale, of one event.

• Each $K^+K^-\pi^+\pi^0$ candidate must satisfy $p^* > 2.5 \text{ GeV/c}$.

e

$K^+K^-\pi^+$ mass spectrum.

 \Box The total $K^+K^-\pi^+$ mass spectrum shows prominent D^+ and D_s^+ signals.

 \Box Presence also of a $D^{*+}(2010)$ signal:

$$D^{*+}(2010) \rightarrow \pi^+ D^0$$

 $\rightarrow K^+ K^-$

removed requiring: $m(K^+K^-) < 1.84$ GeV. $\Box \approx 131 \times 10^3 D_s^+$ events above background.

The D_s^+ Dalitz plot.

 $\Box D_s^+$ signal enhanced by selecting the $\phi \pi^+$ and $\overline{K^{*0}}K^+$ decay modes. \Box These two modes do not overlap, as shown by the D_s^+ Dalitz plot:

 $\Box \cos^2 \theta$ distribution in each vector meson band.

Use of D_s^+ angular distributions.

 \Box We define θ as the angle between the K^- and the $\phi(\overline{K^{*0}})$ direction in the $\phi(\overline{K^{*0}})$ rest frame.

 φ (K^{*})

 \Box Scatter diagram of $\cos\theta$ vs. $m(K^+K^-\pi^+)$:

 \Box Require $|\cos\theta| > 0.5$ to enhance the D_s^+ signal (retains 87.5 % of signal).

Resulting mass spectra.

 \Box Resulting $\phi \pi^+$ and $\overline{K^{*0}}K^+$ mass spectra:

 \Box The two samples have similar sizes.

$D_s^+\pi^0$ mass spectrum.

□ Compare $(K^+K^-\pi^+)\pi^0$ mass spectra for the D_s^+ signal region and sidebands. □ We observe the known decay: $D_s^{*+}(2112) \rightarrow D_s^+\pi^0$. □ Totally unexpected large signal (≈ 2200 events) at 2.32 GeV.

 \square No signals for the D_s^+ sidebands.

$D_s^+\gamma\gamma$ mass for π^0 signal and sidebands.

 \Box Plot of the $\gamma\gamma$ effective mass defining π^0 signal and sideband regions. $\Box D_s^+ \gamma\gamma$ mass spectrum for the π^0 signal region.

 \square We make no use of the fitted π^0 , use the 4-momentum of the γ pair.

 \Box Same large signal at 2.32.

 $\square D^{*+}(2112)$ signal washed out because of " π^0 " resolution.

$D_s^+\pi^0$ mass spectrum.

 \square No D_s^+ kinematic fit. Resolution improved by adding the decay particles' 3-momenta and calculating the D_s^+ energy using the D_s^+ PDG mass:

$$E_{D_s} = \sqrt{p^2 + m_{D_s}^2}$$

 \Box We require that each π^0 does not have either γ in common with any other π^0 candidate.

Test using Monte Carlo simulation.

 \square Monte Carlo events from the reaction:

$$e^+e^- \to \bar{c}c$$

have been simulated using GEANT4. They have been reconstructed and analyzed using the same analysis procedure as that used for data.

 \square The generated events contain all that is presently known about charm spectroscopy.

 \Box Analyzed $\approx 80 \times 10^6$ generated events.

Test using Monte Carlo simulation.

 \Box Sum of $\phi \pi^+$ and $\overline{K^{*0}}K^+$ mass distributions and $D_s^+\pi^0$ mass spectrum.

 \square We observe the known decay: $D_s^{*+}(2112) \rightarrow D_s^+ \pi^0$.

 \Box The $D_s^+\pi^0$ mass spectrum shows no significant signal in the 2.32 GeV mass region. We would expect ≈ 1400 events.

 \Box We conclude that the 2.32 GeV structure is not due to reflections from known states.

□ Anti-selecting $D_s^{*+}(2112)(\rightarrow D_s^+\gamma)$, the 2.32 GeV signal survives: it is not due to $D_s^{*+}(2112)$ reflection. □ The wide structure at ≈ 2.17 GeV is due to $D_s^{*+}(2112) \rightarrow D_s^+\gamma$ when a

second γ yields a γ pair in the π^0 signal region.

Tests for π mis-identification and D^* reflections.

 \Box Events in the D_s^+ signal region are selected.

 \Box Charged π mass given to one of the kaons.

 \square The resulting 3- and 4-particle mass distributions are as shown.

 \square No D^+ , D^0 or D^{*+} signals are observed.

Is there anything similar in $D^+\pi^0$?

 \Box Selecting events in the D^+ mass region:

$$1.859 < m(K^+K^-\pi^+) < 1.877 \quad GeV$$

we obtain the following $m(D^+\pi^0)$ and $\Delta m = m(K^+K^-\pi^+\pi^0) - m(K^+K^-\pi^+)$ distributions.

□ Apart from a $D^{*+}(2010)$ signal, no other structure is observed. □ The fitted Δm values are:

 $\Delta m = 140.67 \pm 0.05 \quad MeV \qquad \sigma = 1.02 \pm 0.06 \quad MeV$

to be compared with $\Delta m = 140.64 \pm 0.10$ MeV from PDG.

The $p^*(D_s^+\pi^0)$ dependence of the 2.32 GeV signal.

$\square D_s^+ \pi^0$ mass spectrum in slices of p^* .

 \Box The 2.32 GeV signal is present in all the p^* regions. Signal to background increases with increasing p^* .

 \Box The signal to background ratio can be improved by means of a p^* selection.

The p^* dependence of the 2.32 GeV signal.

 \Box The 2.32 GeV signal yield has been obtained as a function of p^* by fitting a Gaussian signal+polynomial background to the $D_s^+\pi^0$ mass distributions for each p^* interval.

 \Box The efficiency as a function of p^* has been obtained using Monte Carlo simulation.

 \Box Uncorrected and corrected p^* distributions.

 \Box Maximum at $\approx 3.9 \text{ GeV/c.}$

$D_s^+\pi^0$ mass spectra.

□ $D_s^+ \pi^0$ mass spectra separated for ϕ and $\overline{K^{*0}}$ subsamples. □ Required $p^* > 3.5 \text{ GeV/c}$.

 $\Box D_s^{*+}(2112)$ and 2.32 GeV signals present in both distributions with similar strengths.

$D_{sJ}^{*+}(2317)$ Decay Angular distribution.

 \Box In the case of polarized production, the decay angular distribution can give information on the spin of the particle.

 \Box We have computed the distribution of the π^0 angle with respect to the $D_s^+\pi^0$ direction (in the overall c.m.) in the $D_s^+\pi^0$ rest frame.

$D_{sJ}^{*+}(2317)$ Decay Angular distribution.

 \Box The $D_s^+\pi^0$ mass spectrum has been fitted in 10 slices of $\cos \theta$. We plot the yield, the efficiency and the corrected angular distribution (in arbitrary units).

 \Box The corrected distribution in $\cos\theta$ is consistent with being flat (43 % probability).

Study of $D_s^+ \to K^+ K^- \pi^+ \pi^0$.

□ This D_s^+ decay channel has the same topology as $D_s^+\pi^0$ with $D_s^+ \to K^+K^-\pi^+$. It gives direct information on resolution and scale for $m(D_s^+\pi^0)$. □ A different D_s^+ decay mode with which to study $D_s^+\pi^0$. □ Uses the π^0 fitted to the $K^+K^-\pi^+$ vertex to reconstruct the D_s^+ .

 \Box Here we adopt the following strategy:

• First we isolate a clean $D_s^+ \to K^+ K^- \pi^+ \pi^0$ signal requiring the presence of the decay chain:

$$D_s^{*+}(2112) \rightarrow \gamma D_s^+$$

 $\rightarrow K^+ K^- \pi^+ \pi^0$

• Then we use the information obtained from this study to improve the quality of the selection of the inclusive $D_s^+ \to K^+ K^- \pi^+ \pi^0$ decay.

Study of $D_s^+ \to K^+ K^- \pi^+ \pi^0$ from $D_s^{*+}(2112)$.

 \Box The selection of this final state proceeds through the following steps.

- γ 's from this π^0 not in common with any other π^0 candidate.
- Require $p^*_{K^+K^-\pi^+\pi^0\gamma} > 3.5$ GeV/c.
- Require the π^0 lab. momentum, $p_{\pi^0} > 300 \text{ MeV/c.}$
- Increase the π^0 fit probability requirement to be > 10%.
- We plot the distribution of:

$$\Delta m = m(K^+ K^- \pi^+ \pi^0 \gamma) - m(K^+ K^- \pi^+ \pi^0)$$

for the D_s^+ region, defined as:

$$1.95 < m(K^+K^-\pi^+\pi^0) < 1.985 \qquad GeV$$

• We plot the distribution of $m(K^+K^-\pi^+\pi^0)$ for the $D_s^{*+}(2112)$ region, defined as:

$$0.124 < \Delta m < 0.160 \qquad GeV$$

 \square No mass shift introduced by the presence of the π^0 .

Study of $D_s^+ \to K^+ K^- \pi^+ \pi^0$.

□ Study of the D_s^+ from $D_s^{*+}(2112) \rightarrow \gamma D_s^+$. □ Sub-resonance structure in this D_s^+ decay:

 \Box Decay dominated by intermediate vector meson resonances. Improved signal to background for D_s^+ by requiring ϕ , K^* or ρ subresonant structure.

Selection of $D_s^+ \to K^+ K^- \pi^+ \pi^0$.

 \Box Combinatorial $K^+K^-\pi^+\pi^0$ effective mass.

 \Box Require at least one 2-body mass in a vector meson resonance region $[\phi, K^*$ or $\rho]$.

Selection of the $D_s^+\pi^0$ with $D_s^+ \to K^+K^-\pi^+\pi^0$.

 \square Each π^0 candidate can be from the D_s^+ decay or can be the bachelor π^0 .

- \square Neither γ from a π^0 candidate can be part of any other π^0 candidate.
- \Box Require $p^*(D_s^+\pi^0) > 3.5 \text{ GeV/c.}$

 \Box Require that the lab. momentum of each $\pi^0 > 300 \text{ MeV/c}$.

Experimental Resolution.

 \Box Require $p^* > 3.0$ GeV/c. Comparison between $D_s^{*+}(2112)$ width in Monte Carlo and data:

$$Data: \quad \sigma = 6.6 \pm 0.1 \quad MeV$$
$$MC: \quad \sigma = 5.7 \pm 0.1 \quad MeV$$

□ The Monte Carlo is too optimistic by a factor 1.16. □ Monte Carlo width for $D_{s,I}^{*+}(2317)$ (produced with $\Gamma = 0$):

 $\sigma = 7.7 \pm 0.2 \quad MeV$

□ Scaling by a factor 1.16, we expect $\sigma = 8.9$ MeV. □ For $D_{s,I}^{*+}(2317)$ we find (for $p^* > 3.0$ GeV/c):

$$\sigma = 9.0 \pm 0.4 \quad MeV$$

 \Box We conclude that the observed $D_{sJ}^{*+}(2317)$ width is consistent with the experimental resolution, i.e. the intrinsic width is small ($\Gamma < 10$ MeV).

Search for the $D_s^+\gamma$ decay mode of the $D_{sJ}^{*+}(2317)$.

□ Require that the γ is not part of any π^0 candidate. □ Require $p^*_{D_s\gamma} > 3.5 \text{ GeV/c}$. □ $D^+_s \gamma$ mass spectrum.

Search for $D_{sJ}^{*+}(2317)$ decay to $D_s^+\gamma\gamma$ and $D_s^{*+}(2112)\gamma$.

 \Box Select events with $p^* > 3.5$ GeV/c.

 \Box Exclude any γ which is part of a π^0 candidate.

 \Box The wide bump at ≈ 2.18 GeV is due to the combination of the $D_s^{*+}(2112)$ with another γ in the same event.

Search for $D_{sJ}^{*+}(2317)$ decay to $D_s^+\pi^0\pi^0$.

□ Neither γ from a π^0 can be part of any other π^0 . □ Require $p^* > 3.0 \text{ GeV/c}$.

 \Box Limited statistics. No prominent structure at the mass of $D_{sJ}^{*+}(2317)$.

The 2.46 GeV region of $m(D_s^+\pi^0\gamma)$: a new particle or an artefact of kinematics?

 \Box The scatter diagrams of $m(D_s^+\gamma)$ and $m(D_s^+\pi^0)$ vs. $m(D_s\pi^0\gamma)$ exhibit bands due to $D_s^{*+}(2112)$ and $D_{sJ}^{*+}(2317)$ which cross near $m(D_s^+\pi^0\gamma)=2.46$ GeV.

Could the $D_{sJ}^{*+}(2317)$ signal be due to the decay of a narrow state at 2.46 GeV in $D_s^+\pi^0\gamma$?

 \Box If we assume the existence of a narrow state, the $X^+(2460)$ which decays to $D_s^{*+}(2112)\pi^0$, the kinematic cross-over just discussed would result in a narrow signal in $m(D_s^+\pi^0)$ near 2.32 GeV.

 \Box Two ways to test this hypothesis:

- The $D_{sJ}^{*+}(2317)$ lineshape.
- Comparison of the $D_{sJ}^{*+}(2317)/X^+(2460)$ relative rates for data and $X^+(2460)$ Monte Carlo simulation.

The $D_{sJ}^{*+}(2317)$ lineshape.

 \square Use of Monte Carlo simulation of:

$$e^+e^- \rightarrow X^+(2460) + X_{recoil}$$

 $\rightarrow D_s^{*+}(2112)\pi^0$

 \Box Comparison between the $X^+(2460)$ reflection from Monte Carlo and the $D_{sJ}^{*+}(2317)$ data signal after background subtraction.

The $D_{sJ}^{*+}(2317)$ lineshape.

 \Box Fitting the reflection with a Gaussian we obtain the following parameters:

 $m = 2312.6 \pm 0.6$ MeV $\sigma = 15.1 \pm 0.5$ MeV

to be compared with those of the signal:

 $m = 2317.0 \pm 0.4$ MeV $\sigma = 9.0 \pm 0.4$ MeV

 \Box The reflection is wider and shifted: the shift can be removed by increasing the mass of the $X^+(2460)$ but the width cannot be reduced to ≈ 9 MeV.

 \Box Conclusion: the $D_{sJ}^{*+}(2317)$ lineshape does not agree with that expected from $X^+(2460)$ reflection.

The $D_{sJ}^{*+}(2317)$ lineshape.

 \Box A further test consists in checking whether the $D_{sJ}^{*+}(2317)$ is well-described by a single Gaussian.

 $\Box D_s^+ \pi^0$ mass spectrum in 3 MeV bins for $p^* > 3.0$ GeV/c.

 \Box A single Gaussian fit has a probability of 67 %; for two Gaussians the fit probability is 87%.

 \Box Conclusion: the $D_s^{*+}(2317)$ lineshape is consistent with a single Gaussian.

 $D_{sJ}^{*+}(2317)/X^+(2460)$ ratio.

 \Box The second test is to compute the ratio $D_{sJ}^{*+}(2317)/X^+(2460)$ for data and Monte Carlo for $X^+(2460) \rightarrow D_s^{*+}(2112)\pi^0$ with no D_{sJ}^{*+} generated.

 \Box For $p^* > 3.0 \text{ GeV/c}$:

$$\frac{N(D_{sJ}^{*+}(2317))/N(X^{+}(2460))(Data)}{N(D_{sJ}^{*+}(2317))/N(X^{+}(2460))(MC)} = 5.4 \pm 0.3$$

 \Box In the data we find ≈ 6 times more $D_{sJ}^{*+}(2317)$ events than expected from a Monte Carlo simulation with only $X^+(2460)$ production.

 \Box Conclusion: the relative rates disagree with the hypothesis that the $D_{sJ}^{*+}(2317)$ signal is due entirely to production of a state at ≈ 2.46 GeV which decays to $D_s^{*+}(2112)\pi^0$.

Experimental Summary.

 \Box A large (≈ 2200 events), narrow signal has been observed in the inclusively-produced $D_s^+\pi^0$ mass distribution for the D_s^+ decay mode:

$$D_s^+ \to K^+ K^- \pi^+$$

 \Box The signal is also observed for the D_s^+ decay mode:

$$D_s^+ \to K^+ K^- \pi^+ \pi^0$$

 \Box The fitted mass value is:

 $m = 2316.8 \pm 0.4$ MeV/c^2 (statistical error only)

The mass scale uncertainty is very conservatively estimated to be $\pm 3 \text{ MeV}/c^2$. \Box The measured width is consistent with the experimental resolution, which implies a small intrinsic width ($\Gamma < 10 \text{ MeV}$).

 \Box The structure is not observed in the $D_s^+\gamma$, $D_s^+\gamma\gamma$, $D_s^{*+}(2112)\gamma$, $D_s^+\pi^0\pi^0$ nor $D_s^+\pi^0\gamma$ mass distributions.

 \Box The quantum numbers are consistent with being $J^P = 0^+$, but other spin-parity assignments cannot be excluded.

 \Box There is a small peak in the $D_s^+ \pi^0 \gamma$ mass distribution at ≈ 2.46 GeV. However, a complex kinematic configuration exists at this mass value due to overlap of $D_{sJ}^{*+}(2317)$ and $D_s^{*+}(2112)$ resonance bands, so that this region requires careful study. This work is underway at present.

 \Box The possibility that the $D_{sJ}^{*+}(2317)$ signal might result entirely from the production of an $X^+(2460)$ state decaying to $D_s^{*+}(2112)\pi^0$ has been explored and excluded.

Physics Summary.

 \Box We have observed a state at 2.32 GeV/c^2 whose measured width is consistent with the mass resolution, therefore $\Gamma < 10$ MeV.

 \Box To date, this state has been seen only in $D_s^+\pi^0$.

 \square The mass of the $D_{sJ}^{*+}(2317)$ is 40 MeV below D^0K threshold.

 \Box Assuming parity conservation, this state decays to two pseudoscalar mesons. The parity of the final state is therefore:

$$P = \eta_{D_s} \eta_{\pi} (-1)^L = (-1)(-1)(-1)^J$$

where L=orbital angular momentum =J, since D_s and π^0 have spin 0. Therefore this state has natural spin-parity:

$$P = (-1)^J$$
 i.e. $J^P = 0^+, 1^-, 2^+, 3^-, \dots$

Physics Summary.

 $\Box J^P = 0^+$ seems to be the most likely spin-parity assignment. This is supported by the absence of a signal in $D_s^+\gamma$ and $D_s^+\pi^0\pi^0$.

 \Box In this hypothesis, the decay of $D_{sJ}^{*+}(2317)$ to $D_s^{*+}(2112)\gamma$ is allowed, but absent in the data with the present level of statistics.

 \Box If the isospin of this state is I=0, since the $D_s^+\pi^0$ system has isospin I=1, this decay violates isospin conservation. This would explain the small width.

 \square Work is in progress to search for $D_s^+\pi^{\pm}$ decay modes.

What can this state be?

 \square A multi-quark state (conjectured by N. Isgur and H. Lipkin).

 \Box An isospin conserving decay of a multiquark state should have a rather large width. Meson candidates for 4-quark states presently are:

 $f_0(980) \to (\pi\pi)/(K\bar{K})$ $\Gamma = 40 - 100 \ MeV$

$$a_0(980) \rightarrow (\eta \pi)/(K\bar{K})$$
 $\Gamma = 50 - 100 \quad MeV$

where no isospin violation is involved in these decays.

 \Box In the hypothesis of a multi-quark or a DK bound state, $D_{sJ}^{*+}(2317)$ should have I=0 in order to account for the small width.

What can this state be?

□ The 2.32 GeV state can be the missing P wave $c\bar{s}$ state with $J^P = 0^+$. □ In this case it is possible that this isospin violating decay proceeds via $\eta - \pi^0$ mixing, as proposed by Cho and Wise.

 \Box Potential models predict the following pattern for P wave D_s mesons:

Our result disagrees with expectations. The mass, width and decay modes for this state are quite different from those expected.
Most likely these models need modification.

$D_s^+ \pi^0 \gamma$ Monte Carlo simulations.

□ Monte Carlo simulation $e^+e^- \rightarrow \bar{c}c$ with included the new $D_{sJ}^{*+}(2317)$. □ The scatter diagrams of $m(D_s^+\gamma)$ and $m(D_s^+\pi^0)$ vs. $m(D_s\pi^0\gamma)$ exhibit also in this case bands due to $D_s^{*+}(2112)$ and $D_{sJ}^{*+}(2317)$ which cross near $m(D_s^+\pi^0\gamma)=2.46$ GeV. Monte Carlo

