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PROBABILITY DENSITY FUNCTIONS
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Probability Density Function (p.d.f.) - I

Probability distribution function (aka p.d.f.): distribution of the probability for a RV to assume a certain value among those allowed

In other words: the p.d.f. of a RV is the law which rules the assumption of a certain value by the RV in one measurement/experiment

We will see during this course that: the link between experiment and theoretical model indeed happens through the p.d.f.,
that is predicted by the model to describe (the result of) an experiment

Consider a discrete random variable 𝑥 having more than one possible elementary result, that is (𝑥!, … , 𝑥") each occurring with a probability 
𝑃(𝑥#), where 𝑖 = 1,… ,𝑁, thus associated to each of the possible results. 
The function that associates the probability 𝑃(𝑥#) to each possible value 𝑥# is called probability distribution.
Note : the result of an event is not predictable but - instead - the probability distribution of the results can be known.
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Probability Density Function (p.d.f.) - I

Probability distribution function (aka p.d.f.): distribution of the probability for a RV to assume a certain value among those allowed

In other words: the p.d.f. of a RV is the law which rules the assumption of a certain value by the RV in one measurement/experiment

We will see during this course that: the link between experiment and theoretical model indeed happens through the p.d.f.,
that is predicted by the model to describe (the result of) an experiment

Consider a discrete random variable 𝑥 having more than one possible elementary result, that is (𝑥!, … , 𝑥") each occurring with a probability 
𝑃(𝑥#), where 𝑖 = 1,… ,𝑁, thus associated to each of the possible results. 
The function that associates the probability 𝑃(𝑥#) to each possible value 𝑥# is called probability distribution.
Note : the result of an event is not predictable but - instead - the probability distribution of the results can be known.

The probability of a random event 𝑬 corresponding to a set of distinct possible elementary results (𝑥$!, … , 𝑥$") 
where 𝑥$# ∈ Ω = (𝑥!, … , 𝑥") for all 𝑗 = 1,… , 𝐾, is, according to the 3rd Kolmogorov’s axiom, given by:

(normalization 
condition)  

𝑃 "
012

3

𝑥45 = 𝑃 𝑥46 , … , 𝑥47 = 𝑃 𝐸 =(
012

3

𝑃(𝑥45)

From the 2nd Kolmogorov’s axiom, the probability of the event Ω corresponding to the set of all possible values must be: (
812

9

𝑃 𝑥8 = 1

From the 1st Kolmogorov’s axiom: 𝑃 𝑥$# ≥ 0 ∀𝑗 ⟹ 𝑃 𝐸 ⊂ Ω ≥ 0
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Probability Density Function (p.d.f.) - II

Most quantities of interest to us are continuous, thus we will treat mainly the continuous case. 
The discrete probability introduced in  the previous slide can be generalized to the continuous case with the replacement …

In the discrete case we deal with a genuine probability function; in the continuous case we must introduce a probability density function!

(
@

⇒-
@

Let us consider a sample space Ω ⊆ ℝ%. Each random experiment will lead to a measurement corresponding to one point �⃗� ∈ Ω.
We can associate a probability density 𝑓 �⃗� = 𝑓 𝑥!, … , 𝑥% to any point �⃗� ∈ Ω. Of course, 𝑓 �⃗� ≥ 0 (1𝑠𝑡 𝑎𝑥𝑖𝑜𝑚).

The probability of an event A with A ⊆ Ω, namely the probability that �⃗� ∈ 𝐴 is given by : 𝑃 𝐴 = ∫& 𝑓 𝑥!, … , 𝑥% 𝑑%𝑥

The function 𝑓 �⃗� is called probability density function p.d.f. ! The function 𝑓 𝑥!, … , 𝑥% 𝑑%𝑥 can be interpreted as differential probability.

The normalization condition can be expressed as:-
@
𝑓 𝑥2, … , 𝑥O 𝑑O𝑥 = 1
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Probability Density Function (p.d.f.) - II

Most quantities of interest to us are continuous, thus we will treat mainly the continuous case. 
The discrete probability introduced in  the previous slide can be generalized to the continuous case with the replacement …

In the discrete case we deal with a genuine probability function; in the continuous case we must introduce a probability density function!

Probability of the outcome X to be within the continuous interval of possible values                      is                 P(x ≤ X ≤ x + dx) = f (x) ⋅dxx, x + dx[ ]

The p.d.f. 𝒇 𝒙 is of course normalized by the condition :

It can be verified that :  
the p.d.f. corresponds to an histogram of the RV 𝒙 normalized to the unity area in the limit for which …   - the bin width à 0

- the total # of entries à∞

(
@

⇒-
@

Let us consider a sample space Ω ⊆ ℝ%. Each random experiment will lead to a measurement corresponding to one point �⃗� ∈ Ω.
We can associate a probability density 𝑓 �⃗� = 𝑓 𝑥!, … , 𝑥% to any point �⃗� ∈ Ω. Of course, 𝑓 �⃗� ≥ 0 (1𝑠𝑡 𝑎𝑥𝑖𝑜𝑚).

The probability of an event A with A ⊆ Ω, namely the probability that �⃗� ∈ 𝐴 is given by : 𝑃 𝐴 = ∫& 𝑓 𝑥!, … , 𝑥% 𝑑%𝑥

The function 𝑓 �⃗� is called probability density function p.d.f. ! The function 𝑓 𝑥!, … , 𝑥% 𝑑%𝑥 can be interpreted as differential probability.

The normalization condition can be expressed as:-
@
𝑓 𝑥2, … , 𝑥O 𝑑O𝑥 = 1

In 1 dim:

-
ST

UT
𝑓 𝑥 𝑑𝑥 = 1
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Cumulative Distribution Function (c.d.f.)

PDF CDF
f (x) F(x)

F(b)

a b

F(a)

Note: the p.d.f. for 𝐹 is uniformly distributed in [0,1]: VW
VX
= VW

VY
1 VY
VX
= Z Y

Z Y
= 1
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Library of  p.d.f.s in ROOT/RooFit

We will use them in the 
hands-on exercises in the lab
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Attributes of a p.d.f. : mode & median

Mode of a p.d.f. : the location of a maximum of f(x)
(value of x that in an infinite sampling would 
appear the highest number of times) 

Median of a p.d.f. : value of x for which 
(it divides the distribution in 2 parts with the same area)

Note : the median is not always well defined
since there can be more than one such value of x 

Note : a p.d.f. can be multimodal !

F(x) =1 2

Note : in this example … mode and median coincide
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Attribute of a p.d.f. : expectation value

Expectation value of a p.d.f. (sometimes called “Mean” which is very misleading actually! Better population mean): 
represents the central value of a p.d.f. and it is defined as:

µ ≡ E[x]= x  f (x)dx
−∞

+∞

∫

it can even happen that it is 
a value never taken by the x !

a = cost⇒ E[a]= a E[ax]= a ⋅E[x]

Note: 𝐸 𝑥 is not a function of x (there is an integral on x !) but depends on the distribution 
of the values taken by x (that is on the shape of the p.d.f.) 

Properties:                                             &

if u is a function of x:                                                 where

E is a linear operator:   

E[au(x)]= a ⋅E[u(x)] E[u(x)]= u(x) f (x)dx
−∞

+∞

∫

E[a1u(x)+ a2υ(x)]= a1E[u(x)]+ a2E[υ(x)]
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Attributes of a p.d.f. : example of the Maxwell-Boltzmann distributuion

Mode

1
2

For this distribution: 
the expectation value (“Mean”) > Median

Median > Mode

.

.
(note: this is the effect of the large tail on the right)

Example: distribution of the squared velocity of the 
gas molecules exiting the hole of a cavity/container 
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Attribute of a c.d.f. : quantile of order 𝜶

x1 2

α =
F(xα ) =α

xα = F
−1(α)

α=1 2! →!!

-
ST

Y[
𝑓 𝑥 𝑑𝑥 = 𝛼 = 1 − -

Y[

UT
𝑓 𝑥 𝑑𝑥
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Attribute of a p.d.f. : central moments

The moments are particular expectation values. The moments of order m are defined as: 𝐸 𝑥\ = ∫ST
UT 𝑥\𝑓 𝑥 𝑑𝑥 .

Therefore:        moment of order 1 ≡ expectation value

It is possible to introduce also the central moments of order m, defined as: 𝐸 (𝑥 − 𝜇)\ = ∫ST
UT(𝑥 − 𝜇)\𝑓 𝑥 𝑑𝑥 .

Note: if 𝜇 is finite … the central moment of order 1 is null for any 𝜇 : 

𝐸 (𝑥 − 𝜇)\12 = -
ST

UT
(𝑥 − 𝜇)𝑓 𝑥 𝑑𝑥 = -

ST

UT
𝑥𝑓 𝑥 𝑑𝑥 − 𝜇-

ST

UT
𝑓 𝑥 𝑑𝑥 = -

ST

UT
𝑥𝑓 𝑥 𝑑𝑥 − 𝜇 = 𝐸[𝑥] − 𝜇 = 𝜇 − 𝜇 = 0

=1 (normalization)

Note also: if 𝑓(𝑥) is symmetric … the central moments of odd orders (𝒎 = 𝟏, 𝟑, 𝟓, …) are null !

The central moment of order 2 is called variance and represents the spread of the 𝒇 𝒙 around the expectation value.

See details next slide!  
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Attribute of a p.d.f. : variance

Variance of a p.d.f. is defined as: 𝜎Y] = V 𝑥 = 𝐸 𝑥 − 𝜇 2 = -
ST

UT
𝑥 − 𝜇 2𝑓 𝑥 𝑑𝑥

= -
ST

UT
𝑥]𝑓 𝑥 𝑑𝑥 − 2𝜇-

ST

UT
𝑥𝑓 𝑥 𝑑𝑥 + 𝜇]-

ST

UT
𝑓 𝑥 𝑑𝑥

= 𝐸 𝑥] − 2𝜇] + 𝜇] = 𝐸 𝑥] − 𝜇] = 𝐸 𝑥] − 𝐸[𝑥] ]

=1 (norm.)= 𝜇

The squared root of the variance is called standard deviation of 𝒙 and denoted by        .

It is often useful because it has the same dimentional units of 𝒙 and thus …

… it represents the spread of the p.d.f. around its expectation value.

𝝈𝒙

Property: 𝑉 𝑎𝑥 = 𝑎𝟐 1 𝑉 𝑥 , with 𝑎 = 𝑐𝑜𝑠𝑡.

Indeed:        V 𝑎𝑥 = 𝐸 𝑎]𝑥] − 𝐸 𝑎𝑥 ] = 𝑎] 𝐸 𝑥] − 𝑎𝐸 𝑥 ] = 𝑎] 1 𝐸 𝑥] − 𝐸 𝑥 ] = 𝑎] 1 𝑉[𝑥]

Note: other attibutes like skewness (asymmetry indicator) and kurtosis (sharpness indicator) are defined in the in-depth part.  
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Mixture of subsamples - I

Often a data sample under analysis is the sum of two (or more) subsamples distributed according to different p.d.f.s;
an obvious example is the sum of a certain signal and one (or more) background(s).

Let’s express the fractions of events belonging to each subsample as 𝝋𝒊
and the 𝒇𝒊(𝒙) are the corresponding p.d.f.s of the r.v. 𝒙 ; then: overall p.d.f. : 𝒇 𝒙 = ∑𝒊𝝋𝒊𝒇𝒊(𝒙)

An obvious example is (𝑖 ≡ 1 for signal, 𝑖 ≡ 2 for background): 𝒇𝒕𝒐𝒕 𝒙 = 𝝋𝒔𝒊𝒈𝒇𝒔𝒊𝒈 𝒙 + 𝝋𝒃𝒌𝒈𝒇𝒃𝒌𝒈 𝒙) == 𝝋𝒔𝒊𝒈 𝒇𝒔𝒊𝒈 𝒙 + (𝟏 − 𝝋𝒔𝒊𝒈)𝒇𝒃𝒌𝒈 𝒙

The (overall) expectation value of 𝒙 is (where 𝝁𝒊 represents the expectation value of  𝒙 for each subsample):  

𝝁 ≡ 𝑬 𝒙 = ∫/0
10𝒙𝒇 𝒙 𝒅𝒙 = ∑𝒊𝝋𝒊 h ∫/0

10𝒙𝒇𝒊 𝒙 𝒅𝒙 = ∑𝒊𝝋𝒊𝑬𝒊[𝒙] ≡ ∑𝒊𝝋𝒊𝝁𝒊
the overall expectation value is the mean 
of the expectation values weighted by 
the relative fractions in the mixture

For the variance see next slide!
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Mixture of subsamples - II

The variance of a r.v. 𝒙 for a mixture of subsamples is:

generally, the variance is not just the simple mean 
of the variances of the sub-samples weighted by the 
relative fractions in the mixture, since it is always 
augmented because of the fact that sub-samples can 
have different expectation values

𝑽 𝒙 =l
𝒊

𝝋𝒊 h 𝑽𝒊 𝒙 + l
𝒋3𝒊

𝝋𝒊 𝝁𝒋 − 𝝁𝒊
𝟐

𝑽 𝒙 = 𝑬 𝒙 − 𝝁 𝟐 =l
𝒊

𝝋𝒊 h 𝑬𝒊 𝒙 − 𝝁 𝟐 where 𝝁 =l
𝒊

𝝋𝒊𝝁𝒊 is the expectation value over the mixture

To get a more familiar expresion we must introduce the deviations 𝜹𝒊 = 𝝁 − 𝝁𝒊 and introduce in the upper expression 𝝁 = 𝜹𝒊 + 𝝁𝒊;

with some algebra (reported in a slide in the in-depth part) we can get:

≥ 𝟎

On the other hand, …
IF all the distributions of r.v. 𝒙 for each sub-sample in the mixture 
are characterized by the same expectation value …
… the overall variance is the mean of the variances weighted by 

relative fractions in the mixture 

𝑽 𝒙 = ∑𝒊𝝋𝒊 1 𝑽𝒊 𝒙 IF  𝜇8 = 𝜇 ∀𝑖

(see an example in the following slide) 

($)
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Mixture of subsamples - example - I

Example: suppose to reconstruct with the CMS detector the dimuon decays of the charmonium state 𝜓(2𝑆): 𝜓(2𝑆) → 𝜇U𝜇S

𝒑
𝒑

Suppose to put together two signal sub-
samples of 𝜓(2𝑆) candidates, one with
𝑦 ∈ 0. , 0.2 and the other with 𝑦 ∈ [1.4,1.6]
[we neglect the combinatorial background 
of 2 𝜇s (pairs by random combinations)].
The r.v. represented by the reconstructed 
mass, 𝑚(𝜇𝜇), is characterized, in the two 
sub-samples, by the same expectation 
value [the mass of the 𝜓(2𝑆)]; instead, 
the two standard deviations (square root 
of the two variances), that represent the 
mass resolution, are different for the two 
sub-samples since the mass resolution 
depends on the quality of the track 
reconstruction of the two 𝜇s which - in 
turn - depend on the detection technology 
of the 𝜇-chambers: the DTs ensures a 
better quality w.r.t. the CSCs. Just a sketch!
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Mixture of subsamples - example - II

𝒑
𝒑

𝜎2s ≡ 𝜎\(tt) ≈ 23𝑀𝑒𝑉

𝑦 ∈ [0. , 0.2]

𝑦 ∈ [1.4,1.6] 𝜎]u ≡ 𝜎\(tt) ≈ 47𝑀𝑒𝑉

Putting together the two subsamples I would get
the sum of the 2 distributions (in each one the 
signal can be fitted with a gaussian) and the 
effective mass resolution is expected to be: 

𝝈𝒆𝒇𝒇 (𝟏𝟑U𝟐𝟎) = 𝝋𝟏𝟑 𝝈𝟏𝟑𝟐 +𝝋𝟐𝟎 𝝈𝟐𝟎𝟐

[𝝋𝟏𝟑 and 𝝋𝟐𝟎 can be derived by the signal yields]

($)
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FUNCTIONS of a R.V.
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Function of a random variable - I

Often experimentalists carry out indirect measurements, i.e the observable of interest is a function of direct measurements.
For this reason we need to introduce functions of random variables!
First of all have in mind that: functions of random variables are random variables themselves !

Suppose 𝒖(𝒙) is a continuous function of a continuous random variable 𝒙 distributed according to the p.d.f. 𝒇(𝒙).

The question now is:  what is the p.d.f. 𝐠 𝒖 that describes the distribution of 𝒖(𝒙)?

It is possible to answer requiring that the probability of 𝒙 to assume values between 𝒙 and 𝒙 + 𝒅𝒙
has to be equal to the probability for 𝒖(𝒙) to get values between 𝒖 and 𝒖 +𝒅𝒖.
If the fuction 𝒖(𝒙) can be inverted to obtain 𝒙 𝒖 and the trasformation is 1-to-1 (i.e. bijective)… 
… then we can write:

𝐠 𝒖 𝒅𝒖 = 𝒇 𝒙 𝒅𝒙 ⇒ 𝐠 𝒖 =
𝒇 𝒙
𝒅𝒖
𝒅𝒙

=
𝒇(𝒙)
𝒖′(𝒙)

we put the absolute value so that 𝐠 is positive defined  

Since the function is a random variable:

𝑽 𝒖(𝒙) = 𝑬 𝒖(𝒙) − 𝑬 𝒖(𝒙) 𝟐 … but … how can we calculate 𝑬 𝒖(𝒙) ?

𝑬 𝒖 = -
ST

UT
𝒖 𝐠 𝒖 𝒅𝒖 =-

ST

UT
𝒖(𝒙) 𝒇 𝒙 𝒅𝒙

(*)

(*)

𝒖(𝒙)

𝒙

𝒅𝒖

𝒅𝒙

(Note: 𝒅𝒖 and 𝒅𝒙 may have same or odd signs!)

(this will be used later!)
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Function of a random variable - II

We can develop in series the 𝒖(𝒙) in an interval of 𝒙 around 𝝁 ;
thus we can substitute 𝒖(𝒙) with its development in series and for simplicity we can stop to the 2nd order:

The substitution is applied inside the expression

𝒖 𝒙 → f𝝏𝒖
𝝏𝒙 𝒙~𝝁

1 𝒙 − 𝝁 + 𝟏
𝟐!

f𝝏𝟐𝒖
𝝏𝒙𝟐 𝒙~𝝁

1 𝒙 − 𝝁 𝟐 + ……

𝑬 𝒖(𝒙) = -
ST

UT
𝒖(𝒙) 𝒇 𝒙 𝒅𝒙 …and after a bit of algebra one gets:

𝑬 𝒖(𝒙) ≅ 𝑬 𝒖 𝝁 +
𝟏
𝟐 i
𝝏𝟐𝒖
𝝏𝒙𝟐 𝒙~𝝁

1 𝑽[𝒙]
= 𝒖(𝝁)

Conclusions:   1) unless 𝑽 𝒙 = 𝟎 … the expectation value of 𝒖 𝒙 is not equal to the value of the 
function calculated with the expectation value of 𝒙, namely 𝒖(𝝁) 𝑬 𝒖(𝒙) ≠ 𝒖(𝝁)

2) if 𝒖 𝒙 is a linear function of 𝒙 then

3) if f𝝏𝟐𝒖
𝝏𝒙𝟐 𝒙~𝝁

is small (slowly-varying shape) this equality holds with a good approximation: 𝑬 𝒖(𝒙) ≈ 𝒖(𝝁)

𝑬 𝒖(𝒙) = 𝒖(𝝁)
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Dealing with more than one R.V. : MARGINAL & CONDITIONAL PDFs
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Case of more than 1 random variable

If the measurement is characterized not by just one observable but instead by more than one it means … 
… we have to deal with more than 1 random variable and specifically with a vector of random variables 𝒙 = (𝒙𝟏, … , 𝒙𝑵);
the associated p.d.f. would be 𝒇 𝒙 . Its meaning is as follows:

for an infinitesimal volume centered on 𝒙 of sides 𝒅𝒙𝟏, … , 𝒅𝒙𝑵 that 
we label as 𝑰𝒙,𝒅𝒙, the associated probability can be expressed as …

We will discuss the easiest case of two r.v.s in the net slides!

In general, this will be a complicated multi-dimentional, unless 𝒙𝟏, … , 𝒙𝑵 are all independent among each other
… and in this particular case the expression of 𝒇 𝒙 is the following product:

𝒇 𝒙 =n
𝒊

𝒇𝒊(𝒙𝒊)

We will come back to this possible factorization soon, in next slides!

(where 𝒇𝒊 is the p.d.f. of 𝒙𝒊 )

𝑷(𝑿 ∈ 𝑰𝒙,𝒅𝒙) = 𝒇 𝒙 𝒅𝒙
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Two random variables - joint p.d.f.

Let’s consider - in the following - to deal with only 2 random variables: 𝒙 & 𝒚 !
Let’s also continue to imagine to be working in the infinite sample assumption
(infinite points (𝒙,𝒚) in the plot): we deal with an (infinite) population, not a finite sample!

As depicted in the scatter plot in the figure, we consider :

Event A (vertical narrow band): observe 𝒙-values in 𝒙, 𝒙 + 𝒅𝒙 and  𝒚-values everywhere 

Event B (horizontal narrow band): observe 𝒚-values in 𝒚, 𝒚 + 𝒅𝒚 and 𝒙-values everywhere 

The event 𝑨 ∩ 𝑩 is associated to the intersection of the two bands. 
Its associated probability can be expressed in terms of a joint p.d.f. (corresponding to the density of points) :

𝑷 𝑨 ∩ 𝑩 = 𝑷(𝒙 ∈ 𝒙, 𝒙 + 𝒅𝒙 , 𝒚 ∈ 𝒚, 𝒚 + 𝒅𝒚 ) = 𝒇 𝒙, 𝒚 𝒅𝒙 𝒅𝒚

𝑨 ∩ 𝑩

The relative normalization condition can be expressed as: v
𝛀
𝒇 𝒙, 𝒚 𝒅𝒙 𝒅𝒚 = 𝟏

[borrowed by Cowan]
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Two random variables & marginal p.d.f. - I

We can now introduce the concept of … marginal p.d.f. which is the p.d.f. of 1 only random variable
once the dependency from the other(s) is eliminated via integration of the joint p.d.f. :

marginal p.d.f. in 𝒙 : , marginal p.d.f. in 𝒚 :𝒇𝒙(𝒙) = -
ST

UT
𝒇 𝒙, 𝒚 𝒅𝒚 𝒇𝒚(𝒚) = -

ST

UT
𝒇 𝒙, 𝒚 𝒅𝒙

Note: the 2 marginal p.d.f.s correspond to the normalized functions obtained by projection of the scatter plot on the 𝒙, 𝐲 axes
(again - implicitely - in the limit of infinite entries in the scatter plot) [see next slide]. 

Suppose we want to know the probability for the r.v. 𝒙 to get values in the interval 
𝒙, 𝒙 + 𝒅𝒙 independently from the value taken by the other r.v. 𝒚, i.e. we want to 

know the probability of event A (the vertical band in the scatter plot).

The band can be considered as the set of 𝑵 squares of area 𝒅𝒙𝒅𝒚𝒊 with the running 
index exhausting the full band:

𝑃 𝐴 =(
8

𝑓 𝑥, 𝒚𝒊 𝑑𝒚𝒊 𝒅𝒙 ≡ 𝒇𝒙(𝒙)𝒅𝒙

In the limit of infinitesimal all equal intervals one gets 𝒅𝒚𝒊 = 𝒅𝒚 and the sum becomes an integral ( ∑8 𝑑𝑦8 → ∫ST
UT𝑑𝑦 )
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Two random variables & marginal p.d.f. - II

[borrowed by Cowan]

The marginal p.d.f.s can be easily
represented as normalized projections

(doing a projection means integrating 
on the other variable)

𝒇𝒙(𝒙)

𝒇𝒚(𝒚)𝒇𝒚(𝒚)
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Two random variables & Conditional p.d.f. - I

It is now possible to introduce the concept of conditional p.d.f. exploiting the definition of conditional probability :

Probability for r.v. 𝒚 to get values in the interval 𝒚, 𝒚 + 𝒅𝒚
for any value taken by the r.v. 𝒙 (event B),
once it happened that 𝒙 has got values in the interval 𝒙, 𝒙 + 𝒅𝒙
for any value taken by the r.v. 𝒚 (event A) is given by… 𝑃 𝐵 𝐴 =

𝑃(𝐴 ∩ 𝐵)
𝑃(𝐴)

=
𝒇 𝒙, 𝒚 𝒅𝒙 𝒅𝒚
𝒇𝒙 𝒙 𝒅𝒙

joint p.d.f.

marginal p.d.f.
At this point it makes sense to introduce the…
conditional p.d.f. associated to the r.v. 𝒚 given the r.v. 𝒙
(function of the 𝒚 only since 𝒙 has taken a specific value) as ... 𝒉 𝒚 𝒙 =

𝒇 𝒙, 𝒚
𝒇𝒙 𝒙

=
𝒇 𝒙, 𝒚

∫ST
UT 𝑓 𝑥, 𝑦� 𝑑𝑦′

In other words: the conditional p.d.f. of 𝒚 is defined starting from the joint p.d.f. in which 𝒙 has taken a specific vaue 
(thus, it is constant), renormalized so that it has unit area when integrating on 𝒚 only)
(always - implicitely - in the limit of infinite entries in the scatter plot) 

Similar considerations exchanging the role of 𝒙 and 𝒚 brings to: 𝐠 𝒙 𝒚 =
𝒇 𝒙, 𝒚
𝒇𝒚 𝒚

=
𝒇 𝒙, 𝒚

∫ST
UT 𝑓 𝑥′, 𝑦 𝑑𝑥′

A.Pompili (E+) Statistical M&T for Data Analysis.                                                                           21 



Two random variables & Conditional p.d.f. - II

The conditional p.d.f.s can be easily
represented as normalized projections
of narrow bands (large 𝒅𝒙) in the 
conditioning variable

[borrowed by Cowan]
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Two random variables & Conditional p.d.f. - III

[borrowed by Lista]

joint p.d.f.
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Bayes theorem for random variables

Combining together the two expressions for the conditional probability we get:

…which is nothing else that the re-expression of the Bayes’s theorem in the case of continuous r.v.s! 

𝐠 𝒙 𝒚 = 𝐠 𝒚 𝒙 1
𝒇𝒙 𝒙
𝒇𝒚 𝒚

Rewriting the same two expressions we also get: 𝒈 𝒙 𝒚 1 𝒇𝒚 𝒚 = 𝒇 𝒙, 𝒚𝒉 𝒚 𝒙 1 𝒇𝒙 𝒙 = 𝒇 𝒙, 𝒚

Now we can use the definition of marginal p.d.f.s to find new expressions for them: 

𝒇𝒙 𝒙 = -
ST

UT
𝒇 𝒙, 𝒚 𝒅𝒚 = -

ST

UT
𝒈 𝒙|𝒚 1 𝒇𝒚 𝒚 𝒅𝒚 𝒇𝒚 𝒚 = -

ST

UT
𝒇 𝒙, 𝒚 𝒅𝒚 = -

ST

UT
𝒉 𝒚|𝒙 1 𝒇𝒙 𝒙 𝒅𝒙

…which are nothing else that the re-expression of the Law of total probability (slide 14 part 1A)! 
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Independency of events expressed as factorization for joint p.d.f. 

We have discussed earlier that:  𝑷 𝑨 = 𝒇𝒙 𝒙 𝒅𝒙 (and, in the same way,  𝑷 𝑩 = 𝒇𝒚 𝒚 𝒅𝒚 ).
Thus, the product of the two probabilities can be expressed as:

𝑷 𝑨 1 𝑷 𝑩 = 𝒇𝒙 𝒙 𝒅𝒙 1 𝒇𝒚 𝒚 𝒅𝒚 ≡ 𝒇𝒙 𝒙 𝒇𝒚 𝒚 𝒅𝒙 𝒅𝒚

Let us remember now that … two events 𝑨 and 𝑩 are independent if 𝑷 𝑨 ∩ 𝑩 = 𝑷 𝑨 1 𝑷 𝑩 [*]! 

From the joint pd.f. definition  𝑷 𝑨 ∩ 𝑩 = 𝒇 𝒙, 𝒚 𝒅𝒙 𝒅𝒚 we then derive from [*] that 𝑷 𝑨 1 𝑷 𝑩 = 𝒇 𝒙, 𝒚 𝒅𝒙 𝒅𝒚

Expressions (a) & (b) hold if and only if 𝒇 𝒙, 𝒚 can be factorized into the product of the 2 marginal p.d.f.s:

From this result:   𝒙 and 𝐲 can be defined as independent variables if their joint p.d.f. can be written as the product
of a p.d.f. of the variable 𝒙 times a p.d.f. of the variable 𝐲 (specifically these p.d.f.s are the 2 marginal ones)

𝒇 𝒙, 𝒚 = 𝒇𝒙 𝒙 1 𝒇𝒚 𝒚

(a)

(b)

Additional expressions when r.v.s are independent:                                                                                . Similarly:  𝒉 𝒚 𝒙 =
𝒇 𝒙, 𝒚
𝒇𝒙 𝒙

=
𝒇𝒙 𝒙 1 𝒇𝒚 𝒚

𝒇𝒙 𝒙
≡ 𝒇𝒚 𝒚 𝒈 𝒙 𝒚 = 𝒇𝒙 𝒙

This means something obvious: the conditional pd.f. reduces simply to the marginal p.d.f. when the r.v.s. are independent. 
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CORRELATION between R.V.s

A.Pompili (E+) Statistical M&T for Data Analysis 



Covariance for a couple of r.v.s - I

Let’s consider 2 continuous r.v.s : 𝑥, 𝑦 . The joint p.d.f. is written as 𝒇(𝒙, 𝒚). We can write down the following quantities:

𝝁𝒙 ≡ 𝑬 𝒙 = -
ST

UT
𝒙𝒇 𝒙, 𝒚 𝒅𝒙𝒅𝒚

𝝁𝒚 ≡ 𝑬 𝒚 = -
ST

UT
𝒚𝒇 𝒙, 𝒚 𝒅𝒙𝒅𝒚

𝝈𝒙𝟐 ≡ 𝑽 𝒙 = 𝑬[(𝒙 − 𝝁𝒙)𝟐]

𝝈𝒚𝟐 ≡ 𝑽 𝒚 = 𝑬[(𝒚 − 𝝁𝒚)𝟐]

To take into account the possible correlations among the r.v.s, that generally are not negligible and cannot be overlooked,
We need to introduce a further quantity called covariance, defined as follows: 

𝑽𝒙𝒚 ≡ 𝒄𝒐𝒗 𝒙, 𝒚 = 𝑬 𝒙 − 𝝁𝒙 𝒚 − 𝝁𝒚 =v
ST

UT
𝒙𝒚 1 𝒇 𝒙, 𝒚 𝒅𝒙𝒅𝒚

= 𝑬 𝒙𝒚 − 𝒙𝝁𝒚 − 𝒚𝝁𝒙 + 𝝁𝒙𝝁𝒚 =

= 𝑬 𝒙𝒚 − 𝝁𝒚𝑬 𝒙 − 𝝁𝒙 𝑬 𝒚 + 𝝁𝒙𝝁𝒚 =

= 𝑬 𝒙𝒚 − 𝝁𝒚𝝁𝒙 − 𝝁𝒙 𝝁𝒚 +𝝁𝒙𝝁𝒚 =

= 𝑬 𝒙𝒚 − 𝝁𝒚𝝁𝒙
?

Note: 𝑽𝒙𝒚 can be either positive or negative !

Note: as expected, 𝑽𝒙𝒚 gives simply the variance 𝑽𝒙𝒙 whether the r.v.s of the pair are identical (i. e. 𝒚 = 𝒙)

A.Pompili (E+) Statistical M&T for Data Analysis.                                                                           26 



Covariance for a couple of r.v.s - II

We have seen (slide 15) that 𝑬 𝒖(𝒙, 𝒚) can be expressed - in general - as:

𝑬 𝒙𝒚 =v
ST

UT
𝒙𝒚 1 𝒇 𝒙, 𝒚 𝒅𝒙𝒅𝒚

𝑬 𝒖(𝒙, 𝒚) = v
ST

UT
𝒖(𝒙, 𝒚) 1 𝒇 𝒙, 𝒚 𝒅𝒙𝒅𝒚

… and considering the specific case of  𝒖 𝒙, 𝒚 = 𝒙 1 𝒚 :

Wrapping up: 𝑽𝒙𝒚 ≡ 𝒄𝒐𝒗 𝒙, 𝒚 = 𝑬 𝒙 − 𝝁𝒙 𝒚 − 𝝁𝒚 = 𝑬 𝒙𝒚 − 𝝁𝒙𝝁𝒚 =v
ST

UT
𝒙𝒚 1 𝒇 𝒙, 𝒚 𝒅𝒙𝒅𝒚 − 𝝁𝒙𝝁𝒚

Remember (see slide 16) that … in general 𝑬 𝒖 ≠ 𝒖(𝝁) and thus 𝑬 𝒙𝒚 ≠ 𝝁𝒙𝝁𝒚

In conclusion: 𝑽𝒙𝒚 = 𝑬 𝒙𝒚 − 𝝁𝒙𝝁𝒚 ≠ 𝟎 (i.e. one r.v. influences the other r.v. and viceversa) Note: 𝑽𝒙𝒚 = 𝑽𝒚𝒙

Since we can re-write: 𝝈𝒙𝟐 ≡ 𝑽 𝒙 = 𝑬[ (𝒙 − 𝝁𝒙)(𝒙 − 𝝁𝒙)] ≡ 𝑽𝒙𝒙 , 𝝈𝒚𝟐≡ 𝑽 𝒚 = 𝑬[ (𝒚 − 𝝁𝒚)(𝒚 − 𝝁𝒚)] ≡ 𝑽𝒚𝒚

… it is possible to accommodate the 2 variances and the 2 (equal) covariances in a 𝟐×𝟐 symmetric matrix:

Covariance Matrix : (𝑉)$% =
𝑽𝒙𝒙 𝑽𝒙𝒚
𝑽𝒚𝒙 𝑽𝒚𝒚

=
𝝈𝒙𝟐 𝒄𝒐𝒗 𝒙, 𝒚

𝒄𝒐𝒗 𝒚, 𝒙 𝝈𝒚𝟐
=

𝑬[(𝒙 − 𝝁𝒙)𝟐] 𝑬 𝒙𝒚 − 𝝁𝒙𝝁𝒚
𝑬 𝒙𝒚 − 𝝁𝒙𝝁𝒚 𝑬[(𝒚 − 𝝁𝒚)𝟐]

(≡ 𝝈𝒙𝒚)

≡
𝝈𝒙𝟐 𝝈𝒙𝒚
𝝈𝒚𝒙 𝝈𝒚𝟐
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Correlation Coefficient

With the aim to have an adimentional measure of the “degree of correlation” between the two r.v.s and  … 
… it is useful to introduce the correlation coefficient :

It can be demonstrated that:    𝝆 𝒙, 𝒚 ∈ [−𝟏,+𝟏]

𝝆 𝒙, 𝒚 =
𝑐𝑜𝑣(𝑥, 𝑦)
𝜎Y 1 𝜎�

≡
𝑉Y�

𝑉YY 1 𝑉��

. We get:
maximum correlation :   𝝆 𝒙, 𝒚 = +𝟏
NO correlation :   𝝆 𝒙, 𝒚 = 𝟎
maximum anti-correlation :   𝝆 𝒙, 𝒚 = −𝟏

It is easy to discuss  the correlation coefficient by means of these scatter plots of the r.v.s 𝒙 and 𝒚 :

[borrowed by Cowan]

𝝆 → 𝟏
𝝆 → 𝟎
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Independence & uncorrelation - I

In the every-day language - often - the physicists talk about uncorrelated variables implicitely implying independent ones,
although this is not correct. We will argue - instead - that strictly speaking … 
the condition of uncorrelation is weaker than the condition of independency !

Indeed we will show that … independency implies uncorrelation but the viceversa is not true!
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Independence & uncorrelation - I

In the every-day language - often - the physicists talk about uncorrelated variables implicitely implying independent ones,
although this is not correct. We will argue - instead - that strictly speaking … 
the condition of uncorrelation is weaker than the condition of independency !

Indeed we will show that … independency implies uncorrelation but the viceversa is not true!

To argue this, let me start recalling (see slide 27) that …

𝒇 𝒙, 𝒚 = 𝒇𝒙 𝒙 1 𝒇𝒚 𝒚… if 𝑥, 𝑦 are (mutually) independent random variables their joint p.d.f. factorizes:  

𝑬 𝒙𝒚 =v
ST

UT
𝒙𝒚 1 𝒇 𝒙, 𝒚 𝒅𝒙𝒅𝒚 = -

ST

UT
𝒙 1 𝒇𝒙 𝒙 𝒅𝒙 1 -

ST

UT
𝒚 1 𝒇𝒚 𝒚 𝒅𝒚 = 𝑬 𝒙 1 𝑬 𝒚and in this case:

which implies that : 𝑽𝒙𝒚 = 𝑬 𝒙𝒚 − 𝝁𝒙𝝁𝒚 = 𝑬 𝒙 1 𝑬 𝒚 − 𝝁𝒙𝝁𝒚 = 𝝁𝒙𝝁𝒚 − 𝝁𝒙𝝁𝒚 = 𝟎 (thus 𝝆𝒙𝒚 = 𝟎)

⇒) We have proved that : INDEPENDENCY     ⇒ UNCORRELATION
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Independence & uncorrelation - I

In the every-day language - often - the physicists talk about uncorrelated variables implicitely implying independent ones,
although this is not correct. We will argue - instead - that strictly speaking … 
the condition of uncorrelation is weaker than the condition of independency !

Indeed we will show that … independency implies uncorrelation but the viceversa is not true!

To argue this, let me start recalling (see slide 29) that …

𝒇 𝒙, 𝒚 = 𝒇𝒙 𝒙 1 𝒇𝒚 𝒚… if 𝑥, 𝑦 are (mutually) independent random variables their joint p.d.f. factorizes:  

𝑬 𝒙𝒚 =v
ST

UT
𝒙𝒚 1 𝒇 𝒙, 𝒚 𝒅𝒙𝒅𝒚 = -

ST

UT
𝒙 1 𝒇𝒙 𝒙 𝒅𝒙 1 -

ST

UT
𝒚 1 𝒇𝒚 𝒚 𝒅𝒚 = 𝑬 𝒙 1 𝑬 𝒚and in this case:

which implies that : 𝑽𝒙𝒚 = 𝑬 𝒙𝒚 − 𝝁𝒙𝝁𝒚 = 𝑬 𝒙 1 𝑬 𝒚 − 𝝁𝒙𝝁𝒚 = 𝝁𝒙𝝁𝒚 − 𝝁𝒙𝝁𝒚 = 𝟎 (thus 𝝆𝒙𝒚 = 𝟎)

⇒) We have proved that : INDEPENDENCY     ⇒ UNCORRELATION

⇐) To prove - instead - that the viceversa does not hold, i.e.

… we need to find at least one example characterized by dependency in spite of existing uncorrelation

INDEPENDENCY     ⇐ UNCORRELATION

(𝒚 = 𝒇(𝒙)) (𝑽𝒙𝒚 = 𝟎)
(next 
slide)
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Independence & uncorrelation - II

A suitably easy example is 𝑥, 𝑦 = (𝑥, 𝑥]) namely when 𝒚 = 𝒖 𝒙 = 𝒙𝟐 !

𝝁𝒙 ≡ 𝑬 𝒙 = -
ST

UT
𝒙 1 𝒇𝒙 𝒙 𝒅𝒙 = 𝟎

From the definition of variance:

To make easier the demonstration let’s suppose that … 
𝒙 is distributed symmetrically around 0, with a p.d.f. 𝒇 𝒙 , i.e.: 

𝝈𝒙𝟐 ≡ 𝐕 𝒙 = -
ST

UT
(𝒙 − 𝟎)𝟐1 𝒇𝒙 𝒙 𝒅𝒙 ≡-

ST

UT
𝒙𝟐 1 𝒇𝒙 𝒙 𝒅𝒙
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Independence & uncorrelation - II

A suitably easy example is 𝑥, 𝑦 = (𝑥, 𝑥]) namely when 𝒚 = 𝒖 𝒙 = 𝒙𝟐 !

𝝁𝒙 ≡ 𝑬 𝒙 = -
ST

UT
𝒙 1 𝒇𝒙 𝒙 𝒅𝒙 = 𝟎

From the definition of variance:

Let’s calculate the expectation value of the r.v. 𝒚 : 𝝁𝒚 ≡ 𝑬 𝒚 = 𝑬 𝒖(𝒙) = -
ST

UT
𝒖 𝒙 1 𝒇 𝒙 𝒅𝒙 = -

ST

UT
𝒙𝟐 1 𝒇𝒙 𝒙 𝒅𝒙 = 𝝈𝒙𝟐

To make easier the demonstration let’s suppose that … 
𝒙 is distributed symmetrically around 0, with a p.d.f. 𝒇 𝒙 , i.e.: 

𝝈𝒙𝟐 ≡ 𝐕 𝒙 = -
ST

UT
(𝒙 − 𝟎)𝟐1 𝒇𝒙 𝒙 𝒅𝒙 ≡-

ST

UT
𝒙𝟐 1 𝒇𝒙 𝒙 𝒅𝒙

Note (for completeness) that: 𝒇 𝒙 is the marginal for 𝒙 i.e. 𝒇𝒙 𝒙 ; analogously  𝒈 𝒖 = 𝒈 𝒚 = 𝒈𝒚(𝒚) would be the marginal for 𝒚 .  

Finally let’s calculate the covariance: 𝑽𝒙𝒚 = 𝑬 𝒙 − 𝝁𝒙 𝒚 − 𝝁𝒚 = 𝑬 𝒙 𝒙𝟐 − 𝝈𝒙𝟐 = 𝑬 𝒙𝟑 − 𝒙𝝈𝒙𝟐 =
𝟎

= 𝑬 𝒙𝟑 − 𝝈𝒙𝟐𝑬 𝒙 = 𝑬 𝒙𝟑 = 𝟎
𝟎

(central moment of order-3 is 
null for a symmetric 𝑓 𝑥 !)
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Independence & uncorrelation - II

Visualizing the previous example:

Note: see in-depth slides for another example. 

borrowed by G.Cowan

𝝆𝒙𝒚 ≈ 𝟎
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Removing and introducing correlations by means of change variable - I

It is possible to remove (or introduce) a correlation by operating a change of variables, namely 𝑥, 𝑦 → 𝑥′, 𝑦′

Note that - in our 2D framework - this change of variable corresponds to a rotation in the 𝒙, 𝒚 plane!  

borrowed by G.Cowan

The rotation-in-the-plane matrix: 

𝐴 = 𝑐𝑜𝑠𝜗 𝑠𝑖𝑛𝜗
−𝑠𝑖𝑛𝜗 𝑐𝑜𝑠𝜗

It can be calculated (G.Cowan, 1.7) 
that the angle is:

𝝑

𝒙 𝒙′

𝒚 𝒚′

𝒙, 𝒚
𝒙′, 𝒚′

𝒕𝒂𝒏(𝟐𝝑) =
𝟐𝑽𝒙𝒚
𝝈𝒚𝟐 − 𝝈𝒙𝟐

≡
𝟐𝝆𝒙𝒚𝝈𝒙𝝈𝒚
𝝈𝒚𝟐 − 𝝈𝒙𝟐

Note that the matrix 𝑨 is such that the matrix 𝑼 = 𝑨 1 𝑽 1 𝑨𝑻 is diagonal !       (I will comment further … a few slides later)
row by column products
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Removing and introducing correlations by means of change variable - II

An example of possible introduction of some correlation between two variables is a rotation in their plane as well:

𝝆𝒙𝒚 ≈ 𝟎

𝒙′

𝒚′𝒚

𝒙

𝝆𝒙𝒚 ≠ 𝟎
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Covariance for more than 2 r.v.s

Let’s consider 𝑁 r.v.s:

The variance of the single r.v. - regardless the others - is simply defined as:

(𝑥2, … , 𝑥8 , … , 𝑥0 , … 𝑥9)

𝜎8] = 𝐸 (𝑥8−𝐸 𝑥8 2]

To take into account the mutual correlations we have 
to introduce a coviariance for each pair 𝑖, 𝑗 :

𝑉80 ≡ 𝜎80= 𝐸 (𝑥8−𝐸 𝑥8 (𝑥0−𝐸[𝑥0]) ]

The 𝑁 variances and the 𝑁(𝑁 − 1) covariances (each two of them 
are equal by symmetry, i.e. 𝜎80 = 𝜎08) can be accomodated in the 
covariance matrix, an 𝑁×𝑁 symmetric, sometimes called error matrix: 

(𝑉)80 =

𝜎2] 𝜎2]
𝜎]2 𝜎]]

⋯ 𝜎29

⋮ ⋱ ⋮

𝜎92
⋯ 𝜎9]

for each pair, 𝑖 = 𝑗
gives back the variance

Note: If the covariance matrix is not positive defined…
… there must be at least one linear relationship among the r.v.s. 

A global correlation coefficient can be introduced when 𝑁 > 2 (see in-depth slides)  
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Diagonalization of the covariance matrix - I

It can be demonstrated that …. 

… it is always possible, in the framework of linear algebra, to find an orthogonal transformation of 𝑵 ≥ 𝟐 variables

(𝑥2, … , 𝑥9) → (𝑦2, … , 𝑦9) for which the “new” covariance matrix for 𝒚 is diagonal while the “old” one for 𝒙 was not !

It’s common to say that this transformation “diagonalizes the covariance matrix”,
i. e. this transformation is able to remove any existing correlation.

- original variables & covariance matrix: 𝑥2, … , 𝑥9 , 𝑉80= 𝑐𝑜𝑣(𝑥8 , 𝑥0)

- transformed variables & new diagonal covariance matrix: (𝑦2, … , 𝑦9), 𝑈80= 𝑐𝑜𝑣(𝑦8 , 𝑦0)

Let’s discuss this result:

It can be demonstrated that it is always possible to find a linear transformation, 
namely by means of a matrix so that each 𝑦8 is a linear combination of the 𝑥2, … , 𝑥9 : 𝑦8 =(

012

9

𝐴80𝑥0 (∀𝑖)

In this case the transformation matrix 𝐴 is such that the new matrix 𝑈 = 𝐴𝑉𝐴� is diagonal,
and has the property that the transpose matrix coincides with the inverse (𝐴� = 𝐴S2) and thus 𝑈 = 𝐴𝑉𝐴S2.
This transformation is called orthogonal and it corresponds - in linear algebra - to the rotation 
of the vector �⃗� into the vector �⃗� so that the vector norm is kept constant.  (see also next side)

(#)
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Diagonalization of the covariance matrix - II

We can formalize what just said using the vectorial notation and the matrix 
formalism:  

�⃗� =
𝑥2
…
𝑥9

, �⃗�� = 𝑥2 . . . 𝑥9 , �⃗� = 𝐴�⃗� ⟺
𝑦2
…
𝑦9

=
𝐴22 … 𝐴29
… … …
𝐴92 … 𝐴99

1
𝑥2
…
𝑥9

𝑈80 = 𝑐𝑜𝑣 𝑦8 , 𝑦0 =
(#)

𝑐𝑜𝑣 (
�12

9

𝐴8�𝑥� ,(
ℓ12

9

𝐴0ℓ 𝑥ℓ =

= (
�12

9

(
ℓ12

9

𝐴8� 𝐴0ℓ 𝑐𝑜𝑣(𝑥� , 𝑥ℓ ) =
𝑉�ℓ

𝐴0ℓ = 𝐴� ℓ0 (from the def. of transpose matrix)

= (
�12

9

(
ℓ12

9

𝐴8� 𝑉�ℓ 𝐴�ℓ0

𝒄𝒐𝒗 𝒖, 𝒗 = 𝑬 𝒖𝒗 − 𝝁𝒖𝝁𝒗 , 

𝑬 𝒖(𝒙) = 𝒖 𝝁 IF 𝒖(𝒙) is linear in 𝒙

�⃗� ] = �⃗��1 �⃗� = �⃗��𝐴� 1 𝐴 �⃗� = �⃗��𝐴S2 1 𝐴 �⃗� = �⃗��Ι �⃗� = �⃗���⃗� = �⃗� ] : vector norm is preserved

(here we must “saturate” on indices 𝑘 and ℓ )

E[a1u(x)+ a2υ(x)]= a1E[u(x)]+ a2E[υ(x)]
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UNCERTAINTY (ERROR) PROPAGATION
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Propagation of the variances - I

Suppose we have 𝑁 r.v.s 𝑥2, … , 𝑥O , that we can write - in a compact way - as the vector �⃗� ≡ 𝑥2, … , 𝑥O ,
distributed according to the joint p.d.f. 𝑓 �⃗� that we suppose is not fully known since we assume we only know:
- the 𝑁 expectation values, namely the vector �⃗� ≡ 𝜇2, … , 𝜇O
- the 𝑁×𝑁 covariance matrix 𝑉80

Let’s now consider a function 𝑦 = 𝑢 �⃗� and we have seen (slides 17-18) that … 
… we can determine the p.d.f. of 𝑦 - say 𝑔(𝑢) - if we know the p.d.f 𝑓 �⃗� which, however, is not our case here!
Thus, we want to determine just 𝐸 𝑦 and V 𝑦 . 
We will see that this is possible, even if we will get approximated (but still useful) expressions!

The procedure starts from the expansion in series - truncated at 1st order - of the function 𝑦 �⃗� around the vector 
of the expectation values �⃗� :

𝒚 𝒙 ≅ 𝒚 𝝁 + ∑𝒊1𝟏𝑵 𝝏𝒚
𝝏𝒙𝒊 𝒙1𝝁

1 𝒙𝒊 − 𝝁𝒊 +⋯

I can apply one of the properties of the expectation 
value of a variable; consider that the derivatives are 
calculated for �⃗� = �⃗� so they are just real numbers

The expectation value can be easily calculated at first order: 

𝑬 𝒚(𝒙) ≅ 𝐸 𝑦(�⃗�) + 𝐸 ∑8129 … =

= 𝐸 𝑦(�⃗�) +(
𝒊1𝟏

𝑵
𝝏𝒚
𝝏𝒙𝒊 𝒙1𝝁

1 𝑬 𝒙𝒊 − 𝝁𝒊
0
= 𝑬 𝒚(𝝁) (as expected: at 1st order 

the dependency is linear)
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Propagation of the variances - II

43

Let’s calculate the variance: 𝜎�]= 𝐸 𝑦] − 𝐸[𝑦] ]

alexis.pompili@ba.infn.it Statistical Data Analysis for HEP

just calculated

to be calculated here:

Therefore:
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𝜎�]= 𝐸 𝑦] − 𝐸 𝑦 ] = 𝑦] �⃗� +(
812

9

(
012

9
𝜕𝑦
𝜕𝑥8

1
𝜕𝑦
𝜕𝑥0 Y⃗1t

𝑉80 −𝑦] �⃗� = (
812

9

(
012

9
𝜕𝑦
𝜕𝑥8

1
𝜕𝑦
𝜕𝑥0 Y⃗1t

𝑉80



Propagation of the variances - III

Thus, we got: 𝝈𝒚𝟐= 𝐸 𝑦] − 𝐸[𝑦] ] ≅

If we conventionally define the vector of partial derivatives

(
𝒊,𝒋1𝟏

𝑵
𝝏𝒚
𝝏𝒙𝒊

𝝏𝒚
𝝏𝒙𝒋 𝒙1𝝁

𝑽𝒊𝒋 : equation of the error propagation

𝑨 =
𝝏𝒚
𝝏𝒙𝟏

, … ,
𝝏𝒚
𝝏𝒙𝑵

… we can re-express this result in matrix notation: 𝝈𝒚𝟐 =
𝝏𝒚
𝝏𝒙𝟏

, … , 𝝏𝒚
𝝏𝒙𝑵

1
𝑉22 … 𝑉29
… … …
𝑉92 … 𝑉99

1

𝝏𝒚
𝝏𝒙𝟏…
𝝏𝒚
𝝏𝒙𝑵

𝑨𝑻

… and more compactly: 𝝈𝒚𝟐 = 𝐴 𝑉𝐴�

Do not forget that … this result is valid in the approximation in
which 𝒚 𝒙 is approximated by the Taylor expansion truncated 
to the 1st order, namely in the linearity approximation around �⃗� !

(𝟏×𝑵)
(𝑵×𝑵) (𝑵×𝟏)

(𝑵×𝟏)

In the particular case in which the 𝑥2, … , 𝑥O are all uncorrelated among each other, i.e.
𝑉88 = 𝜎8] (∀𝑖)
𝑉80 = 0 (∀𝑖 ≠ 𝑗)

… then the propagation formula reduces to: 𝝈𝒚𝟐 ≅ (
𝒊1𝟏

𝑵
𝝏𝒚
𝝏𝒙𝒊 𝒙1𝝁

𝟐

𝝈𝒊𝟐
(the well-known “error propagation formula”)
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Propagation of the variances : special cases

Usual cases are these 4:

Relation between
𝒙𝟏 and 𝒙𝟐 𝒙𝟏 and 𝒙𝟐correlated (𝑽𝟏𝟐 ≠ 𝟎) 𝒙𝟏 and 𝒙𝟐 uncorrelated (𝑽𝟏𝟐 = 𝟎)

y = 𝑥2 + 𝑥]

y = 𝑥2 − 𝑥]

y = 𝑥2 1 𝑥]

y = Y6
Y�

𝜎�] = 𝜎Y6
] + 𝜎Y�

]

𝜎�] = 𝜎Y6
] + 𝜎Y�

]

𝜎�] = 𝜎Y6
] + 𝜎Y�

] + 2𝑉2]

𝜎�] = 𝜎Y6
] + 𝜎Y�

] − 2𝑉2]

𝜎�]

𝜇2 1 𝜇] ] =
𝜎Y6
]

𝜇2]
+
𝜎Y�
]

𝜇]]
+ 2

𝑉2]
𝜇2 1 𝜇]

𝜎�]

𝜇2 1 𝜇] ] =
𝜎Y6
]

𝜇2]
+
𝜎Y�
]

𝜇]]

𝜎�]

⁄𝜇2 𝜇] ] =
𝜎Y6
]

𝜇2]
+
𝜎Y�
]

𝜇]]

The relative standard 
deviations sum up in 
quadrature

𝜎�]

⁄𝜇2 𝜇] ] =
𝜎Y6
]

𝜇2]
+
𝜎Y�
]

𝜇]]
− 2

𝑉2]
⁄𝜇2 𝜇]

𝜇2 = 𝐸[𝑥2]

𝜇] = 𝐸[𝑥]]

𝜇2 = 𝐸[𝑥2]

𝜇] = 𝐸[𝑥]]

Very usuful because we 
deal very often with ratios !

(*)

(*) Another way to remember it: 𝝈𝒚 1 𝒙𝟏
𝒙𝟐

𝟐 ≅ �6�

t��
+ ���

t��
1 t6�

t��
…or even better: 𝜎� = 𝑦 1

𝜎Y6
]

𝑥2]
+
𝜎Y�
]

𝑥]]

(where expectation values are substituted by the actual value)

The standard deviations sum up in quadrature
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Attribute of a p.d.f. : skewness & kurtosis

skewness of a p.d.f. is defined as: 𝜸𝟏 =
𝑬 𝒙 − 𝝁 𝟑

𝝈𝒙𝟑

Since all symmetric p.d.f.s have null odd central moments, the central moments of odd order (3, 5, …) provide 

a measurement of the asymmetry of a generic distribution (remember the one of 1st order is null).

In order to have an adimentional quantity we prefer divide by 𝝈𝒙𝟑 = (𝐕 𝒙 ) ⁄𝟑 𝟐 :

kurtosis of a p.d.f. is defined as:

For a p.d.f. characterized by a central symmetric peak, its peaking “level” (or “degree”), let’s call it “sharpness”,  

can be measured through :

𝜸𝟐 =
𝑬 𝒙 − 𝝁 𝟒

𝝈𝒙𝟒
− 𝟑

This ad hoc definition derives from the aim to have 𝜸𝟐 = 𝟎 for a Gaussian p.d.f., thus this “sharpness” is compared 
to that of the Gaussian used as the reference.
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Variance of the mixture : calculation

Now I rewrite in a useful way the deviations 𝜹𝒊:  

putting together I get the (overall) variance :

Demonstrate the expression for V 𝒙 of a mixture of sub-samples:

𝑽 𝒙 = ∑𝒊𝝋𝒊 h 𝑽𝒊 𝒙 + ∑𝒋3𝒊𝝋𝒊 𝝁𝒋 − 𝝁𝒊
𝟐
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Additional example of dependence with uncorrelation

borrowed by L.Lista
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Correlation coefficient for more than 2 r.v.s

For each pair 𝑖, 𝑗 a correlation coefficient can be defined in the standard way:   𝝆 𝒙𝒊, 𝒙𝒋 = 𝑽𝒊𝒋
𝝈𝒊A 𝝈𝒋

Nevertheless it can be introduced a more useful indicator, the global correlation coefficient :

- take a generic the r.v. 𝒙𝒌
- consider the correlations 𝝆 𝒙𝒌, 𝒚

- consider the linear combination 𝒚 of all the other 𝑁 − 1 r.v.s 𝒙𝒊�𝒌
- define the global correlation coefficient

as the quantity that measures the total amount of correlation among 𝒙𝒌 and all the others 𝒙𝒊�𝒌

𝝆𝒌 = 𝒎𝒂𝒙{𝝆 𝒙𝒌, 𝒚 }

An useful result (given without demonstration) is the following: 𝝆𝒌 = 𝟏 − 𝑽𝒌𝒌 1 𝑽S𝟏 𝒌𝒌
S𝟏

… where …

𝝆𝒌 = 𝟎

𝝆𝒌 = 𝟏
Thus :

𝑽 𝒌𝒌 : diagonal element of the covariance matrix
𝑽/𝟏 𝒌𝒌 : diagonal element of the inverse of the covariance matrix

𝒙𝒌 is fully uncorrelated with all the others 𝒙𝒊�𝒌
𝒙𝒌 is fully correlated with at least one linear combination of the others 𝒙𝒊�𝒌
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