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Let’s consider a basket containing a number of balls, each having one of 2 possible colors (red and white). 

Assume we know the number R of red balls in the basket and the number W of white balls (R=3, W=7). 

The probability to randomly extract a red ball in basket is, according to the expression of the classical (Laplace) :

𝑝(𝑅) = ⁄𝑅 (𝑅 +𝑊) = 3/10

A variable 𝒌 equal to the number of red balls in one extraction (called Bernouilli trial) can assume only the values 0 or 1 
and is called Bernouilli variable :

𝑝(𝑘 = 1) = 𝑝

𝑝 𝑘 = 0 = 𝑞 = 1 − 𝑝

Thus the (discrete) distribution probability of 𝒌 (Bernouilli distribution) is given by:

, 𝑝 𝑘 = 0 + 𝑝 𝑘 = 1 = 𝑝 + 𝑞 = 𝑝 + 1 − 𝑝 = 1

𝑃 𝑘 = 𝑝! 2 𝑞"#! = 𝑝! 2 (1 − 𝑝)"#!



Bernoulli trial - II
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Expectation value and variance of the discrete random variable 𝒌 are easily calculated:

The next step is to consider what happens when considering a sequence of 𝑵 independent Bernouilli trials, 
and ask ourselves which is the probability to have, for instance, 𝒏 heads when lunching the coin 𝑵 times.

This extension is actually called binomial distribution and it’s discussed in the next slides.

Example with 𝑵 = 𝟐: 𝑝 𝑚 = 0 + 𝑝 𝑚 = 1 + 𝑝 𝑚 = 2 = 𝑞$ + 𝑝𝑞 + 𝑞𝑝 + 𝑝$ = (𝑝 + 𝑞)$= (𝑝 + 1 − 𝑝)$= 1

𝝁𝒌 ≡ 𝑬 𝒌 =
∑𝒌&𝟎𝟏 𝒌𝑷(𝒌)
∑𝒌&𝟎𝟏 𝑷(𝒌)

= = 𝒑

𝝈𝒌𝟐 ≡ 𝑽 𝒌 = 𝑬 𝒌𝟐 − 𝑬 𝒌 𝟐 =
∑𝒌&𝟎𝟏 𝒌𝟐𝑷 𝒌
∑𝒌&𝟎𝟏 𝑷 𝒌

− 𝝁𝒌𝟐 = = 𝒒𝒑

𝟎 * 𝒒 + 𝟏 * 𝒑
𝒒 + 𝒑

=
𝒑

𝒒 + 𝒑
=

𝒑
𝟏 − 𝒑 + 𝒑

𝟎𝟐 * 𝒒 + 𝟏𝟐 * 𝒑
𝒒 + 𝒑

− 𝒑𝟐 = 𝒑 − 𝒑𝟐 = 𝟏 − 𝒑 𝒑
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A binomial process consists of a given number 𝑵 of independent Bernoulli trials, each with probability 𝒑. 
This could be implemented, for instance, by randomly extracting a ball from a basket containing a fraction 𝒑 of red balls; 
after each extraction, the extracted ball is placed again in the basket (so that the subsequent extraction is not biased by 
the outcome of the previous one) and then the extraction is repeated, for a total of 𝑵 extractions. 

The binomial probability distribution provides the probability of 𝒌 successes when 𝑵 independent Bernouilli trials 
are carried out, each trial characterized by a probability 𝒑 of success (and a probability 𝟏 − 𝒑 of failure ). 

Since the trials are independent …the probability of any sequence of successes (S) and failures (F) in some defined order 
is equal to the product of the single probabilities ! 
Ex.: with 𝑁 = 5, the probability associated to the sequence SSFSF is given by 𝒑𝒑(𝟏 − 𝒑)𝒑(𝟏 − 𝒑) = 𝒑𝟑(𝟏 − 𝒑)𝟐 .

In general the probab. of a particular sequence with 𝒌 successes & 𝑵− 𝒌 failures is given by:   𝑝! 2 𝑞1#! = 𝑝! 2 (1 − 𝑝)1#!
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A binomial process consists of a given number 𝑵 of independent Bernoulli trials, each with probability 𝒑. 
This could be implemented, for instance, by randomly extracting a ball from a basket containing a fraction 𝒑 of red balls; 
after each extraction, the extracted ball is placed again in the basket (so that the subsequent extraction is not biased by 
the outcome of the previous one) and then the extraction is repeated, for a total of 𝑵 extractions. 

The binomial probability distribution provides the probability of 𝒌 successes when 𝑵 independent Bernouilli trials 
are carried out, each trial characterized by a probability 𝒑 of success (and a probability 𝟏 − 𝒑 of failure ). 

Since the trials are independent …the probability of any sequence of successes (S) and failures (F) in some defined order 
is equal to the product of the single probabilities ! 
Ex.: with 𝑁 = 5, the probability associated to the sequence SSFSF is given by 𝒑𝒑(𝟏 − 𝒑)𝒑(𝟏 − 𝒑) = 𝒑𝟑(𝟏 − 𝒑)𝟐 .

In general the probab. of a particular sequence with 𝒌 successes & 𝑵− 𝒌 failures is given by:   𝑝! 2 𝑞1#! = 𝑝! 2 (1 − 𝑝)1#!

Since the order of successes and failures is not important we need to consider, in the evaluation of the probability of 
𝒌 success in 𝑵 trials, all the different sequences, i.e. all the possible combinations of 𝒌 success and 𝑵− 𝒌 failures in 𝑵 trials.

For this purpose  we need to remember that if we have 𝑵 distinguishible objects and we want to group them in group of 𝒌
each time, we have that the number of combinations when the order is not important, is given by:

𝐶1,! =
𝑁
𝑘 = 1!

!! 1#! !



Binomial distribution - II
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The binomial probability is symmetric when 𝑝 = 𝑞 = ⁄1 2 :

𝑁
𝑘 =

𝑁!
𝑘! 𝑁 − 𝑘 !

It can be verified that the probability distribution 𝐵 𝑘;𝑁, 𝑝 is properly normalized: 

𝐵 𝑘;𝑁,
1
2 = 𝑁

𝑘
1
2!

1
21#! =

𝑁
𝑘

1
21

J
!&4

1

𝐵 𝑘;𝑁, 𝑝 = J
!&4

1
𝑁
𝑘 𝑝!𝑞1#! = … = 𝑝 + 𝑞 1 = 𝑝 + 1 − 𝑝 1 = 1

is an odd function

To conclude we can state that:

The total probability to have 𝒌 successes in 𝑵 trials is given by the binomial probability distribution

𝑩 𝒌;𝑵, 𝒑 = 𝑵
𝒌 𝑝!(1 − 𝑝)1#!

discrete random variable distribution parameters

with
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The most important properties of the binomial distribution are :

𝜇 = 𝐸 𝑘 = 𝑁𝑝Expectation value

Variance 𝜎$ = 𝑉 𝑘 = 𝑁𝑝 1 − 𝑝 = 𝑁𝑝𝑞

Formal demonstrations are given in the additional material.

A typical application of a binomial distribution is any type of efficiency:

- Detection efficiency (of a detector)

- Reconstruction efficiency (of a reconstruction software)

- Selection efficiency (of an analysis to extract a signal from the background)



Binomial distribution - IV
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Binomial distribution for the relative number of successes
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Often we are interested to the random variable  
𝒌
𝑵 that is the relative number of successes for 𝑵 trials .

Thus we interested to 
𝒌
𝑵 instead of 𝒌. However considering that 𝑵 is simply a constant, we can write:

Expectation value : 

Variance :

𝐸
𝒌
𝑵 =

1
𝑁𝐸 𝑘 =

𝑝𝑁
𝑁 = 𝑝

𝑉
𝒌
𝑵

=
1
𝑁$ 𝑉 𝑘 =

𝑁𝑝𝑞
𝑁$ =

𝑝𝑞
𝑁
≡
𝑝(1 − 𝑝)

𝑁

Note: the parameter 𝑝 is the expectation value of the fraction of successes, 
which of course is intuitively expected since 𝑝 represents the probability of a success in 1 trial.

Note: the variance 𝑉 tends to reduce and become null in the limit of infinite number of trials 
(since 𝑝 and 𝑞 are finite).  



Example : estimate of the efficiency of a particle detector - I
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Particles’ detectors are examples of such devices: they produce a signal when a particle interacts with them, 
but they may fail to do this in a certain fraction of times.

The distribution of the number of positive signals 𝒏, if 𝑵 processes of interest occured, ... 

is given by a binomial distribution with parameter .
A typical example is represented by the estimate of the efficiency of a device.

𝑝 = 𝜀
𝜺

A way to estimate the efficiency consists in performing a large number 𝑵 of sampling of the process of interest, 

counting the number of times the device gives a positive signal (i.e. it has been efficient). 

In a typical test beam for a particle detector the data acquisition time should be sufficiently long in order to get a large 

number of particle crossing the detector.



Example : estimate of the efficiency of a particle detector - II
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Let us assume that the result of a real experiment of 𝑵 particles crossing the detector gives

a measured value of 𝒏 equal to     ; an estimate of the true efficiency 𝜺 is given by ...S𝒏 ̂𝜀 =
$𝑛
𝑁

The uncertainty on the estimate of the true efficiency is given by ... 𝜎56 = V ̂𝜀 ≡ V
V𝑛
𝑁 =

𝑉[V𝑛]
𝑁$ =

𝑁𝜀(1 − 𝜀)
𝑁$

But this is not very useful since the true efficiency is unknown !

Anyway, if 𝑵 is sufficiently large we can assume - with good approximation - that will be very close to the true

efficiency (as a consequence of the law of large numbers), and thus by replacing with      we get the following

approximated expression for the uncertainty:

𝜺
$𝜺

𝜺

𝜎56 ≅
̂𝜀 (1 − ̂𝜀)
𝑁

$𝜺𝜺

Note that the above formula leads to an error in the extreme cases [when i.e. for                                  ].
A solution to the problem of determining the correct confidence interval for a binomial distribution is due to Copper & Pearson
(correspoding to the Neyman inversion of a confidence belt)[see hands-on exercise]

̂𝜀 = 0 & ̂𝜀 = 1 $𝑛 = 0 & $𝑛 = 𝑁
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Similar example : selection efficiency - I

We get a typical application of the binomial pdf whenever we want to discriminate among a signal & its backgrounds by 
using the information on a generic variable x & requiring that an event is selected if satisfies the selection criterium x	>Xcut

The selection efficiency can be defined as the fraction of the events (in the limit of infinite events analysed) 
that satisfies the selection criterium.

Since an event either satisfies the criterium or fails to be selected, the number of selected events, 𝑵𝒔𝒆𝒍 , is 
distributed according to a binomial pdf:

where the probability p represents the fraction of successes after infinite trials, 
namely the selection efficiency 𝜺 by definition, and 𝑵𝒕𝒐𝒕 is the number of events/trials (supposed very large).

Similarly to what already discussed one gets for the expectation value: E
N

sel

N
tot









=

1

N
tot

⋅E N
sel[ ] =

1

N
tot

⋅εN
tot
= ε

𝜺

𝑩
𝑵𝒔𝒆𝒍
𝑵𝒕𝒐𝒕

; 𝑵𝒕𝒐𝒕, 𝒑

… and gets for the variance: V
N

sel

N
tot









=

1

N
tot

2
⋅V N

sel[ ] =
1

N
tot

2
⋅ε(1−ε)N

tot
=
ε(1−ε)

N
tot
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Similar example : selection efficiency - II

Very often the selection efficiency is estimated, by using simulated data (Monte Carlo data), as the ratio between 
selected simulated events (𝒏) and total simulated events (𝑵); however, nobody has infinite simulated statistics and 
𝑵 can still be enough large but never infinite.

The estimation of the efficiency in this real case (𝑵not infinite) will be given by:

…and the uncertainty on its estimation by: 

ε̂ =
n

N

σε̂ =
ε̂(1− ε̂ )

N

Note that the uncertainty on the efficiency estimation decreases for increasing number of simulated events: 

the more Monte Carlo you produce the more precise efficiency estimation you get! 

Tipically the statistical error in a Monte Carlo estimation becomes a systematic error in real data analysis

(as we discussed earlier)!



Multinomial Distribution
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Multinomial distribution - I

It is possible to generalize the binomial distribution to the case where there are more than 2 possible results.
Let’s suppose we can have 𝒎 different results with associated probabilities 𝑝< ≥ 0 ∀𝑖 𝑖 = 1,… ,𝑚 .
Let’s consider now 𝑁 trials and denote with 𝒌𝒊 the number of trials having the result labelled by index 𝑖.
We can now extend the binomal p.d.f. at this case writing down the new p.d.f.:

𝐌 𝒌𝟏,… , 𝒌𝒎;𝑵, 𝒑𝟏, … , 𝒑𝒎 =
𝑵!

𝒌𝟏! 5 … 5 𝒌𝒎!
5 𝒑𝟏

𝒌𝟏 5 … 5 𝒑𝒎
𝒌𝒎

… where the normalization conditions are the following:                           ,J
<&"

>

𝑝< = 1 J
<&"

>

𝑘< = 𝑁 (this is the additional 
condition when 𝑁 is fixed)

We can now rewrite this multinomial distribution in a more compact form: 𝐌 𝒌;𝑵, 𝒑 = 𝑵! 56
𝒊8𝟏

𝒎
𝒑𝒊
𝒌𝒊

𝒌𝒊!

Multinomial pdf

An example of application of this distribution is the histogram of 𝒎 bins with probability 𝑝< ≥ 0 𝑖 = 1,… ,𝑚 that an 
event enters the bin 𝑖. For 𝑁 events (resulting from 𝑁 trials), the probability that the number of events in each of the
𝒎 bins will be given by 𝒌𝒊 for each bin 𝑖 = 1, … ,𝑚 is provided by the multinomial distribution!
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Multinomial distribution - II

The expectation values and the variances of the multinomial variables 𝒌𝒊 are obtained by considering that for the bin 𝑖
a generic event either “drops” inside it (with probability 𝑝<) or does not (with probability 1 − 𝑝<) so that the 𝒌𝒊 variable is 
binomal taken singularly and therefore it holds:

𝝁𝒊 ≡ 𝐄[𝒌𝒊] = 𝑵𝒑𝒊 𝝈𝒊𝟐 ≡ 𝐕 𝒌𝒊 = 𝑵𝒑𝒊 𝟏 − 𝒑𝒊 = 𝑵𝒑𝒊B
𝒋D𝒊

𝒑𝒋

J
<&"

>

𝑝< = 1
Moreover, since is 𝑁 fixed the condition                         implies that the 𝒌𝒊 numbers are not
independent among each other! 
Thus we need to introduce the covariance between any possible couple (𝒌𝒊, 𝒌𝒋) with 𝒋 ≠ 𝒊 .
It can be demonstrated that : 

J
<&"

>

𝑘< = 𝑁

cov(𝒌𝒊, 𝒌𝒋) = −𝑵𝒑𝒊𝒑𝒋 for each pair (𝒌𝒊, 𝒌𝒋)

The sign “-” indicates (as intuitively we would expect) that 
… the number of events in two possible generic bins (𝒌𝒊, 𝒌𝒋) are negatively correlated! 

𝒌𝒊
𝒌𝒋



POISSON DISTRIBUTION
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Poisson distribution - I

The binomial distribution has an interesting limit when 𝑵 is very large and 𝒑 is very small …
… so that the product 𝝂 = 𝑵𝒑 (called the rate parameter) is finite.

We start from the binomial random variable 𝒌 and we re-parametrize its distribution using 𝝂 instead of 𝒑 :

𝑩 𝒌;𝑵, 𝝂 = 𝑵
𝒌

𝝂
𝑵

𝒌
𝟏 − 𝝂

𝑵

𝑵#𝒌
that can be explicitly rewritten as 𝑩 𝒌;𝑵, 𝝂 = 𝑵!

𝒌! 𝑵#𝒌 !
𝝂
𝑵

𝒌
𝟏 − 𝝂

𝑵

𝑵#𝒌

… and conveniently rewritten as: 𝑩 𝒌;𝑵, 𝝂 = 𝝂𝒌

𝒌!
𝑵 𝑵#𝟏 …(𝑵#𝒌D𝟏)

𝑵𝒌
𝟏 − 𝝂

𝑵

𝑵
𝟏 − 𝝂

𝑵

#𝒌

depends on 𝑵

We get the limit for 𝑵 → ∞ of the 3 terms in the red ellipse:

lim
𝑵→G

𝑵 𝑵− 𝟏 …(𝑵 − 𝒌 + 𝟏)
𝑵𝒌

≅ 1 lim
𝑵→G

𝟏 − 𝝂
𝑵

𝑵
= lim

𝑵→G
𝒆𝑵𝒍𝒏(𝟏# ⁄𝝂 𝑵) = 𝒆#𝝂 lim

𝑵→G
𝟏 −

𝝂
𝑵

#𝒌
= 1

𝒌 terms
because  𝜈/𝑁 → 0, ,

Thus, in this limit, the binomial distribution becomes the Poisson distribution:  𝐏 𝒌; 𝝂 =
𝝂𝒌𝒆#𝝂

𝒌!
A non-negative integer r.v. 𝒌 is called Poissonian r.v. if it is distributed, for a given value of the parameter 𝝂, according to it!
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Poisson distribution - II

Poisson distribution

𝝁𝒏 ≡ 𝐄[𝒏] = 𝝂

𝝈𝒏𝟐 ≡ 𝐕 𝒏 = 𝝂
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Poisson distribution - III
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Poisson distribution - IV
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Poisson distribution - V
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Histogram as application of a Poisson distribution

Application: histogram with the number of entries (𝑵) not fixed (otherwise it’s a multinomial distribution across the bins)

A set of r.v.s that we “meet everyday” in Physics is represented by a so-called histogram (introduced when discussing 
the multinomial distribution)

Let’s consider a r.v. 𝒙, characterized by an underlying distribution 𝒇 𝒙 , of which we carry out a sampling of 𝑵 values
(i.e. we perform 𝑵measurements) 𝑥J J&",…,1

; it’s possible to subdivide these values into 𝑵𝑩 intervals. 

We denote the interval labelled with index 𝒊 as the bin 𝑰𝒊 with 𝒊 = 1, …, 𝑵𝑩. In the bin 𝑰𝒊 “fall” 𝑵𝒊 values of 𝒙.

Of course 𝑵𝒊 are so that holds. The relevant aspect here is that these numbers 𝑵𝒊 are r.v.s themselves !J
<&"

1L

𝑁< = 𝑁

In the hypothesis to have:

1) a probability enough small that a measurement “falls” in a certain bin rather than in any other (𝑵𝑩 enough large)

2) the number of registered events, populating the histogram, rather large (𝑵 large allows 𝑵𝑩 enough large )  

... these r.v.s 𝑵𝒊 are distributed according to the poissonian distribution (for each bin):

𝐏 𝑵𝒊; 𝝁𝒊 =
𝝁𝒊𝑵𝒊𝒆#𝝁𝒊
𝑵𝒊!

… where 𝝁𝒊 is the expectation value associated to the bin 𝒊 : 𝝁𝒊 = x𝒇 𝝃 𝒅𝝃
𝑰𝒊
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Poisson distribution : applicability - I

When Poissonian is not applicable? 3 examples:

The poissonian distribution is applicable in the following circumstances:

a) the events are independent (and are in a number sufficiently large)

b) the “event rate” is constant

We call stocastic processes all those processes for which the events are independent & happen at a constant rate

and a typical example are the radiative decays (provided the observation time is well shorter than the half-life of the source!)

1) counting experiment of radiative decays from a relatively too small radioactive source

2) counting experiment of radiative decays for a relative too long time (i.e.comparable) w.r.t. the radioactive source lifetime

in these 2 cases the event rate is not constant (diminishes with time)

in this case the event rate is not constant because it diminishes with the depth of penetration of the beam in the target 

3) counting the interactions produced by a beam consisting of a relative small # of particles impinging a relatively thick target
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Poisson distribution : applicability - II

Another limitation to the stocastic nature of counting a particle flux by means of a detector/counter (a counting equipment)
is introduced by the so-called dead time of a detector/counter.

Any counter is not capable of counting more than 106 particles per second, because they are characterized by a dead time
not below the 𝜇sec. 

If the particles flux is relatively not too high … the probability that a 2nd particle crosses the counter during the dead time 
triggered from the crossing of a 1st particle is negligible and - consequently - the detection of the 2nd particle is independent
from that of the 1st.

Instead, if the flux is too high (> 10O𝑝/𝑠𝑒𝑐) the detections of the particles are no more independent …
…. and Poisson statisitcs does not apply.
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Poisson distribution : applicability - III

Add….



Gaussian Distribution
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Gaussian p.d.f - I

symmetric w.r.t. 𝝁

𝝁𝒙 ≡ 𝐄[𝒙] = 𝝁

𝝈𝒙𝟐 ≡ 𝐕 𝒏 = 𝝈𝟐
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Gaussian p.d.f - II

error function

(reminder)
(evaluated numerically)
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Gaussian p.d.f - III

To verify the normalization:



Chi-squared Distribution
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Chi-squared p.d.f - I
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Chi-squared p.d.f - II

𝝁𝒙 ≡ 𝐄[𝒙] = 𝒌

𝝈𝒙𝟐 ≡ 𝐕 𝒏 = 𝟐𝒌
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Chi-squared p.d.f - III

We will use it in the hands-on exercises

Application: minimization tasks can be carried out using a chi-squared but this can be applied only to binned distributions
(i.e.only for histograms). Historically it has been superseeded in minimization tasks by the likelihood method
(which can be used also for unbinned distirbutions) [as discussed in the following heory part]
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Breit-Wigner & Resonance
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Central Limit Theorem - I

There are more or less complex/rigorous ways to enunciate this theorem. 

I choose here one of them in a form that usually can also be demonstrated (but in this context I will omit the demonstration)

Given 𝒏 independent random variables 𝑥< <&",…,P , distributed according to the p.d.f.s 𝑓<(𝑥<) <&",…,P , 
with expectation values 𝜇< <&",…,P and variances 𝑉< = 𝜎<$ <&",…,P ,

… the random variable sum of the 𝑥< <&",…,P, denoted as                         , will be characterized by:𝑆 =J
<&"

P

𝑥<

an expectation value                                        and variance𝜇Q ≡ 𝐸[𝑆] =J
<&"

P

𝜇< 𝜎Q$ ≡ 𝑉[𝑆] =J
<&"

P

𝜎<$

and the associated p.d.f.             will tend to the normal p.d.f. for 𝑛 → ∞: 𝒇[𝑺] lim
𝒏→G

𝒇[𝑺] = ℕ 𝑆;J
<&"

P

𝜇< ,J
<&"

P

𝜎<$

… provided that the expectation value and variance exist, 
the single variances are finite and are of the same order of magnitude:  

𝜎RS
𝜎RT

= Ο 1 ∀(𝑖, 𝑗) pair

Note: the demonstration would be enough affordable assuming the simplifying case for which  

“converges in law” 

(generally can be a weighted linear combination)

𝑓< = 𝑓 ∀𝑖
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Central Limit Theorem - II

What does mean “convergence in law” (also called “convergence in distribution”)? 

A set of variables 𝑥P converges in law to a variable 𝑥 if, 
denoted the correspoding c.d.f.s as 𝐹RU(𝑋) and 𝐹R(𝑋), it holds: lim

P→G
𝐹RU 𝑋 = 𝐹R 𝑋 ∀𝑋 in which 𝐹R is continuous 

(Note: it is weaker than “Convergence in probability”)

What is the meaning of the theorem?  

The theorem holds for sum of r.v.s, both discrete and continuous, having different p.d.f.s! However it’s essential that …
… they are independent and that, each one taken singularly has weak impact on the overall final result. 

The theorem states that : 
a r.v. tends to be distributed according to a Gaussian p.d.f. IF it’s a linear superposition of a large number independent r.v.s 
that taken singularly have a weak influence on the final result.

In other words… 
the theorem assigns to the Gaussian p.d.f. the role of universal function to which tend all the p.d.f.s of r.v.s 
of systems ”of high statistical equilbrium”.
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Central Limit Theorem - III



PART 3B - IN-DEPTH SLIDES
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Binomial distribution - expectation value
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𝜇 = 𝐸 𝑘 = 𝑁𝑝How to demonstrate that:



Binomial distribution - variance - I
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𝜎$ = 𝑉 𝑘 = 𝑁𝑝 1 − 𝑝 = 𝑁𝑝𝑞How to demonstrate that:



Binomial distribution - variance - II
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