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In the optimization of the selection criteria for the “golden” channel 𝐻 → 𝑍𝑍∗ → 4ℓ (ℓ = 4𝜇, 2𝜇2𝑒, 4𝑒), we developed 
- within CMS - several algorithms such as, for instance , those based on the vertexing of the lepton tracks and on the isolation 
of the tracks, with the aim to extract the signal from the overwhelming backgrounds.

PHYSICS CASE - I

In this exercise let’s discuss an example of comparison of performances of two (slightly) different vertexing algorithms
having the aim to reject background (while preserving signal) on the basis of simulated data of signal and backgrounds. 
We perform it in the framework of the theory of binary classification.
Practically we will use two different test statistics to discriminate signal from (2 types of) background:

pp→H→ ZZ
(*)
→ 4 pp→ Zbb→ 4+ X

pp→ tt → 4+ ′X

b(b )− jet

t − jet

t − jet
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PHYSICS CASE - II

Practically we will use to different test statistics to discriminate signal from (2 types of) background:

pp→H→ ZZ
(*)
→ 4 pp→ Zbb→ 4+ X

pp→ tt → 4+ ′X

b(b )− jet

t − jet

t − jet

A.P.-E+-2

4 “prompt” leptons 2 “prompt” +2 “non-prompt” leptons 4 “non-prompt” leptonsFinal state’s signature

We’ll investigate the background rejection power of two variables based (in a different way)
… on the displacement of leptons from the primary vertex 



TYPICAL INSTALLATION
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We download 3 files (with the 3 simulated data samples, 1 for the signal and 2 for the two backgrounds):

FILES TO IMPORT
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STORAGE MODALITY

3 modalities to store files (simulated data)
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Installing ROOT & configuring - I
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Installing ROOT & configuring - II

array of files, in the order: 1) Signal MC (Higgs with                                    )

2) 𝑡 ̅𝑡 Bkg MC

3) 𝑍𝑏0𝑏 Bkg MC (𝑍 → ℓ0ℓ)

[all characterized by                                ]

m H( ) ≡150GeV c
2

E
cms
= s ≡10TeV

TGraph objects  to be used later
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DISCRIMINANT VARIABLES

We use two test statistics, denoted in the code as:  

The exercise aims to compare the performance of these two physical observables in rejecting some background while 
preserving most of signal by applying a cut.

In the next slides we introduce the meaning of these two variables to understand why they are useful to reject backgrounds. 
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1st discriminant variable - I

Algorithm: var1 (LeptIP3D_worst) 

Three-dimensional (IP3D) distance - from the Primary Vertex (PV) - of 
the point of closest approach to PV for the “back propagated” lepton
track is calculated. [Propagators are specific for muons & electrons].

Significance (SIP3D) is obtained by dividing IP3D for the relative 
uncertainty (by full error computation):
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In         ,      and generic multi-jet background
events the impact parameters of 2 or 4 leptons
(in generic 4-leptons final state) are - in average
- naturally larger w.r.t. those of signal. 
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Incoherent 𝐻 → 𝑍𝑍(∗) bkg; indistinguishible from signal since it has exactly the 
same topology the two 𝑍 promptly decaying into 2 leptons
(cannot be reduced with vertexing or isolation-based variables)  



1st discriminant variable - II

The code will produce this kind of plots:
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2nd discriminant variable - I

Algorithm: var2 (LeptSTIP_SLIP_worst) 

Transverse (TIP) and longitudinal (LIP) distances - from PV - of lepton track, 
“back-propagated” w.r.t. to PV, are calculated. 

[Propagators are specific for muons & electrons].

Significances (STIP, SLIP) are taken by dividing them for the relative uncertainty
(by full error computation - correlation included). 

The discriminating observable used here is the following suitable weighted combination of SLIP and STIP:

where are from
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The idea is that the leptons from b-quarks (having tipically higher STIP value)
in both relevant backgrounds events - tend likely to mimic the 2 leptons
involved in the Z* reconstruction.
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2nd discriminant variable - II
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Signal-to-background discrimination

The idea (implemented in the code that we will look into in detail in a bit) is the following:

Signal-PDF
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1−α

threshold/cut

Treat the normalized to unity histogram as an effective p.d.f.;
(normalization is obtained by dividing by the full integral) 

acceptance
rejection
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signal efficiency

backgrounds’ contamination

Vary the cut from 0 to end-of-scale, moving it with a step-size equal to the granularity of the available histogram, and write 
down the pairs of integral values, 1 − 𝛼, 𝛽* and 1 − 𝛼, 𝛽+ , and plot them on a graph obtaining two ROC curves.
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Results: comparison of the ROC curves
The 4 ROC curves are superimposed but the
performance comparison of the two algorithms 
must be done for the same background type:

- for 𝑡 ̅𝑡 :

- for 𝑍𝑏0𝑏 :

green vs pink

red vs blue

var1 var2

var1 is better than var2

var1 and var2 perform similarly

Overall var1 performs better than var2!

Quantitatively we’ll calculate AUC (Area-Under-the-Curve): 
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1st discriminant variable (code) - I

double (nested) loops

range(#) --> start from 0 till #-1 

Note: in Python loop goes from 0 to #-1 (in C++ from 1 to #)
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Integrals:
𝑖 = 0: 1 − 𝛼

𝑖 = 1: 𝛽$
𝑖 = 2: 𝛽%

matrix 
3x200



1st discriminant variable (code) - II

passed through interface

Built-in function isinstance(obj,Class) 
that returns a boolean:
- TRUE if obj is an instance of Class (or its subclass)
- FALSE otherwise

Here it checks that the object we get from FindObject
(i.e. stats) is indeed a TPaveStats object before calling its 
methods to prevent a crash if it is not.
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1st discriminant variable (code) - III

configure for 4 pads (and 4 plots)
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1st discriminant variable (code) - IV

just superimposed
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2nd discriminant variable (code) - I

Same logic applied for var2
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2nd discriminant variable (code) - II
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just superimposed



2nd discriminant variable - III
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ROC curves for 1st discriminant variable (code) - I
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ROC curves for 1st discriminant variable (code) - II
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AUC for 1st discriminant variable (code) - II
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result

Use trapezoidal rule to calculate the AUC !

[using either numpy or sklearn]



Superimpose ROC curves for 1st discriminant variable (code)
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Superimpose ROC curves for both discriminant variables (code) - I
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Superimpose ROC curves for both discriminant variables (code) - II
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Calculate AUC for both discriminant variables (code)
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𝑡 ̅𝑡

𝑍𝑏0𝑏

Background

0.9312

0.9522

0.9311

0.9288


