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The goals of a (experimental) Particle Physicist - |
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The goals of a (experimental) Particle Physicist - Il

In modern particle physics experiments, event data are recorded by a - usually complex - system of detectors.

Measurements of particle position, particle momentum/energy, time, decay angles etc... are recorded in the event data
and are characterized by fluctuations (due to randomness & dilution effects).

Event data are all different from each other because of:
- Intrinsic randomness of the physics process(es) (Quantum Mechanics: P o< |4 |?)
- Detector response is somewhat random (fluctuations, resolutions, efficiencies, ....)

Tipically, a large number of events are collected by an experiment, each event usually containing large amounts of data 2
what we study are distributions of physical observables (e.g. the mass of a particle, the lifetime, etc.)




The goals of a (experimental) Particle Physicist - llI

Distributions of measured quantities in data:
are predicted by a theory model,
depend on some theory parameters,
e.g.: particle mass, cross section, etc.

Given our data sample, we want to:
measure theory parameters,
e.g.:
answer questions about the nature of data
Is there a Higgs boson? =» Yes! (strong evidence? Quantify!)

Is there a Dark Matter? =2 No evidence, so far...

If not, what is the range of theory parameters compatible with the
observed data? What parameter range can we exclude?

We should use probability theory on our data and our theory model in order to extract
information that will address our questions = i.e.: we use for




Relation between Probability & Inference - |

Data fluctuate according to the randomness
of the physical process governed by a
(underlying) physical law

(that the Theory Model should represent)

Known (or assumed correct) the physical process of generation of data (probabilistic model)
... we are able to evaluate the probability of the different outcomes of an experiment

[*] because of the randomness of the process/law ... the calculation of probabilites is involved

[**] when we generate Data according to a model (Monte Carlo generators) we speak about pseudo-data

4a



Relation between Probability & Inference - |

Data fluctuate according to the randomness
of the physical process governed by a
(underlying) physical law

(that the Theory Model should represent)

THEORETICAL MODEL [ pROBAB||_|Ty>

THEORETICAL MODEL <INFERENCEI

Model parameters in the Theory Model can
be estimated with an uncertainty due to
fluctuations in the finite data sample

In the statistical inference the approach is somehow reverted w.r.t. the theory of probability:
the physical process or law is under investigation and the statistical methods & techiques try to
induce the characteristics of the process on the basis of the (finite) experimental observations
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Concept of Probability - |

Many processes in nature have uncertain outcomes (their result cannot be predicted in advance).

It is useful to introduce the concept of random variable: it represents the outcome of a repeatable experiment whose result
is uncertain. Then an event consists of the occurrence of a certain particular condition about the value of the random variable

resulting from an experiment (in simple words: it is a possible outcome of an experiment).

Note: often in physics : an event is meant as an elementary event, i.e. it represents a single outcome;
on the countrary, in statistics : an event can represent - in general - a subset of possible outcomes.

Classical probability : if N is the total number of possible outcomes (“cases”) of a random variable,
if n is the number of favourable cases for which an event A is realized,
the probability of anevent Ais: P(4) = %

(P.S.Laplace, 1749-1827)




Concept of Probability - Il

Most experiments in Physics can be repeated under the same - or at least very similar - conditions.

Such experiments are examples of random processes in the sense that, at every repetition, a different outcome is observed.
The result of an experiment may be used to address questions about natural phenomenag, ...

... for instance about the knowledge of an unknown physical quantity, or the existence or not of some new phenomena.
Statements that answer those questions can be assessed by assigning them a probability.

Different definitions of probability apply to cases in which statements refer to repeatable experiments or not:

I:> Frequentist probability only applies to processes that can be repeated over a reasonably long period of time:
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Most experiments in Physics can be repeated under the same - or at least very similar - conditions.

Such experiments are examples of random processes in the sense that, at every repetition, a different outcome is observed.
The result of an experiment may be used to address questions about natural phenomenag, ...

... for instance about the knowledge of an unknown physical quantity, or the existence or not of some new phenomena.
Statements that answer those questions can be assessed by assigning them a probability.

Different definitions of probability apply to cases in which statements refer to repeatable experiments or not:

I:> Frequentist probability only applies to processes that can be repeated over a reasonably long period of time:
(R.Von Mises, 1883-1953)
! R S e

Frequentist probability : is the fraction of the number (N;) of possible occurrences of an event E; -
over the total number of events (N) in a repeatable experiment,

in the limit of a very large number of experiments:  P(E;) = lim Wl
N - o

ey i

Note: - this limit must be intended in an experimental (hon mathematical!) sense
- the true value of the probability would be found only repeating co times the (repeatable) experiment

- in many cases, experience shows that the frequentist probability tends to the classical one
(thanks to the Law of large numbers) [ex.: roll a not-loaded dice & execute a large number of rolls]




Concept of Probability - Il

Most experiments in Physics can be repeated under the same - or at least very similar - conditions.

Such experiments are examples of random processes in the sense that, at every repetition, a different outcome is observed.
The result of an experiment may be used to address questions about natural phenomenag, ...

... for instance about the knowledge of an unknown physical quantity, or the existence or not of some new phenomena.
Statements that answer those questions can be assessed by assigning them a probability.

Different definitions of probability apply to cases in which statements refer to repeatable experiments or not:

I:> Frequentist probability only applies to processes that can be repeated over a reasonably long period of time:

Frequentist probability : is the fraction of the number (N;) of possible occurrences of an event E;
over the total number of events (V) in a repeatable experiment, _
in the limit of a very large number of experiments:  P(E;) = lim —

N - o N

Note: - this limit must be intended in an experimental (non mathematical!) sense

- the true value of the probability would be found only repeating co times the (repeatable) experiment
- in many cases, experience shows that the frequentist probability tends to the classical one
(thanks to the Law of large numbers) [ex.: roll a not-loaded dice & execute a large number of rolls]

II> Bayesian probability applies also to an hypothesis or statement that can be true (or false): the probability of a certain
hypothesis (or theory) is represented by the degree-of-belief (subjective) that the hypothesis is true (or false).




Interpretation of Probability

We have just introduced two different interpretations of the probability: Frequentist & Bayesian probabilities;
note that both are consistent with Kolmogorov axioms.

I:> Frequentist probability refers to a relative frequency that can be evaluated for repeatable experiments
(for instance when we measure particle scatterings or radioactive decays).
In this course we will assume/use/refer-to ... this concept of probability.

I:> Bayesian probability refers to a subjective probability where instead of outcomes we have hypotheses
(statements that can be true or false).

In particle physics the frequency interpretation is often most useful, but subjective probability can provide
more natural treatment of non-repeatable phenomena (for instance the probability that Higgs boson exists,

or in handling systematic uncertainties).

In most cases the two approaches give (asymptotically) similar results.




Axiomatic approach to Probability

To formalize - in a correct mathematical way - the concept probability, A.N.Kolmogorov (1903-1987)
proposed (1933) an axiomatic approach (the set theory can help intuitively to handle axioms and theorems):

- being... () the set of possible outcomes, E € () a certain possible outcome/result/event)

Axiom-1 : P(Q) =1 (i.e.the experiment must have a result) [it’s the normalization condition ']

Axiom-2 :P(Ee€eQ)=0 union

Axiom-3: property of additivity
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proposed (1933) an axiomatic approach (the set theory can help intuitively to handle axioms and theorems):

- being... {) the set of possible outcomes, E € () a certain possible outcome/result/event)

Axiom-1 : P(Q) =1 (i.e.the experiment must have a result) [it’s the normalization condition ']

Axiom-2 :P(Ee€eQ)=0 union

Axiom-3: property of additivity

Every concept/definition of probability is required to be compatible with the axiomatic probabiity and with the derived ...
.. properties: P(E) =1 — PQE*), P(Ee€eQ) <1, P(@®)=0 intersection

. & theorems: [GHiEVtyEhEOrEm:

relative
complement

(it can be easily demonstrated)

|:> includes Axiom-3 if E; , E, aredisjoint: P(E; NE,) =0 = P(E; UE,) = P(E;)+ P(E,)




Joint Probability

Joint probability: P(A N B) : probability that two events (A & B) happen concurrently
=0 IFA&BDISIOINT(ANB = Q)
= P(A)-P(B) IFA&B INDEPENDENT

= P(A)+ P(B) —P(AUB) IFA&B GENERIC <:I from the Additivity Theorem!

To deal with non independent events we have to introduce the concept of conditional probability (next slide)




Conditional Probability

Q
Suppose to restrict the possible outcomes of an experiment to the subset A € ) and introduce the ...

Conditional probability : P(E|A) : probability of event E given the restriction A € Q @ A*

Note: if A* # @ it holds P(E|A) > P(E); this introduces the need to “renormalize” the conditional probability: P(A|A) = 1

The following properties hold:

1) P(AZ |A1) == P(Al N A2 |A1) [See figure] -

2) ratios of probabilities should not change P(A nA ) P(A n4,|A )
with the applied restriction: 1 2/ _ 1 211

P(A)  PAgiA) 1
Putting together (1) & (2) P41 n4,) P(A,|A)
utting together . =
P(41) 2
For completeness (and coherence) we define: P(4,|4;) =0 IF P(4;) =0
P(BNA)

: probability of event B given
the event A already happened

We can now formally define the conditional probability: ~ P(B|A) = PA)

P(BNA) P(B)-P(A)
P(4A)  P(A)

For independent events: P(B|A) = =P(B) (just another way to express independence)

Note: it can be demonstrated that is satisfies the axioms of Kolmogorov

10



Application of previous concepts - |

Detection efficiencies are probabilities !

_________________________________________________________________________ >

particle beam To measure the detection efficiency of the detector under test
we need to select all and only the particles that cross the system
Dy 13 D, and are detected by both “telescope” detectors D; & D, (that
; are read in time coincidence).
detector under study The intersection expresses the time coincidence in the sense that

the probability to have a particle of the beam detected by both of
them is given by P(D; N D,) [reminder: intersection is a logical-AND]!

Of course, P(D; N D,) is a joint probability but note that the two “telescope” detectors work independently, thus:
P(D; nD,) = P(D,) - P(Dy)
As seen in previous slide, P(D; N D,) can also be expressed in terms of conditional probability as follows:

P(Dy N Dy) = P(Dy|Dy) - P(Dq)
and since the detectors work independently it holds P(D,|D;) = P(D,).

11



Application of previous concepts - |l

Adding a third detector as in the figure implies ...
"""""""""""""""""""""""""""" particle beam to have detector D, in coincidence with any of one between D, & D5 !
D, D D, D The involved joint probability is now: P(D; N (D, U D3))

detector under study [ reminder : intersection is a logical-AND, union is a logical-OR ]

Now we get: P(D, n (D, U D)) = P(D;) - P(D, UD3) =P(D,) - [P(D;) + P(D3) — P(D, N D3)]
additivity theorem
Since also the detectors D, & D3 work independently it holds:  P(D, n D;) = P(D,) - P(D3)
Overall: P(Dy; N (D, U D3)) =P(Dy) - [P(D;)+ P(D3) — P(D, N D3)] = P(D,) - [P(Dy) + P(D3) = P(Dy) - P(D3)]

In this way the total efficiency of the telescope can be calculated to know the useful particle flux to study the detector
under test. It can be easily calculated that ... passing from a telescope with 2 similar detectors to one with 4 similar ones
increases the total efficiency by a multiplicative factor (2 — &5)2 where ¢, is the detection efficiency of a single detector.

12



Bayes’ theorem - |

This famous theorem by T.Bayes relates the two conditional probabilities P(B|A) with P(A|B) where A, B € ()

We've already written P(B|A) = PEOA byt we can equally write (4, B are exchangeable): P(A|B) = bank)
P(A
Putting together: P(A|B) - P(B) = P(AN B) = P(B|A) - P(A) . Thus: P(4|B) = P(B|A) - PEB; (T.Bayes, 1702-1761)

A generalization/extension of the theorem can be obtained by introducing the Law of the total probability as follows:

if we have sets of events {4;}; that are disjoint and fully cover Q (namely Q = U; 4; ) and B € Q is a generic event,
we can calculate P(B) exploiting the factthat B=B NN = B N U;4; = U;(B N 4;) and (B N 4;) are disjoint, thus
the total probability can be obtained by the following sum:

P(B) = P(U(B NA) (B NA) U ) = Z P(BNA;) = representing the so called
[ [ [

Law of total probability

P(B|A4) - P(A)

(nothing forbids A to be one of the 4;)
2. P(B|A4;) - P(A))

and Bayes’ theorem can be rewritten: P(4|B) =

13



Bayes’ theorem - |l

This theorem can be discussed in a frequentist context (in which a probability cannot be associated to an hypothesis!),
[and it can be helpful when designing an experiment ] in the following way:

subset of events of |ntere§t detection/reconstruction/seIection

P(A) -------- » production probability of the events of interest
p(B) (tipically estimated in previous experiment(s) or ...
: suggested by a model used in generating simulated events, etc...
(the so called a-priori probability)

P(A|B) = P(B|A)

v
general detection/reconstruction/selection efficiency

orobability to detect/recon;truct/select (performs the task to ensure normalization)

the specific kind of events of interest ,

given a positive response by our probability to detect/reconstruct/select the specific kind of events of interest
detector/reconstruction algorithm/selector (it includes the acceptance and the efficiency effects in relation to the

(the so called a-posteriori probability, characteristics of the particular events of interest)

i.e. after having carried- out the experiment)

14



Theory / Hour-2






STATISTICAL & SYSTEMATICS UNCERTAINTIES - |

2> When we carry out an experimental measurement we must separate the purely statistical component from those
“non statistical” (called systematics components):

measure(“central value”) + statistical uncertainty + systematic uncertainty : m *$ *§

A good measurement requires to be able to reduce as much as possible both uncertainties.

IF we have accumulated not much data (low statistics)... we can afford a conservative evaluation of the sources
of systematics uncertainties (approximated by excess)

IF we have accumulated a lot of data (high statistics)... the statistical uncertrainty will be relatively small and...

...we cannot afford a conservative evaluation of systematics uncertainties:
we must evaluate the systematics effect with good accuracy with
the aim to bring the systematic uncertainties to the same level of
the statistical uncertainty !

14



STATISTICAL & SYSTEMATICS UNCERTAINTIES - I

2 Recap: @ “low” statistics: we can afford systematic uncertainty < statistical uncertainty (relatively large)

@ “high” statistics : we must work so that systematic uncertainty = statistical uncertainty (relatively small)

2 If the problem is particular difficult to require the execution - on a computing machine - of the simulation (MC) of your
physical system under exam, in order to compare real and simulated data, ...
... it can happen to identify a systematic error (“bias”) in the real data and to correct the measurement (central value)
according to a correction (“shift”) derived from the data-MC comparison.
In this circumstance the statistical uncertainty on the measurement carried out on the simulated data must be considered
a systematic uncertainty for the (corrected) measurement in real data.

This implies the need to have enough statistics for your simulated data samples.

Example: https://arxiv.org/pdf/hep-ex/9902011.pdf (CLEO experiment’s charmed mesons lifetime measurement)[see next slide]

15
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STATISTICAL & SYSTEMATICS UNCERTAINTIES - 1l

>

The systematic uncertainties for the D meson lifetimes are listed in Table I and are
described below. They can be grouped into three categories:

Reconstruction of the D decay length and proper time. Errors in the measurement of the
reconstructed decay length can be due to errors in the measurement of the decay vertex,
the global detector scale, and the beam spot. The bias in the decay vertex position is
estimated to be (0.0 & 0.9 ym) from a “zero-lifetime” sample of vy — 777~ 777~ events.
This corresponds to a measured proper-time uncertainty of +1.8 fs. In addition, the vertex
reconstruction is checked with events with interactions in the beam pipe with a relative

uncertainty of +0.2%. The sums of these uncertainties in quadrature yield the systematic
uncertainties due to the decay vertex measurement. The global detector scale is measured to
a precision of +0.1% in surveys and confirmed in the study of events with interactions in the
beam pipe. The changes in the lifetimes due to the variation (£2 pm) in the vertical beam
spot position and height are another source of systematic error, since the interaction point
is calculated from the beam spot and the reconstructed D momentum and decay vertex.
Statistical uncertainties for the D masses [2] and the D momentum measurements lead to
systematic errors since these quantities are used to convert the decay length into proper
time.

16



STATISTICAL & SYSTEMATICS UNCERTAINTIES - IV

TABLE I. Systematic uncertainties for the D meson lifetimes in fs. The systematic uncertainties
for the three D° modes are weighted with the same weights as the fitted D lifetimes.

Uncertainty DO DY D+ D7
K7t Katn® K-n7nnxnt combined K-m—n" onT
Decay vertex +2.0 +2.0 +2.0 +2.0 +2.8 +2.] —
Global detector scale +0.1 +0.1 +0.1 +0.1 +0.1 +0.1
Beam spot o 6.0 203 o1 v i
D meson mass +0.1 +0.1 +0.1 +0.1 +0.3 +0.1
D meson momentum| =92 192 Lk x 0.2 8 +0.1
Signal probability o 02 02 o1 Za1 18
t — M(D) correlation| 0.6 +0.6 +1.0 +0.7 +1.7 +1.5
Large proper times +1.2 +3.4 +0.2 +1.5 +0.3 +0.5
Background +0.5 +2.4 +3.0 +1.5 +6.3 +2.9
MC statistics +0.9 +2.3 +2.2 +1.6 +6.6 +2.4
Total 256 32 +4.4 i Zi27 51

Checking the algorithms with simulated events. Charm meson candidate selection re-
quirements can cause systematic biases in the lifetime measurements. We estimate these
biases with simulated events and correct for the biases as described above. We include the
statistical uncertainties in the measured lifetimes from the samples of simulated events as
systematic uncertainties in the results.

17



PRECISION & ACCURACY

2> Precision of a measurement: term that expresses that the result of a measurement can be obtained with great detail
(many significative cyphers).

Numerically, it is represented by the random (or “statistical”) uncertainty !
2> Accuracy of a measurement: term that expresses the maximum possible deviation of the result of a measurement from
the result of an ideal measurement; thus it is associated to the maximum systematic error

that the experimental instrumentation can introduce in the measurement.

Numerically, it’s represented by the maximum “systematic” uncertainty that the used instrumentation/method can introduce!

Wrapping up: A precise measurement is a measurement affected by a very small statistical uncertainty;
The systematic uncertainties cannot be eliminated but enough (hopefully strongly) reduceable.

An accurate measurement is a measurement affected by a minimized systematic uncertainty
(or anyway, lower than the statistical uncertainty;
The systematic uncertainties cannot be eliminated but hopefully can be minimized.

18






Probability Density Function (p.d.f.) - |

2> Probability distribution function (aka p.d.f.): distribution of the probability for a RV to assume a certain value among those allowed

In other words: the p.d.f. of a RV is the law which rules the assumption of a certain value by the RV in one measurement/experiment

We will see during this course that: the link between experiment and theoretical model indeed happens through the p.d.f,,
that is predicted by the model to describe (the result of) an experiment

2> Consider a discrete random variable x having more than one possible elementary result, that is (x4, ..., xy) each occurring with a probability
P(x;), wherei =1, ..., N, thus associated to each of the possible results.
The function that associates the probability P(x;) to each possible value x; is called probability distribution.
Note : the result of an event is not predictable but - instead - the probability distribution of the results can be known.

19



Probability Density Function (p.d.f.) - |

2> Probability distribution function (aka p.d.f.): distribution of the probability for a RV to assume a certain value among those allowed

In other words: the p.d.f. of a RV is the law which rules the assumption of a certain value by the RV in one measurement/experiment

We will see during this course that: the link between experiment and theoretical model indeed happens through the p.d.f,,
that is predicted by the model to describe (the result of) an experiment

2> Consider a discrete random variable x having more than one possible elementary result, that is (x4, ..., xy) each occurring with a probability
P(x;), wherei =1, ..., N, thus associated to each of the possible results.
The function that associates the probability P(x;) to each possible value x; is called probability distribution.
Note : the result of an event is not predictable but - instead - the probability distribution of the results can be known.

The probability of a random event E corresponding to a set of distinct possible elementary results (xg,, ..., Xg,)
where XE; € Q = (xq,..,xy) forallj =1, ...,K, is, according to the 3" Kolmogorov’s axiom, given by:

K K
P U {xg } ) = P({xs,, ) x5, }) = P(E) = Z P(xz,)
j=1 j=1 N
From the 2" Kolmogorov’s axiom, the probability of the event Q corresponding to the set of all possible values must be: Z P(xi) =1
=1
From the 1t Kolmogorov’s axiom: P (xEj) >0Vj=P(EcQ)=0 (normalization
condition)

19



Probability Density Function (p.d.f.) - i

2> Most quantities of interest to us are continuous, thus we will treat mainly the continuous case.
The discrete probability introduced in the previous slide can be generalized to the continuous case with the replacement ... 2 = j
Q
Q

In the discrete case we deal with a genuine probability function; in the continuous case we must introduce a probability density function!

3 Let us consider a sample space Q € R™. Each random experiment will lead to a measurement corresponding to one point X € (.
We can associate a probability density f(X) = f(xq, ..., x,,) to any point X € Q. Of course, f(xX) = 0 (15t axiom).

The probability of an event A with A € (), namely the probability that X € A is given by : P(A) = jA f(xq, e, x)d™x

The function f(X) is called probability density function p.d.f. | The function f (x4, ..., x;,)d™x can be interpreted as differential probability.

The normalization condition can be expressed as:f Flxq, o, xp)d"x =1
Q

>

20



Probability Density Function (p.d.f.) - i

2> Most quantities of interest to us are continuous, thus we will treat mainly the continuous case.
The discrete probability introduced in the previous slide can be generalized to the continuous case with the replacement ... 2 = j
Q
Q

In the discrete case we deal with a genuine probability function; in the continuous case we must introduce a probability density function!

3 Let us consider a sample space Q € R™. Each random experiment will lead to a measurement corresponding to one point X € (.
We can associate a probability density f(X) = f(xq, ..., x,,) to any point X € Q. Of course, f(xX) = 0 (15t axiom).

The probability of an event A with A € (), namely the probability that X € A is given by : P(A) = jA f(xq, e, x)d™x
The function f(X) is called probability density function p.d.f. | The function f (x4, ..., x;,)d™x can be interpreted as differential probability.

The normalization condition can be expressed as:f Flxq, o, xp)d"x =1
Q

2 In1dim: Probability of the outcome X to be within the continuous interval of possible values [X,X + dx] is Px=X=x+dx)=f(x)-dx

+00
The p.d.f. f(x) is of course normalized by the condition : j f(x)dx =1
—00

It can be verified that :
the p.d.f. corresponds to an histogram of the RV x normalized to the unity area in the limit for which ... - the bin width > 0

- the total # of entries 2

20



Cumulative Distribution Function (c.d.f.)

The cumulative distribution function (c.d.f.) is the probability that the value of a
r.v. will be < a specific value. The c.d.f. 1s denoted by the capital letter correspond-
ing to the small letter signifying the p.d.f. The c.d.f. 1s thus given by

F(z) =/_mf(1-’)d_r'= P(X < 1) : POF .]¢
Clearly, F(—o00) = 0 and F(+00) — 1. F®) 1
Properties of the c.d.f.: “ F. b) |24
e 0<F(xr)<1 o1 r o025
. ) Fa)|---
e F(z) 1s monotone and not decreasing. . . ,
0 2 4 6 8 10
e Pla< X <b) = F(b) — F(a) x
® F (I) diSOOD tinuous at T imp]iw :‘l;lﬁ;nlt:‘?n c(t?‘)) r{\[};:;llaabi]ity density function f{z). (b) The corresponding cumulative distri-

P(X =1)= slziTo |F(x + 6x) — F(x — éx)| , i.e., the size of the jump.

e F(z) continuous at = implies P(X = z) = (.

The c.d.f. can be considered to be more fundamental than the p.d.f. since the
c.d.f. 1s an actual probability rather than a probability density. However, in appli-
cations we usually need the p.d.f. Sometimes it is easier to denve first the c.d.f.
from which you get the p.d.f. by

aF(x)
Or

flz) = (2.4)

dp _dp dx _ [()

dF ~ dx dF_f(x)=1

Note: the p.d.f. for F is uniformly distributed in [0,1]:




Library of p.d.f.sin ROOT/RooFit

e RooFit provides a collection of compiled standard PDF classes

RooBMixDecay

M |

<:| Physics inspired

ARGUS,Crystal Ball,

Breit-Wigner, Voigtian,
/ B/D-Decay,....

RooPolynomial E

RooHistPdf [ |_|
RooArgusBG 1 Non-parametric
Histogram, KEYS
RooGaussian “ 6 8
Aol
T8 8 1
| Basic

4+ Gaussian, Exponential, Polynomial,...
Chebychev polynomial

Easy to extend the library: each p.d.f. is a separate C++ class
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Attributes of a p.d.f.

: mode & median

>

>

Median of a p.d.f. : value of x for which F(x)=1/2

F(z)

1

(it divides the distribution in 2 parts with the same area)

Note : the median is not always well defined
since there can be more than one such value of x

.....
~~

Mode of a p.d.f. : the location of a maximum of f(x)
(value of x that in an infinite sampling would
appear the highest number of times)

———
-

R

medians

Note : a p.d.f. can be multimodal !

Note : in this example ... mode and median coincide

,
-,
-
-
-
Pt
-
-
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Attribute of a p.d.f. : expectation value

2 Expectation value of a p.d.f. (sometimes called “Mean” which is very misleading actually! Better population mean):

represents the central value of a p.d.f. and it is defined as:

MEE[x]=fxf(x)dx

Note: E[x]is not a function of x (there is an integral on x !) but depends on the distribution
of the values taken by x (that is on the shape of the p.d.f.)

The mean is often a good measure of location, i.e., it frequently tells roughly where

the most probable region is, but not always.
,,,,,, it can even happen that it is

| f(z) |
/\ /V\ a value never taken by the x !
) ’ h K

Properties: g =cost = E[a]l=a & El[ax]=a"E[x]
if uis a function of x: E[au(x)]=a-E[u(x)] where E[u(x)]= fu(x)f(x)dx

Eis a linear operator: E[au(x)+a,v(x)]=a,Elu(x)]+a,E[v(x)]
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Attributes of a p.d.f. : example

Maxwell-Boltzmann
Probability density function

A

N | —

— a=1
— a=2|]
— a=5 . . . .
For this distribution:
the expectation value (“Mean”) > Median
» Mode
s %10
Mode
0.1H \ 251 / Median
0.05 ‘ ' 50 | Mean
Cumulativel distribution function %15 L
1.0+ &
0.8}
0.6} : ]
& 3 / -
~~ 0 L | Il Il L L L
0 2 4 6 8 10 12 14 16
Parameter value «10%4
— a=1y] (note: this is the effect of the large tail on the right)
— a=5
5 10 15 20
X

» Median > Mode
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Attribute of a c.d.f. : quantile of order «

A useful concept related to the cumulative distribution is the so-called quan-
tile of order « or a-point. The quantile z,, is defined as the value of the random
variable 2 such that F(z,) = a, with 0 < a < 1. That is, the quantile is simply
the inverse function of the cumulative distribution,

zo = F 1(a). (1.17)

A commonly used special case is z,,, called the median of z. This is often used
as a measure of the typical ‘location’ of the random variable, in the sense that
there are equal probabilities for z to be observed greater or less than z,.

X = 1
@ @,
075 1 075 F
A E %) T — .
1
05 : (A - 1= S ——
1
’ !
: 1
025 | I 0.2s | ]
’ !
: 1
0 : Lo— 0 1 I‘  W—
0 2 4 I6 10 ) 2 4 N\ 6 8 10
~ \
NNN —1 \
X ~ = x N

f_x:f(x)dx =a=1- fx+oof(x)dx

a
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Attribute of a p.d.f. : central moments

> The moments are particular expectation values. The moments of order m are defined as: E[x™] = fj;o x™f(x)dx.

Therefore: moment of order 1 = expectation value

2> ltis possible to introduce also the central moments of order m, defined as: E[(x — u)™] = f+;°(x — W)™ f(x)dx.

Note: if i is finite ... the central moment of order 1 is null for any u :
=1 (normalization)

Flec— 0™ = [ - wf@de= [ af@dx | feodei= | xfeodr—p =Bl - == p =0

Note also: if f(x) is symmetric ... the central moments of odd orders (m = 1, 3,5, ...) are null !

> The central moment of order 2 is called variance and represents the spread of the f(x) around the expectation value.

See details next slide!
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Attribute of a p.d.f. : variance

= U

= E[x*] = 2p* + p* = E[x?] — p?

2> The squared root of the variance is called standard deviation of x and denoted by o, .

It is often useful because it has the same dimentional units of x and thus ...

... it represents the spread of the p.d.f. around its expectation value.

Property: V[ax] = a?-V[x] , with a = cost.

Indeed:  V[ax] = E[a*x?] — (E[ax])? = a® E[x*] — (aE[x])? = a? - (E[x?] — (E[x])?) = a? - V[x]
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