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MAXIMUM LIKELIHOOD Method

2 In HEP practise the most frequently adopted parameter estimation method is based on the construction of the combined

probability distribution of all measurements in our data sample, called likelihood function.

The estimate of the parameters we want to determine is obtained by finding the parameter set that corresponds to the
maximum value of the likelihood function. This approach takes the name of maximum likelihood method.

The procedure is also called best fitting because it determines (estimates) the parameters for which the theoretical pdf

model best fits the experimental data sample.

Maximum likelihood fits are every day used - in HEP data analysis - because of the very good statistical properties
characterizing the maximum likelihood estimators. It is better than the chi-squared method that has the limitation to deal
only with binned data (not unbinned as the ML method can also do (*)) and does not behave well when in some bins

there are few entries. The chi-squared method was used in ROOT before the development of RooFit .

(*) Remember that - in RooFit -the ML method can work on both two classes of data:
RooDataHist (histogramsi.e. binned data) & RooDataSet (unbinned data).




LIKELIHOOD Function - |

>» The likelihood function is the function that, for given values of the unknown parameters, returns the value of the pdf

evaluated at the observed data sample.

If the measured values of nrv.sare (X1, ..., Xp)

and our pdf model depends on m unknown parameters (64, ..., O,)

.. the likelihood function is:  L(Xy, .., Xp; 01, e, ) =i f i1, e, X3 01, oov) O
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* JOINT pdf of the rv.s (X1, ..., Xp)

The maximum likelihood estimator of the unknown parameters (604, ..., 6,,) is the function that returns the values of the

parameters (called ML best estimates) (él, e ém) for which the likelihood function, evaluated at the measured sample

is maximum!




LIKELIHOOD Function - I

» If we have N repeated measurements, each consisting of the n values of the random variables (X1, ..., X5,) ,
the likelihood function is the probability density corresponding to the total sample X = {Ce= =), o, (), XD
If the observations are independent of each other (*), the likelihood function of the total sample consisting of the N events

recorded by our experiment can be written as the product of the pdfs corresponding to the measurement of each single

\
\

event: \

N
L(%6) = nf (L, X010, 0,)
i=1

(*) In physics often the word event is used with a different meaning w.r.t. statistics and it refers to a collection of measure-
ments of observable quantitie (X1, s Xp) corresponding to a physical phenomenon, like a collision of particles at an
accelerator, or the interaction of a particle, or a shower of particles from cosmic rays, in a detector.

Measurements performed at different events are tipically uncorrelated and each sequence of variables taken from N

different events can be considered a sampling of independent and identically distributed random variables.




LIKELIHOOD Function - Il

>» Often the logarithm of the likelihood function is computed so that the product of many terms can be transformed into
a sum of the logarithm. Moreover, instead of maximizing the likelihood function, it is often more convenient to minimize

the Negative Log-Likelihood.

N
NLL = —InL(X; 5) = —2 Inf(xi, ..., xk; 04, ., 0) [ sometimes NLL = —2InL(%; 5) ]
i=1

Its minimization can be performed analitically only in the simplest cases.

In most of the realistic cases the NLL minimization requires numerical methods implemented as computer algorithms.

The software MINUIT (F. James et al.) [*] is one of the most widely used minimization tool in the HEP field since the 1970s.
The minimization is based on the steepest descent direction in the parameter space, which is determined based on a
numerical evalution of the gradient of (logarithm of) the likelihood function.

MINUIT has been re-implemented from the original Fortran version into C** and is available in the ROOT software tookit.

[*] CERN Program Library Long Writeup D506
http://wwwasdoc.web.cern.ch/wwwasdoc/minuit/minmain.htmi




Example: Gaussian Likelihood Function

D For N repeated measurements of a r.v. X distributed according to a Gaussian function with mean p and standard deviation o,

twice the NLL function can be written as:
o (x; — 11)?
2NLL = —2lnL(5c’ = (X1, eee) Xjy e XN} 0 = (u, 02)) = Zla—zﬂ + N[In(2m) + 21n(0)]
i=1

Its minimization can be performed analitically by finding the zeros of the first partial derivatives of -2InL w.r.t. the 2 parameters (*)!
1v 1y
The following maximum likelihood estimates for p and ¢ can be thus obtained: i = Nz x; & 02 = NZ(xi—ﬁ)z
The maximum likelihood estimate a2 is affected by a bias, in the sense that its mean deviates from the true o2.
It can be calculated that the bias is N ~ 1 thus vanishes in the limit N — oo(asymptotically unbiased estimator).

N

N
—~ 1
A fully unbiased estimator can be then obtained by introducing the suitable correction factor: 02 = mz:(xi—ﬁ)z
i=1

ONLL ONLL
) —=0 & =
) ou do?




EXTENDED Likelihood Function - |

> If the number of recorded events N is also a random variable that tipically follows a poissonian distribution (stocastic

phenomenon) whose exp. value p may also depend on the m unknown parameters, the extended likelihood function

can be defined as:

N
L(Z,N;8) = P(N; 8) - nf (L, .., %L 04, ..,6.)
i=1

The extended likelihood function exploits the number of recorded events as information in order to determine the

parameters’ estimate, in addition to the data sample. By expliciting the poissonian function (with exp. value p) we can write:

- e_“ ° ‘uN N 5 . g
L(%,N;0) = — ‘ ‘f (xi, .., xk; 64, ...,0)  Where p=pu(0)
' i=1




EXTENDED Likelihood Function - I

D Let us consider the typical case where the pdfis a linear combination of two pdfs, one for the «signal», fs ,
and one for the «background», f :

e—(s+b) . (S + b)N
N!

N
| [ s Geis 09 + wafis s )]

i=1
S 2 b
s+b BT SFD

L(X,N;s,b,0) =

where the fractions of the signal & background are: wg =

Note that wg + wg = 1, hence f = [wsfs + wifg] is normalized, assuming that f; & fp are normalized.

More compactly: N
; e—(s+b)
L(X,N;s,b,0) = o -n[sfs(xi;e) + bfg(x;;0)] ..where s & b are yields!
' i=1
The logarithm of the likelihod functioon provides a more convenient expression: _..-->can be omitted in the minimization

(since it is constant w.r.t. the parameters)

N N
—InL@Z N;s,b,0)=s+b+ Z nfsf; (xi; 6) + b (xi; 6)] — E()

=1
N

Note the difference with the non-extended case for which :  L(X,;ws,0) = [Wsfs(x;;0) + (1 — ws) fg(x;;0)]

A

i=1

..where wg is the signal fraction!
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Example of application of an EXTENDED Likelihood Function - |
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Fig. 52 Example of unbinned extended maximum likelihood fit of a simulated dataset. The fit
curve is superimposed to the data points (black dots with error bars) and shown as solid blue line

by L.Lista




Example of application of an EXTENDED Likelihood Function - II
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and standard deviation ¢ can be fit together with sig.
and bkg. yields s and &.

P (m): Gaussian peak
P,(m): exponential shape

The additional parameters, beyond the
parameters of interest

(s in this case), used {o model
background, resolution, eic. are examples
of nuisance parameters

In the plot, data are accumulated into bins
of a given width

Error bars usually represent uncertainty on
each bin count (in this case: Poissonian)
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by L.Lista
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[see details in the
hands-on sessions]
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Variance of ML Estimators : the RCF bound (lowest variance) - |

[t turns out in many applications to be too difficult to compute the variances ana-
lytically, and a Monte Carlo study usually involves a significant amount of work.
In such cases one typically uses the Rao—Cramér-Frechet (RCF) inequality, also
called the information inequality, which gives a lower bound on an estimator’s

variance. This inequality applies to any estimator, not only those constructed

from the ML principle. For the case of a single parameter 6 the limit is given by

A ab\? 0% log L
V(o] > (1 + -55) /L’ [——%—2—] ; (6.16)
where b is the bias as defined in equation (5.4) and L is the likelihood function.

A proof can be found in [Bra92]. Equation (6.16) is not, in fact, the most general
form of the RCF ineaualitv. but the conditions under which the form presented

here holds are almost always met in practical situations (cf. [Ead71] Section
7.4.5). In the case of equality (i.e. minimum variance) the estimator is said to be
efficient. It can be shown that if efficient estimators exist for a given problem,
the maximum likelihood method will find them. Furthermore it can be shown
that ML estimators are always efficient in the large sample limit, except when
the extent of the sample space depends on the estimated parameter. In practice,
one often assumes efficiency and zero bias. In cases of doubt one should check
the results with a Monte Carlo study.

by G.Cowan
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Variance of ML Estimators : the RCF bound (lowest variance) - Il

The variance V[A] of any consistent estimator is subject to a lower bound due to
Cramér [1] and Rao [2] which is given by:
ab(0)\
1+ ——

(3logL(x1. cer L Xpo 49))2 .
a6

where b(é) is the bias of the estimator (Eq. (5.5)) and the denominator is the Fisher
information, already defined in Sect. 3.7.

The ratio of the Cramér-Rao bound to the estimator’s vanance is called
estimator’s efficiency:

V[8] = Ver(8) = (5.6)

£(d) = VCR(AO) .
V(6]

(5.7)

Any consistent estimator # has efficiency £(#) lower or equal to one, due to Cramér-
Rao bound.
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Uncertainties with the ML Method - |

Once the estimate  of a parameter 6 is determined using the ML method, a confidence interval needs to be determined.

Two approximate methods to determine the parameters’ uncertainties are presented (for both cases the coverage is only

approximately ensured; the required coverage is, in most cases, equal to 68.27%, correspoding to 15).

1. Second Derivatives Matrix

» A parabolic approximation of —2In L around the
minimum is equivalent to a Gaussian approximation
— Sufficiently accurate in many but not all cases

n o 2
—2InL = Z (2 ,)ﬂ) + const.

0'4.4

1=1

» Estimate of the covariance matrix from 2"9 order

Vol = —M
17 09,09] 9,\.=9Ak

* Implemented in Minuit as MIGRAD/HESSE function

minimum:

-
"

-
-

this Covariance Matrix gives an n-dimensional
elliptic confidence contour (having the correct
coverage only if the pdf model is exactly Gaussian)
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Uncertainties with the ML Method - Il

2. Likelihood Scan  Another often used method is to consider a scan of -2InL around the minimum value -2InL,.,

(that is corresponding to the parameter set that maximizes L : L, ,,= L (55, 5) ).

An interval corresponding to an increase of -2InL by 1 unit w.r.t. its minimum value can be determined
as graphically shown for a single parameter:

» Error (no) determined by the range around the maximum for

e

~2InL  Errors can be
asymmetric
This method leads to identical errors - For a Gaussian PDF

the result is identical
to the 2" order
in the Gaussian case, in which -2InL derivative matrix

: * |mplemented in
has an exact parabolic shape ! | Minuit as MINOS

—-2InL

as those in the covariance matrix only Anl. +1

-
max

max

function

v

60— 8 i+ 8 g _
by L.Lista




Uncertainties with the ML Method - i

For more than one parameter, the error contour corresponds to the set of parameter values 6 such that:

—2InL(0) = —2InLyux + 1 —2InL(8) = —2InLyx + Z2 (for Zo)

2D error contour plot showing

) , The contour shows for this
the 1o uncertainty ellipse for s & b:

case a mild correlation between

\
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In case of very large number of measurements, computing the likelihood can be numerically unpractical: use binning !




