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6.9 Extended maximum likelihood

Consider a random variable 2 distributed according to a p.d.f. f(z;8), with
unknown parameters @ = (fy,...,0,,), and suppose we have a dala sample
21,...,2,. It 15 often the case that the number of observations n in the sample
1s itself a Poisson random variable with a mean value v. The result of the experi-
ment can be defined as the number n and the n values 21,...,z,. The likelihood
function is then the product of the Poisson probability to find n, equation (2.9),
and the usual likelihood function for the n values of z,

n
n %
v

L(v,6) = =™ [[ (z::6) = 2 (6.33)

n! 4
i=1

This is called the extended likelihood function. It is really the usual likelihood
function, however, only now with the sample size n defined to be part of the
result of the experiment. One can distinguish between two situations of interest,
depending on whether the Poisson parameter v is given as a function of 8 or is
treated as an independent parameter.
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6.10 Maximum likelihood with binned data

Consider n,; observations of a raudom variable z distributed according to a
p.d.f. f(x;8) for which we would like to estimate the unknown parameter 8 =
(61,...,0m). For very large data samples, the log-likelihood function becomes
difficult to compute since one must sum log f(z;;8) for each value z;. In such
cases, instead of recording the value of each measurement. one usually makes a
histogram, yielding a certain number of entries n = (ny,...,ny) in N bins. The
expectation values v = (vy,...,vnN) of the numbers of entries are given by

I:n.x

Vi(6) = nsor ] ' f(z:0)dz, (6.40)

min
zi

where /™" and z"** are the bin limits. One can regard the histogram as a single
measurement of an N-dimensional random vector for which the joint p.d.f. is
given by a multinomial distribution, equation (2.6),

fioint (m;v) = ,"‘°‘! ' ( < )m ( X )M. (6.41)

ny:...ny: \ Mot Mot

The probability to be in bin 7 has been expressed as the expectation value y;
divided by the total number of entries nyo. Taking the logarithm of the joint
p.d.f. gives the log-likelihood function,

N
log L(6) = Z n; log v;(6), (6.42)
i=1

where additive terms not depending on the parameters have been dropped. The
estimators @ are found by maximizing log L by whatever means available, e.g.
numerically. In the limit that the bin size is very small (i.e. NV very large) the
likelihood function becomes the same as that of the ML method without bin-
ning (equation (6.2)). Thus the binned ML technique does not encounter any
difficulties if some of the bins have few or no entries. This is in contrast to an
alternative technique using the method of least squares discussed in Section 7.5.
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Come fa MINUIT a calcolare la matrice di covarianza?

6.6 Variance of ML estimators: the RCF bound

It turns out in many applications to be too difficult to compute the variances ana-
lytically, and a Monte Carlo study usually involves a significant amount of work.
In such cases one typically uses the Rao—Cramér—Frechet (RCF) inequality, also
called the information inequality, which gives a lower bound on an estimator’s
variance. This inequality applies to any estimator, not only those constructed
from the ML principle. For the case of a single parameter # the limit is given by

. 8b\> 8% log L.
V[0]2(1+50-) /E[— TE ] (6.16)

where b is the bias as defined in equation (5.4) and L is the likelihood function.

For the case of more than one parameter, 8.= (6y,...,80,,), the correspond-
ing formula for the inverse of the covariance matrix of their estimators Vj; =

cov[0;,0;] is (assuming efficiency and zero bias)

9% log L]

V)i =E [—W (6.19)

b= Elf]—4.
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It turns out to be impractical in many situations to compute the RCF bound
analytically, since this requires the expectation value of the second derivative of
the log-likelihood function (i.e. an integration over the variable z). In the case of
a sufficiently large data sample, one can estimate V=" by evaluating the second
ferivative with the measured data and the ML estimates 8:

. 3 log L
1) =m0 . )
(V )'J 69;'09_7' 0= (6 2])
For a single parameter ¢ this reduces to
— 8% log L
2. = |1 /252
o?; ( l/ 507 ) i (6.22)

[his is the usual method for estimating the covariance matrix when the likelihood
‘unction is maximized numerically.}
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1For example, the routines MIGRAD and HESSE in the program MINUIT [Jam89, CER97] de-
ermine numerically the matrix of second derivatives of log L. using finite differences, evaluate

t at the ML estimates, and invert to find the covariance matrix.
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6.10 Maximum likelihood with binned data

Consider ny, observations of a random variable z distributed according to a
p.d.f. f(x;8) for which we would like to estimate the unknown parameter 8 =
(61,...,0m). For very large data samples, the log-likelihood function becomes
difficult to compute since one must sum log f(z;; 8) for each value z;. In such
cases, instead of recording the value of each measurement one usually makes a

histogram, yielding a certain number of entries n = (ny,...,ny) in N bins. The
expectation values v = (4, ...,vnN) of the numbers of entries are given by
I:n.x
vi(8) = nior /  f(=;8)dz, (6.40)

where /™" and z"®* are the bin limits. One can regard the histogram as a single
measurement of an N-dimensional random vector for which the joint p.d.f. is
given by a multinomial distribution, equation (2.6),

nw! 1751 e UN RN
fioint (;¥) = ——= ,( ) "'(nmz) : (6.41)

ny:...Ny: Niot
The probability to be in bin 7 has been expressed as the expectation value v,
divided by the total number of entries n.. Taking the logarithm of the joint
p.d.f. gives the log-likelihood function,
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log L(6) = ) _ n; logui(8), (6.42)
i=1

where additive terms not depending on the parameters have been dropped. The
estimators @ are found by maximizing log L by whatever means available, e.g.
numerically. In the limit that the bin size is very small (i.e. NV very large) the
likelihood function becomes the same as that of the ML method without bin-
ning (equation (6.2)). Thus the binned ML technique does not encounter any
difficulties if some of the bins have few or no entries. This is in contrast to an
alternative technique using the method of least squares discussed in Section 7.5.

------------- » This feature makes Binned ML fit superior than x2-fit (LSQ fit)
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Extended ML fit in case of binned data

As discussed in Section 6.9, in many problems one may want to regard the
total number of entries nio: as a random variable from a Poisson distribution
with mean wvo. That is, the measurement 1s defined to consist of first deter-
mining no¢ from a Poisson distribution and then distributing n,,: observations
of z in a histogram with N bins, giving n = (ny,...,nx). The joint p.d.f. for
nior and ny,...,ny is the product of a Poisson distribution and a multinomial
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N . . .
where one has vor = )i, i and negy = Zf_‘l n;. Using these in equation (6.43)
gives

N
Fioint (n0; V) H ‘;— : (6.44)

where the expected number of entries in each bin »; now depends on the param-
eters @ and vier,

rmax

vi(Veot, 8) = uw;/ '. flz;8)dz. (6.45)
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From the joint p.d.f. (6.44) one sees that the problem is equivalent to treating
the number of entries in each bin as an independent Poisson random variable n;
with mean value v;. Taking the logarithm of the joint p.d.f. and dropping terms
that do not depend on the parameters gives

N
log L{¥ot, 0) = —thor + 3 ni logui(vrar, 6). (6.46)
i=1
This 1s the extended log-likelihood function, cf. equations (6.33), (6.37), now for
the case of binned data.

The previously discussed considerations on the dependence between v and
the other parameters 6 apply in the same way here. That is, if there is no
functional relation between 1, and €, then one obtains I, = Ny, and the
estimates @ come out the same as when the Poisson term for n.o; is not included.
If vyo Is given as a function of €, then the variances of the estimators 8 are in
general reduced by including the information from ny.
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