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IN-DEPTH STUDIES about FITTING with ROOFIT
PROFILE LIKELIHOOD & MINOS
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Inspired by part of the theory visualization & exercises by Wouter Verkerke : 
https://indico.cern.ch/event/72320/contributions/2082589/attachments/1037201/1478048/roofit-intro-roostats-v11a.pdf
https://indico.cern.ch/event/305391/contributions/701304/attachments/580262/798889/Verkerke_Statistics_L2.pdf

See also :
- his slides for the Ferrara School 2009: https://www.nikhef.nl/~verkerke/ferrara)
- his slides for IN2P3 School 2014: https://indico.in2p3.fr/event/9742/contributions/50419/attachments/40828/50594/sos2014_systprof_v38.pdf

Of course a good reference book is : Luca Lista, Statistical methods for Data Analysis in Particle Physics, Springer, 2nd Ed.
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With reference to the code in the macro yield.C …

- Get the histogram of the J/y(µµ)f(KK)K invariant mass :

TFile f1("DatasetAandB_KaonTrackRefit_Bwin_new_21aug13.root","READ");
TH1D *hist = (TH1D*)f1.Get("myJpsiKKKmass_all");

- Declare & initialize the variable to represent the invariant mass and prepare the corresponding RooPlot pointer:

RooRealVar y("y","y",5.15,5.45);
RooPlot* yframe = y.frame("");

- Import the binned data by creating the RooDataHist object from the histogram and plot it:

RooDataHist BmassExt(hist->GetName(),hist->GetTitle(),RooArgSet(y),RooFit::Import(*hist,kFALSE));
BmassExt.plotOn(yframe);
myC->cd();
yframe->Draw();

Retrieve binned data and plot
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Build the model: - a gaussian for the signal (2 parameters: mass and width) ;
- a Chebyshev of 2nd (2 parameters:) order for the background.

Based on these two PDFs, build the full PDF to make an extended fit: 

RooRealVar nsig("nsig","sig fraction",500.,0.,5000.);
RooRealVar nbkg("nbkg","bkg fraction",2000.,0.,200000.);
//
RooAddPdf model_extended("model_extended","gauss+cheby EXT",       

RooArgList(gausse,chebye),RooArgList(nsig,nbkg));

Create a function object that represents the negative-log-likelihood (nll) …
… by using the method RooAbsPdf::createNLL(RooAbsData&); the returned object is of type RooAbsReal*

RooAbsReal* nll = model_extended.createNLL(BmassExt);

In this way we explicitely constructed the likelihood (function of PDF/data combination) 
that can be used as any RooFit funcion object. 

Note: likelihood can be created by a calculation that can be parallelized (suppose for instance on 4 cores):
RooAbsReal* nll = model_extended.createNLL(BmassExt,NumCPU(4));

Build the negative log-lokelihood (nll)
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Let us invoke MINUIT to perform the binned extended fit.

First we can create a MINUIT session: 

RooMinuit m(*nll);

Calling  MIGRAD we get the central values (best estimates) 
for the parameters  when convergence is reached:

m.migrad();

MINUIT session
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To recalculate  the errors and the covariance matrix in an 
accurate way (still in parabolic assumption) we use HESSE,
while central values (by Migrad) are conserved.

m.hesse();

Parabolic uncertainties
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Extended vs not-extended fits: a comparison - I

Difference can be hardly appreciated: mass and width are about identical ! (see next slide)
Extended fit has the advantage to provide as output also the number of B+ candidates (nsig)
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Extended vs not-extended fits: a comparison - II

𝑚 = (5279,43 ± 0.53)𝑀𝑒𝑉

𝜎 = (9,4740 ± 0,6078)𝑀𝑒𝑉

𝑚 = (5279,43 ± 0.53)𝑀𝑒𝑉

𝜎 = (9,4837 ± 0,6085)𝑀𝑒𝑉

NOT-extended Extended
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To get asymmetric error (central 
values and parabolic are the same) 
for a specific parameter, like nsig :

m.minos(nsig);

To get asymmetric error for 
all the parameters :
m.minos();

To additionally print the result just 
do:    nsig.Print();

Asymmetric uncertainties

Note: asymmetric errors can
slightly change if you execute
MINOS for 1 or all parameters
(in this case only … upper uncertaity changes)
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It is possible to save the status of the fit, including the information about the convariance matrix:

RooFitResult* fitres = m.save();

It is possible to visualize the correlation matrix:

gStyle->SetPalette(1); //- for better color choice
fitres->correlationHist->Draw(“colz”);

Note:
- anticorrelation between nsig and nbkg as expected
- correlation between  nsig and width of Gaussian wge
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Correlation Matrix

Note: in general, if correlations are very strong (i.e. > 0.9)
the model may become unstable and it may be worthwhile
to fix one of the parameters in the fit.
If the strong correlation is between two nuisance parameters,
this is not a problem. Instead, when a parameter-of-interest 
is correlated with a nuisance one, it must be avoided to fix the 
nuisance parameter because the risk is to strongly under-estimate 
the uncertainty on the physical parameter!



It is also possible to visualize errors & correlation matrix elements:

RooPlot* paramFrame = new RooPlot(nsig,wge);
fitres->plotOn(paramFrame,nsig,wge);
paramFrame->Draw();

where this example shows a certain level of correlation.

Visualization of correlated errors - I
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m.contour(nsig,wge);
It starts the MNCONTOUR calculation of 50 point on two
contours (for ERRDEF=0.5 and 2.0). Each point identified by a 
pair of values of parameters 5(nsig) and 6(wge) is a minimum 
with respect to the remaining (four, in this case) variable parameters.
Values are printed on the screen @ execution time.
The contour with ERRDEF=0.5 is the one obtained before/above.



Visualization of correlated errors - II

A.Pompili-10

But why ERRDEF=0.5 and 2.0 are considered?

Well, do not forget that a PDF can be converted into a Likelihood function      by “exchanging”
the vector of observations      with the vector of parameters      !
For only one parameter, say     , the likelihood is a function of it, namely            , and                   is a parabola!

ℒ
𝜃⃗𝑥⃗

ℒ(𝜇)𝜇 𝐥𝐧𝓛(𝝁)

Note : if you put the ”-” in front of it, thus getting the neg-log-likelihood,                    , the parabola changes sign and “points” 
upwards instead of downwards.

𝐥𝐧 𝓛(𝝁)
𝜇

ERRDEF=0.5 à 1s

ERRDEF=2.0 à 2s

−𝐥𝐧𝓛(𝝁)

Extension: Now suppose we’ve 2 parameters of interest; in this case you can imagine a paraboloid instead of a parabola with
different aperture when projecting in 1-dim. The “multivariate” uncertainty is then represented by an elliptic contour.



It is possible to propagate the errors (stored in the covariance matrix of a fit result) to a PDF projection:

model_extended.plotOn(yframe, VisualizeError(*fitres));
yframe->Draw();

To get the points’ errors over the cyan shadowed 
region describing the uncertainty we need to add
the following two lines (to get the “trick” done):

BmassExt.plotOn(yframe);
yframe->Draw("Esame");

Visualization of the fit uncertainty
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Visualization of the fit log-likelihood function and of the Profile Likelihood ratio
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We can obtain the best estimate for nsig & the MINOS uncertainty corresponding to the interval provided by the PL ratio : 

[nsig]

Likelihood
for nsig

2749 3100

2923

From MINOS: 

Profile Likelihood
ratio for nsig

(2923.2) − 174.3 + 176.4
2923.2From MIGRAD: 

Overall interval: ≅ [2749, 3100]

(slightly asymmetric) 



Connection between MINOS uncertainties & Profile Likelihood
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In the next slides this connection will be investigated & explained. 



Profile Likelihood
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In the next slides this connection will be argued/explained.
Firstly, remember the difference between these two concepts:

- POI(s) = parameter(s) of interest: parameter(s) of theoretical model (we assume predicts distribution of observed variables)

- NPs = nuisance parameters : additional unknown parameters, appearing together with the POI(s), that represent the
effect of the detector response (resolutions, miscalibrations, …), the presence of background, …

Typically they can represent systematic uncertainties & can be usually determined from simulation or data control samples. 

Let’s assume for simplicity to have a POI      and a set of NPs      (i.e.all parameter are treated as NPs with exception of ).
The likelihood function is written as:                    .  To easy the notation we drop the      and write simply               .

The so-called profile likelihood is constructed following this prescription:

- for a given value of the POI      derive the ML estimates (it’s a conditional ML estimate; fit with     fixed to a constant value     )

- thus the maximum likelihood for a given value of      is                              ;

- recalculating (CPU expensive) for each value of     (scan of     values) we get a truly function of      : 
which is the likelihood function maximized w.r.t. all the NPs and is called profile likelihood !

𝝁

𝜽
𝓛(𝒙; 𝝁, 𝜽) 𝒙 𝓛(𝝁, 𝜽)

G𝝁
HH𝜽(G𝝁)

G𝝁 𝓛𝒎𝒂𝒙(G𝝁,
HH𝜽 G𝝁 )

G𝝁

𝝁 𝝁 𝓛𝒎𝒂𝒙(𝝁,
HH𝜽 𝝁 )𝝁

𝝁𝝁



(that does not depend on the NPs    ) 

This ratio is used in the convenient test statistic                                   . Dropping the obvious “max” index:

and 

Profile Likelihood ratio
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On the other hand it is always possible to maximize the likelihood getting the best estimates (fit values) of     and     
corresponding to the observed data             

𝒕𝝁 = −𝟐 𝒍𝒏 𝝀(𝝁)

𝜽

𝜽

𝒙 : 𝓛𝒎𝒂𝒙(P𝝁,
H𝜽)Q⃗𝜃 . Thus the maximized likelihood is:P𝝁

𝝁

𝝀 𝝁 =
𝓛𝒎𝒂𝒙(𝝁,

HH𝜽 𝝁 )

𝓛𝒎𝒂𝒙(P𝝁,
H𝜽)

At this point we can consider the Profile Likelihood ratio :

𝝀 𝝁 =
𝓛(𝝁,

HH𝜽 𝝁 )

𝓛(P𝝁, H𝜽)

In other words the profile likelihood ratio substitutes the ordinary likelihood ratio, in the test statistics                                   ,
when we have to deal with nuissance parameters:

𝒕𝝁 = −𝟐 𝒍𝒏 𝝀(𝝁)

𝝀 𝝁 =
𝓛(𝝁)
𝓛(P𝝁)

𝝀 𝝁 =
𝓛(𝝁,

HH𝜽 𝝁 )

𝓛(P𝝁, H𝜽)

Comments on the Profile Likelihood approach: 
- it is computationally challenging because it requires to perform the minimization of the likelihood w.r.t. all the nuisance   

parameters for every point in the profile likelihood curve (see also next slide that illustrates this)
- the minimization can be difficult because of the possibly strong correlation among POIs and NPs or multiple/local minima

Maximum 
Likelihood

Maximum 
Likelihood

Likelihood for a given µ Maximum 
Likelihood 
for a given µ
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How to obtain a Profile Likelihood

For visualization purposes have a look ar this figure illustrating the scan of     values in order to obtain                 : 𝝁 𝓛(𝝁,
HH𝜽 𝝁 )
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Profile Likelihood & Contours - I

For illustration purposes let us consider one POI (   ) and one NP (   ) in order to visualize the profiling.𝝁 𝜽

Firstly let us design/locate the (black) point representing 
their best estimates that maximize the likelihood:   (P𝝁, H𝜽)

𝝁

𝜽𝛍, 𝜽 ≡ P𝝁, H𝜽 ⇒ 𝓛 ≡ 𝓛𝒎𝒂𝒙(P𝝁, H𝜽)

Secondly let’s design the red curve that represents
those points             for which 𝓛 ≡ 𝓛𝒎𝒂𝒙(𝝁, HH𝜽 𝝁 )

…corresponding to a subset of subsequently given/fixed 
values of     which includes also the special value               .G𝝁 ≡ P𝝁𝝁

(𝝁, HH𝜽)

(NP)

(POI)

P𝝁, H𝜽
Finally we can design the contour curves at 1s and 2s with respect
to              the maximum (minimum) of the (negative) likelihood.
This is discussed in detail in the next slide.

−𝒍𝒏
𝓛 𝝁, 𝜽

𝓛𝒎𝒂𝒙 P𝝁, H𝜽
=
𝟏
𝟐

−𝒍𝒏
𝓛 𝝁, 𝜽

𝓛𝒎𝒂𝒙 P𝝁, H𝜽
= 𝟐
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Profile Likelihood & Contours - II

In particular the first contour corresponds to a set of parameters such that: −𝟐𝐥𝐧𝓛 𝝁, 𝜽 = −𝟐𝐥𝐧𝓛𝒎𝒂𝒙 P𝝁, H𝜽 + 𝟏

Indeed in the simplest case (only one POI & no NPs) one has:

P𝝁
P𝝁 − 𝝈W P𝝁 + 𝝈X

𝝁

−𝟐𝐥𝐧𝓛 𝝁 ≡ −𝟐𝐥𝐧𝓛𝒎𝒂𝒙(P𝝁) +1

𝟐𝐥𝐧𝓛 𝝁 − 𝟐𝐥𝐧𝓛𝒎𝒂𝒙 P𝝁 = −1

𝟐𝒍𝒏 𝓛 𝝁
𝓛𝒎𝒂𝒙 P𝝁

= −1 −𝒍𝒏
𝓛 𝝁

𝓛𝒎𝒂𝒙 P𝝁
= +

𝟏
𝟐

When there is also one NP one gets 2D contours (see next slide) and

−𝒍𝒏
𝓛 𝝁

𝓛𝒎𝒂𝒙 P𝝁
becomes −𝒍𝒏

𝓛 𝝁, 𝜽
𝓛𝒎𝒂𝒙 P𝝁, H𝜽

Note that in general the uncertainty (and thus the 1s interval)  
can be asymmetric (as depicted).
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Profile Likelihood & Contours - III

When there is also one POI and one NP one gets 2D contours, here designed with the 2 projections:

−𝒍𝒏
𝓛 𝝁, 𝜽

𝓛𝒎𝒂𝒙 P𝝁, H𝜽
= 𝟐

−𝒍𝒏
𝓛 𝝁, 𝜽

𝓛𝒎𝒂𝒙 P𝝁, H𝜽
=
𝟏
𝟐

𝜽

𝝁

𝜽

𝓛𝒎𝒂𝒙(P𝝁, H𝜽)

Clearly the correct 1s interval for the POI is given 
by the projection of the contour (and not by the -
marginalized - likelihood, that is the blue 
projection, which ignores the effect of the 
presence of the NP). It can be demonstrated that 
this confidence interval provides the correct 
coverage in the frequentistic approach.

The overall uncertanty is in general asymmetric!



𝓛𝒎𝒂𝒙(𝝁, HH𝜽 𝝁 )
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Same confidence interval provided by Profile Likelihood & Contours

When there is also one POI and one NP one gets 2D contours, here designed with the 2 projections:

−𝒍𝒏
𝓛 𝝁, 𝜽

𝓛𝒎𝒂𝒙 P𝝁, H𝜽
= 𝟐

−𝒍𝒏
𝓛 𝝁, 𝜽

𝓛𝒎𝒂𝒙 P𝝁, H𝜽
=
𝟏
𝟐

𝜽

𝝁

𝜽

𝓛𝒎𝒂𝒙(P𝝁, H𝜽)

Projection of

Clearly the correct 1s interval for the POI is given 
by the projection of the contour (and not by the -
marginalized - likelihood, that is the blue 
projection, which ignores the effect of the 
presence of the NP). It can be demonstrated that 
this confidence interval provides the correct 
coverage in the frequentistic approach.

It is also crucial to know that this interval is the 
same provided by (the projection of) the Profile 
Likelihood ratio based on
Indeed the additon of NP(s) broadens the shape 
of the Profile Likelihood as a function of the POI 
compared with the case where NP(s) are not 
added. As a consequence, the uncertainty on the 
POI increases when NPs - that usually model 
sources of systematic uncertainties - are included. 
The overall uncertanty is in general asymmetric!

𝓛𝒎𝒂𝒙(𝝁, HH𝜽 𝝁 )
𝓛𝒎𝒂𝒙(P𝝁, H𝜽)

(as visually clear) !

𝓛𝒎𝒂𝒙(𝝁, HH𝜽 𝝁 )
𝓛𝒎𝒂𝒙(P𝝁, H𝜽)
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MINOS uncertainties by likelihood scan

When there is also one POI and one NP one gets 2D contours, here designed with the 2 projections:

−𝒍𝒏
𝓛 𝝁, 𝜽

𝓛𝒎𝒂𝒙 P𝝁, H𝜽
= 𝟐

−𝒍𝒏
𝓛 𝝁, 𝜽

𝓛𝒎𝒂𝒙 P𝝁, H𝜽
=
𝟏
𝟐

𝜽

𝝁

𝜽

𝓛𝒎𝒂𝒙(P𝝁, H𝜽)

Projection of

The MINOS method (called by MINUIT)
determines the overall uncertainties (in general 
asymmetric) based on the likelihood scan
namely on the                   scan used to determine 
the 1s contour.

Moreover :

−𝟐𝐥𝐧𝓛 𝝁

𝓛𝒎𝒂𝒙(𝝁, HH𝜽 𝝁 )
𝓛𝒎𝒂𝒙(P𝝁, H𝜽)

𝓛𝒎𝒂𝒙(𝝁, HH𝜽 𝝁 )
𝓛𝒎𝒂𝒙(P𝝁, H𝜽)
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MINOS uncertainties by likelihood scan

When there is also one POI and one NP one gets 2D contours, here designed with the 2 projections:

−𝒍𝒏
𝓛 𝝁, 𝜽

𝓛𝒎𝒂𝒙 P𝝁, H𝜽
= 𝟐

−𝒍𝒏
𝓛 𝝁, 𝜽

𝓛𝒎𝒂𝒙 P𝝁, H𝜽
=
𝟏
𝟐

𝜽

𝝁

𝜽

𝓛𝒎𝒂𝒙(P𝝁, H𝜽)

Projection of

The MINOS method (called by MINUIT)
determines the overall uncertainties (in general 
asymmetric) based on the likelihood scan
namely on the                   scan used to determine 
the 1s contour.
The MINOS errors can be visualized with the size 
of the green bounding box around the contour 
given by                                     !

Moreover :

−𝟐𝐥𝐧𝓛 𝝁

−𝒍𝒏
𝓛 𝝁, 𝜽

𝓛𝒎𝒂𝒙 P𝝁, H𝜽
=
𝟏
𝟐

𝓛𝒎𝒂𝒙(𝝁, HH𝜽 𝝁 )
𝓛𝒎𝒂𝒙(P𝝁, H𝜽)

𝓛𝒎𝒂𝒙(𝝁, HH𝜽 𝝁 )
𝓛𝒎𝒂𝒙(P𝝁, H𝜽)
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MINOS uncertainties by likelihood scan

When there is also one POI and one NP one gets 2D contours, here designed with the 2 projections:

−𝒍𝒏
𝓛 𝝁, 𝜽

𝓛𝒎𝒂𝒙 P𝝁, H𝜽
= 𝟐

−𝒍𝒏
𝓛 𝝁, 𝜽

𝓛𝒎𝒂𝒙 P𝝁, H𝜽
=
𝟏
𝟐

𝜽

𝝁

𝜽

𝓛𝒎𝒂𝒙(P𝝁, H𝜽)

Projection of

The MINOS method (called by MINUIT)
determines the overall uncertainties (in general 
asymmetric) based on the likelihood scan
namely on the                   scan used to determine 
the 1s contour.
The MINOS errors can be visualized with the size 
of the green bounding box around the contour 
given by                                     !

In the gaussian case/regime                   can have a 
parabolic shape and the uncertainty of the POI is 
symmetric, or “close to symmetric” if parabolic 
approximation is good and contour is an ellipsis.
However - in general - the coverage in usually 
improved performing the likelihood scan instead 
of the parabolic approximation (given by HESSE).

Moreover :

−𝟐𝐥𝐧𝓛 𝝁

−𝟐𝐥𝐧𝓛 𝝁

−𝒍𝒏
𝓛 𝝁, 𝜽

𝓛𝒎𝒂𝒙 P𝝁, H𝜽
=
𝟏
𝟐

𝓛𝒎𝒂𝒙(𝝁, HH𝜽 𝝁 )
𝓛𝒎𝒂𝒙(P𝝁, H𝜽)

𝓛𝒎𝒂𝒙(𝝁, HH𝜽 𝝁 )
𝓛𝒎𝒂𝒙(P𝝁, H𝜽)



Correspondence between MINOS uncertainties & Profile Likelihood intervals
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For both … the resulting confidence interval is satisfactorily “covered”.

Let us remind that in the frequentist approach:

For a large fraction of repeated experiments - usually 68.27% - the unknown true value of    is contained
in the confidence interval                             . The fraction is meant in the limit of infinitely large number of 
repetitions of the experiment , and      &      may vary from on experiment to the other, being the result of a 
measurement in each experiment.
- Coverage: property of the estimated interval to contain the true value in 68.27% of the experiments.
- Confidence level : the reference probability level usually taken as 68.27%.
Interval estimates that have a larger (or smaller) probability of containing the true value, compared to the 
desired confidence level, are said to overcover (or undercover).

𝝁
[P𝝁 − 𝝈, P𝝁 + 𝝈]

𝝈P𝝁

It is important to know that the resulting confidence interval from the Profile Likelihood construction will 

have exact coverage for the points                   ; elewhere it might be over- or under- covering.(𝝁,
HH𝜽 𝝁 )

We conclude stating that: in the asymptotic regime (very large number of experiments) the MINOS algorithm 
provides the (asymmetric) uncertainties used in the definition of the frequentist confidence intervals !

Summarizing : the MINOS algorithm provides the same (asymmetric) uncertainties given by the Profile Likelihood ratio



Frequentist confidence intervals when NP are present

Exact confidence intervals are difficult when nuisance parameters are present:
- intervals should cover for any value of NPs (technically difficult)
- typically there can be a significant over-coverage

The approach to use the Profile Likelihood ratio guarantees the coverage at 
the measured values of NPs (only !)
- technically replace Likelihood ratio with Profile Likelihood ratio
- computationally more intensive but still very tractable

Asymptotically confidence intervals costructed with Profile Likelihood ratio
correspond to MINOS likelihood ratios intervals
- as the distribution of the Profile Likelihood becomes asymptotically  

independent of q the coverage for all values of q is restored !
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