Statistical Issues in Searches for New Physics

Louis Lyons Imperial College, London and Oxford

LHCP2014, June 2014 Columbia, NY

1

Theme:

Using data to make judgements about H1 (New Physics) versus H0 (S.M. with nothing new)

Why?

HEP is expensive and time-consuming

SO

Worth investing effort in statistical analysis

 \rightarrow better information from data

Topics:

```
Why 5\sigma for discovery?

P(A|B) \neq P(B|A)

Meaning of p-values

Wilks' Theorem

LEE = Look Elsewhere Effect

Background Systematics

Coverage

p_0 \vee p_1 plots

(N B. Several of these topics have
```

(N.B. Several of these topics have no unique solutions from Statisticians)

Conclusions

Why 5σ for Discovery?

Statisticians ridicule our belief in extreme tails (esp. for systematics) Our reasons:

- 1) Past history (Many 3σ and 4σ effects have gone away)
- 2) LEE (see later)
- 3) Worries about underestimated systematics
- 4) Subconscious Bayes calculation

 $\frac{p(H_1|x)}{p(H_0|x)} = \frac{p(x|H_1)}{p(x|H_0)} * \frac{\pi(H_1)}{\pi(H_0)}$ $\frac{p(H_0|x)}{p(x|H_0)} = \frac{p(x|H_1)}{\pi(H_0)} \times \frac{\pi(H_1)}{\pi(H_0)}$ $\frac{p(H_1|x)}{p(x|H_0)} = \frac{p(x|H_1)}{\pi(H_0)} \times \frac{\pi(H_1)}{\pi(H_0)}$ $\frac{p(H_1|x)}{p(H_0|x)} = \frac{p(x|H_1)}{p(x|H_0)} \times \frac{\pi(H_1)}{\pi(H_0)}$

"Extraordinary claims require extraordinary evidence"

N.B. Points 2), 3) and 4) are experiment-dependent

Alternative suggestion:

L.L. "Discovering the significance of 5σ " http://arxiv.org/abs/1310.1284

How many σ 's for discovery?

SEARCH	SURPRISE	IMPACT	LEE	SYSTEMATICS	Νο. σ
Higgs search	Medium	Very high	Μ	Medium	5
Single top	No	Low	No	No	3
SUSY	Yes	Very high	Very large	Yes	7
B _s oscillations	Medium/Low	Medium	Δm	No	4
Neutrino osc	Medium	High	sin²2ϑ, Δm²	No	4
$B_s \rightarrow \mu \mu$	No	Low/Medium	No	Medium	3
Pentaquark	Yes	High/V. high	M, decay mode	Medium	7
(g-2) _µ anom	Yes	High	No	Yes	4
H spin ≠ 0	Yes	High	No	Medium	5
4 th gen q, l, v	Yes	High	M, mode	No	6
Dark energy	Yes	Very high	Strength	Yes	5
Grav Waves	No	High	Enormous	Yes	8

Suggestions to provoke discussion, rather than `delivered on Mt. Sinai'/

Bob Cousins: "2 independent expts each with 3.5σ better than one expt with 5σ "

$\mathsf{P}(\mathsf{A} \,|\, \mathsf{B}) \neq \mathsf{P}(\mathsf{B} \,|\, \mathsf{A})$

Remind Lab or University media contact person that: Prob[data, given H0] is very small does not imply that Prob[H0, given data] is also very small.

e.g. Prob{data | speed of $v \le c$ }= very small does not imply Prob{speed of $v \le c$ | data} = very small or Prob{speed of v > c | data} ~ 1

Everyday example p(pregnant|female) ~ 3%

$\mathsf{P}(\mathsf{A} \,|\, \mathsf{B}) \neq \mathsf{P}(\mathsf{B} \,|\, \mathsf{A})$

Remind Lab or University media contact person that: Prob[data, given H0] is very small does not imply that Prob[H0, given data] is also very small.

e.g. Prob{data | speed of $v \le c$ }= very small does not imply Prob{speed of $v \le c$ | data} = very small or Prob{speed of v > c | data} ~ 1

Everyday example p(pregnant|female) ~ 3% p(female|pregnant) >> 3%

[All results rejecting energy conservation with p < α =.05 cut will turn out to be 'wrong']

Wilks' Theorem

Data = some distribution e.g. mass histogram For H0 and H1, calculate best fit weighted sum of squares S_0 and S_1 Examples: 1) H0 = polynomial of degree 3 H1 = polynomial of degree 5 2) H0 = background only

- H1 = bgd + peak with free M_0 and cross-section
- 3) H0 = normal neutrino hierarchy

H1 = inverted hierarchy

If H0 true, S₀ distributed as χ^2 with ndf = v_0 If H1 true, S₁ distributed as χ^2 with ndf = v_1 If H0 true, what is distribution of $\Delta S = S_0 - S_1$? Is it χ^2 ?

Wilks' Theorem: ΔS distributed as χ^2 with ndf = $v_1 - v_0$ provided:

- a) H0 is true
- b) H0 and H1 are nested
- c) Params for H1 \rightarrow H0 are well defined, and not on boundary
- d) Data is asymptotic

Wilks' Theorem, contd

Examples: Does Wilks' Th apply?

1) H0 = polynomial of degree 3 H1 = polynomial of degree 5 YES: Δ S distributed as χ^2 with ndf = (d-4) - (d-6) = 2

2) H0 = background only H1 = bgd + peak with free M₀ and cross-section NO: H0 and H1 nested, but M₀ undefined when H1 \rightarrow H0. $\Delta S \neq \chi^2$

- 3) H0 = normal neutrino hierarchy
 - H1 = inverted hierarchy

NO: Not nested. $\Delta S \neq \chi^2$

N.B. 1: Even when W. Th. does not apply, it does not mean that ΔS is irrelevant, but you cannot use W. Th. for its expected distribution.

N.B. 2: For large ndf, better to use ΔS , rather than S_1 and S_0 separately

Look Elsewhere Effect (LEE)

- Prob of bgd fluctuation at that place = local p-value Prob of bgd fluctuation 'anywhere' = global p-value Global p > Local p
- Where is `anywhere'?
- a) Any location in this histogram in sensible range
- b) Any location in this histogram
- c) Also in histogram produced with different cuts, binning, etc.
- d) Also in other plausible histograms for this analysis
- e) Also in other searches in this PHYSICS group (e.g. SUSY at CMS)
- f) In any search in this experiment (e.g. CMS)
- g) In all CERN expts (e.g. LHC expts + NA62 + OPERA + ASACUSA +)
- h) In all HEP expts

etc.

- d) relevant for graduate student doing analysis
- f) relevant for experiment's Spokesperson

INFORMAL CONSENSUS:

Quote local p, and global p according to a) above. Explain which global p

. . . .

Background systematics

Background systematics, contd

Signif from comparing $\chi^{2'}$ s for H0 (bgd only) and for H1 (bgd + signal)

Typically, bgd = functional form f_a with free params

e.g. 4th order polynomial

Uncertainties in params included in signif calculation

```
But what if functional form is different ? e.g. f_b
```

Typical approach:

If f_b best fit is bad, not relevant for systematics

If f_b best fit is ~comparable to f_a fit, include contribution to systematics

But what is '~comparable'?

Other approaches:

Profile likelihood over different bgd parametric forms

Background subtraction

sPlots

Non-parametric background

Bayes

etc

No common consensus yet among experiments on best approach {Spectra with multiple peaks are more difficult}

Ideal coverage plot

C(μ)

* What it is:

For given statistical method applied to many sets of data to extract confidence intervals for param μ , coverage C is fraction of ranges that contain true value of param. Can vary with μ

* Does not apply to **your** data:

It is a property of the **statistical method** used It is **NOT** a probability statement about whether μ_{true} lies in your confidence range for μ

* Coverage plot for Poisson counting expt Observe n counts

Estimate μ_{best} from maximum of likelihood

 $L(\mu) = e^{-\mu} \mu^n/n! \quad \text{and range of } \mu \text{ from } \ln\{L(\mu_{best})/L(\mu)\} < 0.5$ For each μ_{true} calculate coverage C(μ_{true}), and compare with nominal 68%

<68%

μ

Coverage : $\Delta \ln \mathcal{L}$ intervals for μ $\mathsf{P}(\mathsf{n},\mu) = e^{-\mu}\mu^{\mathsf{n}}/\mathsf{n}!$ (Joel Heinrich CDF note 6438) $-2 \ln \lambda < 1$ $\lambda = p(\mathsf{n},\mu)/p(\mathsf{n},\mu_{\text{best}})$

p₀ v p₁ plots

Preprint by Luc Demortier and LL, "Testing Hypotheses in Particle Physics: Plots of p₀ versus p₁"

For hypotheses H0 and H1, p_0 and p_1 are the tail probabilities for data statistic t

Provide insights on:

CLs for exclusion Punzi definition of sensitivity Relation of p-values and Likelihoods Probability of misleading evidence Sampling to foregone conclusion Jeffries-Lindley paradox

0.5 0.6 0.7 0.8 0.9

p_n

Conclusions

Resources:

Software exists: e.g. RooStats Books exist: Barlow, Cowan, James, Lyons, Roe,..... New: `Data Analysis in HEP: A Practical Guide to Statistical Methods' , Behnke et al. PDG sections on Prob, Statistics, Monte Carlo CMS and ATLAS have Statistics Committees (and BaBar and CDF earlier) – see their websites

Before re-inventing the wheel, try to see if Statisticians have already found a solution to your statistics analysis problem. Don't use a square wheel if a circular one already exists.