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Content of this part:  - Least Square Fit. Minimum 𝝌𝟐 and its connection with ML fit. Goodness-of-fit.
- Extraction of a physical signal. Neyman-Pearson Lemma and Likelihood ratio.
- Significance of an observed signal. Wilks’ theorem and Profile Likelihood (ratio). Upper limits.
- p-value and search for a new signal. Statistical significance of a new signal.



Minimum 𝝌𝟐 fit, its connection with ML fit & Goodness-of-fit
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In the Least Squares Method (Metodo dei Minimi Quadrati) consider n measurements (of the type 𝑦% ± 𝜎%) corresponding  
to values 𝑥% of the variable 𝑥. Assume we have a model for the dependence of 𝑦 on the variable 𝑥 given by a function:  

𝑦 = 𝑓(𝑥; 𝜃⃗) where 𝜃⃗ = (𝜃0, … , 𝜃3) is a set of unknown parameters [see an example in next slide]

IF the measurements 𝑦% are, each, distributed around the value 𝑦 = 𝑓 𝑥%; 𝜃⃗ according to a Gaussian with st. dev. 𝜎%,
the likelihood function for this problem can be written as a product of n	Gaussian	PDFs:
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Maximizing 𝐿 𝑦⃗; 𝜃⃗ is equivalent to minimize −2ln𝐿 𝑦⃗; 𝜃⃗ : −2𝑙𝑛𝐿 𝑦⃗; 𝜃⃗ = S
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just a constant if 𝜎%
are known & fixed: 
can be dropped
when minimizing 

it is a 𝝌𝟐 variable
Thus, the quantity −2ln𝐿 𝑦⃗; 𝜃⃗ = 𝜒E(𝜃⃗) is minimized.

𝐋𝐞𝐚𝐬𝐭 𝐒𝐪𝐮𝐚𝐫𝐞𝐝 𝐌𝐞𝐭𝐡𝐨𝐝 − 𝐈

residuals ≡ r

NOTE: this minimization is called Least Squares method ! 
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𝐋𝐞𝐚𝐬𝐭 𝐒𝐪𝐮𝐚𝐫𝐞𝐝 𝐌𝐞𝐭𝐡𝐨𝐝 − 𝐈𝐈

An example of fit performed with the minimum 𝝌𝟐 method (within ROOT) can be borrowed by L.Lista’s book  (Fig. 5.5): 

Residuals are randomly distributed around zero 
IF the data are distributed according to the 
assumed model 𝑦 = f x; A, B = Ax𝑒GjK

NOTE: in the simplest case of a linear function 𝑦 = A + Bx
the minimum 𝝌𝟐 problem can be solved analitically
(L.Lista’s book, section 5.12.1) [linear regression]
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Minimum 𝝌𝟐 method for Binned Data (𝐡𝐢𝐬𝐭𝐨𝐠𝐫𝐚𝐦𝐬)

The situation just considered has wide similarities with the case of binning a distribution of a random variable
when a large number of repeated measurements of this r.v. is available. 
In this case the binning choice is natural because computing an unbinned likelihood function may become unpractical 
(since intensive computing power is needed and machine precision may also become an issue).
By binning the distribution of the r.v. of interest and taking care to choose a number of bins N much smaller than the 
number of measurements 𝒏𝒊 (𝒊 = 𝟏,… ,𝑵) for each 𝒊-bin, in order to ensure an enough large 𝑛% and thus a good 
Gaussian approximation for the Poisson distribution that would in principle describe the number of entries in a bin, …
… we are in the case in which, dropping again the constant term(s), we can write −2ln𝐿 as:

−2𝑙𝑛𝐿 𝑦⃗; 𝜃⃗ = S
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… by having substituted, in the previous expression                                                            ,  

𝑦% with the observed # of entries 𝑛%

𝑓 𝑥%; 𝜃⃗ with the expected # of 
entries 𝜇%(𝜃⃗)

the variance 𝜎%E with the expected
observed # of entries 𝜇% 𝑛%

−𝟐𝒍𝒏𝑳(𝒏𝒊; 𝝁𝒊(𝜃⃗)) =S
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𝒏 𝒏𝒊 − 𝝁𝒊 𝜃⃗
𝟐

𝝁𝒊𝒏𝒊
≡ 𝝌𝑷𝒆𝒂𝒓𝒔𝒐𝒏𝑵𝒆𝒚𝒎𝒂𝒏𝟐

Note that

(Poisson)
exchange possible 
for large 𝑛%

𝝁𝒊 𝜽 = �
𝒙𝒊
𝑳𝑶𝑾

𝒙𝒊
𝑼𝑷

𝒇 𝒙; 𝜽 𝒅𝒙

… and that IF the binning is enough fine: 𝝁𝒊 𝜽 ≅ 𝒇 𝒙𝒊; 𝜽 𝜹𝒙𝒊 … with
𝑥% =

𝑥%�� − 𝑥%���

2

𝛿𝑥% = 𝑥%�� − 𝑥%���
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𝝌𝟐 and Goodness of Fit - I

One advantage of the minimum 𝝌𝟐 method is that the expected distribution of the minimum 𝝌𝟐 value (denoted by        )
is known and is given by the 𝝌𝟐 distribution with a # of degrees of freedom equal to the # of measurements n minus the 
# of fit parameters m. 
This is a general property. In the “histogram case” that we are considering, …
… the # of degrees of freedom is equal to the # of bins N minus the # of fit parameters k	:

�𝝌𝟐

The minimum 𝝌𝟐 value (denoted by       ) can be used as a measurement/quantification of the goodness of fit (GOF).
Let’s argue this important statement by introducing first the concept of p-value.

�𝝌𝟐

n.d.o.f. = 𝑵− 𝒌

𝒑 − 𝐯𝐚𝐥𝐮𝐞 ∶ probability that a 𝝌𝟐 greater or equal to the minimum value �𝝌𝟐 is obtained from a random fit 
according to the assumed model  

If data follow the assumed Gaussian distributions, the p−value is expected to be a r.v. uniformly distributed from 0 to 1!
This comes from a general property of cumulative distributions (see next slide [#]).
Obtaining a small p−value of the fit can be a symptom of a poor description of the assumed theoretical model in the fit.
For this reason, the minimum 𝝌𝟐 value (�𝝌𝟐) can be used as a measurement of the goodness of fit.
Practically it is a matter of setting a threshold to determine whether or not a fit can be considered acceptable or not;
for istance a p−value>0.05	will discard on average 5% of the cases (due to the possibility of statitical fluctuations)

A.A. 2021-2022 / Prof. A.Pompili / Statistical Data Analysis



𝝌𝟐 and Goodness of Fit - II

[#] Given a PDF,          , its cumulative distribution is defined as:𝑓(𝑥) F 𝑥 = �
G�

K
𝑓 𝑥′ 𝑑𝑥′

It can be easily demonstrated that the PDF           of the transformed variable                   is uniform between 0 and 1:y ≡ F(𝑥)P(y)
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= 𝑓 𝑥
1

𝑓 𝑥 = 1 P y = cost

In particular: lim
K→G�

F 𝑥 = �
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G�
𝑓 𝑥′ 𝑑𝑥′ = 0 & lim

K→§�
F 𝑥 = �
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𝑓 𝑥′ 𝑑𝑥′ = 1
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Binned Poissonian Fits 𝐡𝐢𝐬𝐭𝐨𝐠𝐫𝐚𝐦𝐬 𝐰𝐢𝐭𝐡 𝐬𝐦𝐚𝐥𝐥 # 𝐨𝐟 𝐞𝐧𝐭𝐫𝐢𝐞𝐬 − 𝐈

If the Gaussian approximation for the Poisson distribution does not hold because, in many of the N bins, 𝑛% is not large enough
… we are obliged to use a Poissonian model, that is of course valid for small # of entries. 
In this case the negative log likelihood −2ln𝐿 can be written,

…instead of                                                                                           …  as:

Using the approach proposed by Baker-Cousins the likelihood can be divided by its maximum value which does not 
depend on the unknown parameters (rather it is based on their best estimates) and does not change the fit result. 
In this way we deal with a negative log likelihood ratio (that we denote with    ):

−2𝑙𝑛𝐿 𝑛%; 𝜇%(𝜃⃗) = −2𝑙𝑛?
%@0

¬
1
2𝜋𝑛%

𝑒
G0E

AIG­I(L)
AI

N
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… that we can rewrite, with good approximation, exchanging 𝜇% with 𝑛% :

… and with the usual algebra: 𝜆 = −2𝑙𝑛
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Binned Poissonian Fits 𝐡𝐢𝐬𝐭𝐨𝐠𝐫𝐚𝐦𝐬 𝐰𝐢𝐭𝐡 𝐬𝐦𝐚𝐥𝐥 # 𝐨𝐟 𝐞𝐧𝐭𝐫𝐢𝐞𝐬 − 𝐈𝐈

Now, the important result derives from the Wilks’ theorem (that deals with likelihood ratios and will be discussed later):
If the model is correct … the distribution of the minimum value of 𝝀 can be asymptotically approximated

by a 𝝌𝟐 distribution with a n.d.o.f. = (# bins - # fit parameters)!

For this reason, the neg-log-likelihood ratio 𝝀 is denoted as 𝝌𝝀𝟐 in (5.71-5.72) equations of L.Lista’s book.

The 𝝌𝝀𝟐 can be used to determine a p-value that provides a measure of the goodness-of-fit, as previously discussed 
for the situation in which Gaussian approximation is valid and the neg-log-likelihood is a “genuine” 𝝌𝟐. 

However, the asymptotic approximation will not hold if the # of measurements is not sufficiently large 
and, consequently, the distribution of 𝝌𝝀𝟐 will deviate from a 𝝌𝟐 distribution.

In this cases the distribution can still be determined by generating a sufficiently number of Monte Carlo pseudo-
experiments that reproduce the theoretical PDF (MC toys), and thus the p-value can be computed accordingly.
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𝝌𝟐 and Goodness of Fit - III / comparison with ML fits

It must be noted that :

Unlike minimum 𝝌𝟐 fits, in general, for Maximum Likelihood fits the value of -2lnL for which the likelihood function is 
maximized does not provide a measurement of the goodness of the fit.

What can be still done in this case ?

1) IF the ML fit is binned it is possible to calculate both an overall normalized 𝝌𝟐and bin-by-bin pulls

2) IF the ML fit is genuinely unbinned you can still bin a posteriori (after the fit) and proceed as in (1)

3a) you can still distinguish which model (implemented in the PDF) is the best among several by   

considering the minimum among the minimum values of -2lnL	for each model

3b) It is possible to obtain in some cases a goodness-of-fit measurement by finding the ratio of the    

likelihood functions evaluated in two different hypotheses since Wilks’ theorem ensures that …

a likelihood ratio, under some conditions that hold in particular circumstances, is asymptotically

distributed as a 𝝌𝟐 for a large number of repeated measurements.
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EXTRACTION of a physical SIGNAL
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Neyman-Pearson Lemma & Likelihood Ratio - I

As we have discussed in a previous part of the course devoted to hypothesis testing and the ROC curve, 
the extraction of a physical signal is obtained by applying a set of selection criteria based on some variables/observables 
(a single variable - or a combination of variables - is called test statistic) to select signal while rejecting background(s). 
The selection algorithm based upon a specific set can be represented by a ROC curve in the plane representing 
the signal efficiency against the contamination level (misidentification probability or probability of background’s survival). 

The performance of a selection criterion can be considered optimal if it achieves the smallest misidentification probability
for a desired/target value of the selection efficiency.
Suppose having different test statistics and the corresponding different ROC curves; 
for a given signal efficiency the curves provide different misidentification probabilities:

Sig-eff

misID-prob
(0,0)

(1,1)

According to the Neyman-Pearson lemma:

the optimal test statitistic is given by the ratio of the likelihood functions
𝐿 𝑥⃗|𝐻0 and 𝐿 𝑥⃗|𝐻· evaluated for the observed data sample 𝑥⃗ under
the two hypotheses 𝐻0 & 𝐻· :

𝜆 𝑥⃗ =
𝐿 𝑥⃗|𝐻0
𝐿 𝑥⃗|𝐻·

In what sense it is optimal? 
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Neyman-Pearson Lemma & Likelihood Ratio - II

The likelihood ratio as test statistic is optimal in the sense that… for a fixed background misidentification 
probability a, the selection that corresponds to the largest possible signal selection efficiency 1-b is given by:

… where, by varying the “cut_value” 𝑘¹ the required/targeted value of a may be achieved.𝜆 𝑥⃗ =
𝐿 𝑥⃗|𝐻0
𝐿 𝑥⃗|𝐻·

≥ 𝑘¹

𝑡 𝑥⃗

𝐻0𝐻·

𝒌𝜶

𝟏 − 𝜷

𝜶

In other words… the likelihood ratio is the test statistic that 
optimally minimizes the overlap between the two PDFs 
for the background and the signal hypotheses (H0 and H1).

This Lemma provides the selection that achieves the optimal performances only if the joint multi-dimensional 
PDFs characterizing our problem are known! However in many realsitic cases it is not easy to determine the 
correct model and approximated solution are adopted, like numerical methods and Machine-Learning algorithms
(Neural Networks or Boosted Decision Trees) that may find selections with performances close to the optimal 
limit given by the Lemma.
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Neyman-Pearson Lemma & Likelihood Ratio - III

𝜆 𝑥⃗ =
𝐿 𝑥⃗|𝐻0
𝐿 𝑥⃗|𝐻·

=
∏%@0
A 𝑓%(𝑥%|𝐻0)

∏%@0
A 𝑓%(𝑥%|𝐻·)

IF the variables 𝑥0, … , 𝑥A that characterize our problem are independent, the likelihood function can be factorized
into the product of one-dimentional marginal PDFs:    

In this case (namely factorization holds), optimal selection performances are achieved, according to the Lemma ! 

In real analysis life the variables we deal with are not independent (remember that uncorrelated variables are not 
necessarly independent!), but still the factorized expression can be used as discriminant even if performances will 
not be optimal anymore. 
The quantity to be used as test statistic is the so-called Projective Likelihood Ratio:

Note: the marginalized PDFs can be obtained using Monte Carlo training samples 
to produce distributions corresponding with enough good approximation to the marginal PDFs.

𝜆 𝑥0, … , 𝑥A =
∏%@0
A 𝑓%(𝑥%|𝐻0)

∏%@0
A 𝑓%(𝑥%|𝐻·)
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Multivariate-based selection with Machine Learning

The Neyman-Pearson Lemma sets up an upper limit to the performance of any possible selection, from those 
classical cut-based selections to the most recently introduced  Machine-Learning algorithms which can often go  
close to the performance of an ideal selection based on the likelihood ratio.

The most powerful approximate methods, implemented by means of computer algorithms, are organized as follows.
The algorithm receives as input a set of discriminant variables, each of which individually does not allow to reach 
an optimal selection power, and computes an output that combines the input variables. 
The computation of the output value is based on an often very large set of parameters.
The discriminant output is taken as test statistic and is adopted to select the signal with the desired efficiency by 
means of a single cut on the value of the output. 

An optimal choice of the parameters can allow to achieve the best possible performances.
The usual strategy consists in tuning the discriminant parameters providing as input to the algorithm large datasets 
distributed according either the H0	and the H1 hypotheses. Typically distributions according to background 
hypothesis are taken from real data, often using control samples, while signal-like distributions according to the H1
hypothesis are derived by simulated data (Monte Carlo). By comparing the discirminant output to the true origin 
of the dataset the parameters are modified. This process is called training and the algorithms that use such kind of 
training samples are called supervised machine learning algorithms. 
The typical problem of this process is called overtraining and it is depicted in Fig. 9.6 of L.Lista’s book.
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SIGNIFICANCE of an observed physical SIGNAL
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A simple type of goodness-of-fit to claim a discovery - example - I
A simple type of goodness-of-fit is often carried out to judge …
whether a discrepancy between data and expectation is enough significant to merit a claim for a new discovery:

Let us assume we are in a situation in which we may/might see evidence for a special type of signal event; 
- suppose the # of the signal candidates are 𝑛À can be treated as a Poisson variable with mean 𝜈À ;
- in addition to the signal candidates suppose to find also a certain # of background events 𝑛Â that can be also treated as Poisson variable;
- the total # of candidates found 𝑛 = 𝑛À + 𝑛Â is therefore a Poissonian variable with mean 𝜈 = 𝜈À + 𝜈Â

(remember the “reproductive” property of Poisson distribution ?). Thus, the probability to observe 𝑛 events is:

𝑃 𝑛 ≥ 𝑛ÄÂÀ = S
A@AÅÆÇ

�

𝑓 𝑛; 𝜈À = 0, 𝜈Â = 1 − S
A@·

AÅÆÇG0

𝑓 𝑛; 𝜈À = 0, 𝜈Â = 1 − S
A@·

AÅÆÇG0 𝜈Â A

𝑛!
𝑒G ÈÆ

𝑓 𝑛; 𝜈À, 𝜈Â =
𝜈À + 𝜈Â A

𝑛! 𝑒G ÈÇ§ÈÆ

Suppose we carried out the experiment and found 𝑛ÄÂÀ candidates. 
In order to quantify our degree of confidence in the discovery of a new effect/signal (namely 𝜈À ≠ 0) … 
… we can compute how likely it is to find 𝑛ÄÂÀ candidates or more (namely 𝑛 > 𝑛ÄÂÀ) from background fluctuation alone!
In other words, we have to calculate the p-value :

NOTE: this is NOT the probability of the (null) hypothesis 𝜈À = 0! 
It’s rather the probability - under the assumption 𝜈À = 0 - of obtaining as many candidates/events as observed or more !

Dispite this subtlety in its interpretation the p-value is a useful number to consider when deciding if a new effect/signal is found.
Numerical example: 

if we expect 𝜈Â = 0.5 and we observe 𝑛ÄÂÀ = 5 the p-value is    = 1 − 𝑒G ·.Ê S
A@·

Ë
0.5 A

𝑛!
= 1.7 ² 10GË = 0.017%
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A simple type of goodness-of-fit to claim a discovery - example - II

Further NOTE:

If you consider the 𝑛ÄÂÀ ± 𝑛ÄÂÀ as an estimate for 𝜈 = 𝜈À + 𝜈Â, or better, after subtracting the background 𝜈Â = 0.5 , 

you consider 4.5 ± 2.2 as an estimate for 𝜈À , this would be misleading since it’s only about 2 standard deviations from 0, 

thus giving the wrong impression that 𝜈À is not very incompatible with zero (“wrong” because of the p-value)!  

This is a problem of misinterpretation.

Indeed here we are interested in the probability that a Poisson variable of mean 𝜈Â will fluctuate upwardto 𝑛ÄÂÀ or higher, and 

not in the probability that a variable with mean 𝑛ÄÂÀ will fluctuate downward to 𝜈Â or  lower.

standard deviation of a Poisson variable/observable

Moreover, 𝜈Â has been wrongly assumed without error. It is instead important to quantify the systematic uncertainty in the 

background when evaluating the significance of a new effect/signal. 

To illustrate this, consider that just with 𝜈Â = 0.8 , the p-value	would be ≅ 0.14%, namely higher by about an order of magnitude. 
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Wilks’ Theorem - I

When a large # of measurements is available the Wilks’ theorem allows to find … 
an approximate asymptotic expression for a test statistic based on a likelihood ratio
(namely of the kind inspired by the Nyman-Pearson Lemma).  

𝜆 𝑥⃗ =
𝐿 𝑥⃗|𝐻0
𝐿 𝑥⃗|𝐻·

Let us assume that the two hypotheses 𝐻· and 𝐻0 can be defined in terms of a set of parameters
that appear in the definition of of the likelihood function; now…

𝜃⃗ = 𝜃0, … , 𝜃3

- the condition that 𝐻0 is trues can be expressed as …

- the condition that 𝐻· is trues can be expressed as …

Let us assume that                   or, in other words, that the hypotheses are nested.

𝜃⃗ ∈ Θ0
𝜃⃗ ∈ Θ·

Θ· ⊆ Θ0

Given a data sample of independent measurements 𝒙𝟏,… , 𝒙𝑵 the theorem ensures that, 
assuming some regularity conditions of the likelihood function, the following quantity …               …
has a distribution that can be approximated, for 𝑵 → ∞ and if 𝑯𝟎 is true, with a 𝝌𝟐 distribution
having a n.d.o.f. = difference between the dimentionalities of the sets Θ0 and Θ· .

−2𝑙𝑛

𝜃⃗ ∈ Θ0

𝜃⃗ ∈ Θ·
?
%@0

¬

𝐿 (𝑥⃗%; 𝜃⃗)

?
%@0

¬

𝐿 (𝑥⃗%; 𝜃⃗)

sup

sup

Note: the sup expresses the maximization of the product of the likelihoods for the N
independent measurements (for a set of variables) when a certain hypothesis is true

To understand better the theorem we can consider the example in the next slide.

Following an opposite convention 
(with 𝐻· at the numerator) w.r.t. the
ratio in Neyman-Pearson Lemma)
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Wilks’ Theorem - II / example
Let us assume that 𝜇 is the only parameter-of-interest, whereas the remaining parameters 𝜃⃗ = 𝜃0, … , 𝜃3 are nuisance ones.
For instance, 𝝁 could be a signal strength, namely the ratio of a signal cross section to its theoretical value (say in the SM theory). 

The Wilks’ theorem ensures that the quantity…

𝐻· hypothesis : 𝜇 = 𝜇· (say the value foreseen by the current theory model)

… is asymptotically distributed as a 𝝌𝟐 with 1 d.o.f. −2𝑙𝑛

𝜇, 𝜃⃗

𝜃⃗
?
%@0

¬

𝐿 (𝑥⃗%; 𝜇, 𝜃⃗)

?
%@0

¬

𝐿 (𝑥⃗%; 𝜇, 𝜃⃗)

sup

sup  

𝐻0 hypothesis : 𝜇 ≥ 0 (i.e. it may have any possible positive (or null) value)
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Wilks’ Theorem - II / example
Let us assume that 𝜇 is the only parameter-of-interest, whereas the remaining parameters 𝜃⃗ = 𝜃0, … , 𝜃3 are nuisance ones.
For instance, 𝝁 could be a signal strength, namely the ratio of a signal cross section to its theoretical value (say in the SM theory). 

The Wilks’ theorem ensures that the quantity…

𝐻· hypothesis : 𝜇 = 𝜇· (say the value foreseen by the current theory model)

… is asymptotically distributed as a 𝝌𝟐 with 1 d.o.f. −2𝑙𝑛

𝜇, 𝜃⃗

𝜃⃗
?
%@0

¬

𝐿 (𝑥⃗%; 𝜇, 𝜃⃗)

?
%@0

¬

𝐿 (𝑥⃗%; 𝜇, 𝜃⃗)

sup

sup  

𝐻0 hypothesis : 𝜇 ≥ 0 (i.e. it may have any possible positive (or null) value)

Likelihood function evaluated when the parameters 
assume the values ( 𝜇 = 𝜇̂ , 𝜃⃗ = ±⃗𝜃 ) 
that maximize it! ?

%@0

¬

𝐿 (𝑥⃗%; 𝜇̂,
×⃗𝜃)
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Wilks’ Theorem - II / example
Let us assume that 𝜇 is the only parameter-of-interest, whereas the remaining parameters 𝜃⃗ = 𝜃0, … , 𝜃3 are nuisance ones.
For instance, 𝝁 could be a signal strength, namely the ratio of a signal cross section to its theoretical value (say in the SM theory). 

The Wilks’ theorem ensures that the quantity…

𝐻· hypothesis : 𝜇 = 𝜇· (say the value foreseen by the current theory model)

… is asymptotically distributed as a 𝝌𝟐 with 1 d.o.f. −2𝑙𝑛

𝜇, 𝜃⃗

𝜃⃗
?
%@0

¬

𝐿 (𝑥⃗%; 𝜇, 𝜃⃗)

?
%@0

¬

𝐿 (𝑥⃗%; 𝜇, 𝜃⃗)

sup

sup  

𝐻0 hypothesis : 𝜇 ≥ 0 (i.e. it may have any possible positive (or null) value)

Likelihood function evaluated when the parameters 
assume the values ( 𝜇 = 𝜇̂ , 𝜃⃗ = ±⃗𝜃 ) 
that maximize it! ?

%@0

¬

𝐿 (𝑥⃗%; 𝜇̂,
×⃗𝜃)

Likelihood function evaluated when 𝜇 = 𝜇· and the 
nuisance parameters are fit and assume the values 

𝜃⃗ =
±±⃗𝜃 that maximize it for a fixed 𝜇 = 𝜇·!

?
%@0

¬

𝐿 (𝑥⃗%; 𝜇·,
××⃗𝜃 (𝜇·))
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Wilks’ Theorem - II / example
Let us assume that 𝜇 is the only parameter-of-interest, whereas the remaining parameters 𝜃⃗ = 𝜃0, … , 𝜃3 are nuisance ones.
For instance, 𝝁 could be a signal strength, namely the ratio of a signal cross section to its theoretical value (say in the SM theory). 

The Wilks’ theorem ensures that the quantity…

𝐻· hypothesis : 𝜇 = 𝜇· (say the value foreseen by the current theory model)

… is asymptotically distributed as a 𝝌𝟐 with 1 d.o.f. −2𝑙𝑛

𝜇, 𝜃⃗

𝜃⃗
?
%@0

¬

𝐿 (𝑥⃗%; 𝜇, 𝜃⃗)

?
%@0

¬

𝐿 (𝑥⃗%; 𝜇, 𝜃⃗)

sup

sup  

𝐻0 hypothesis : 𝜇 ≥ 0 (i.e. it may have any possible positive (or null) value)

Likelihood function evaluated when the parameters 
assume the values ( 𝜇 = 𝜇̂ , 𝜃⃗ = ±⃗𝜃 ) 
that maximize it! ?

%@0

¬

𝐿 (𝑥⃗%; 𝜇̂,
×⃗𝜃)

Likelihood function evaluated when 𝜇 = 𝜇· and the 
nuisance parameters are fit and assume the values 

𝜃⃗ =
±±⃗𝜃 that maximize it for a fixed 𝜇 = 𝜇·!

?
%@0

¬

𝐿 (𝑥⃗%; 𝜇·,
××⃗𝜃 (𝜇·))

The test statistic (for a generic value 𝝁) 𝑡 𝜇 = −2𝑙𝑛𝜆(𝜇) = −2𝑙𝑛
𝐿 (𝑥⃗; 𝜇,

××⃗𝜃 (𝜇))

𝐿 (𝑥⃗; 𝜇̂, ×⃗𝜃)
… is called Profile Likelihood (ratio) … that has 

important application in Upper Limits calculations. 

Note: it’s not effectively a ratio since the denominator is a real number



Wilks’ Theorem & Profile Likelihood (ratio)

To recap:  the Profile Likelihood is introduced in order to satisfy the conditions required by Wilk’s theorem
according to which, if 𝝁 corresponds to the true value, then 𝒕 𝝁 follows a 𝝌𝟐 distribution with 1 d.o.f.

A minimum of 𝒕 𝝁 = −2lnλ 𝜇 at 𝜇 = 𝜇̂ indicates the possible presence of a signal having a signal strength equal to 𝜇̂ .

Therefore, this test statistics  is suitable for searches of a new signal (as will be clear later). 

Indeed, a scan of  𝒕 𝝁 as function of 𝜇 reveals a minimum at the value 𝜇 = 𝜇̂ and the minimum value of  𝒕 𝝁 , namely 

𝒕 �𝝁 is 0 by contruction. As discussed elsewhere, an uncertainty interval of 𝒕 𝝁 can be determined from 

the excursion of 𝒕 𝝁 around the minimum �𝝁 .

Usually, the addition of nuisance parameters broadens the shape of the profile likelihood as a function of the POI 𝝁, 
comparing with the case where nuisance parameters are not added. Consequently, the uncertainty on 𝝁 increases 
when nuisance parameters (typically modelling the sources of systematic) are included in the test statistic 
(i.e. in the likelihood). This will be clearer later.

As will be discussed later extensively, the test statistic 𝒕𝝁 ≡ 𝒕 𝝁 can be used to compute p-values corresponding to the
various hypotheses on 𝝁 in order to determine a statistical significance or an upper limit (different variations can deal 
various analysis cases). We will argue that those p-values can be computed in general by generating sufficiently large 
Monte Carlo pseudo-experiments but in many cases asymptotic approximations allow a much faster evaluation.
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Previously the likelihood function was considered for a set of 
independent measurements 𝒙𝟏,… , 𝒙𝑵 with parameters (𝜇, 𝜃⃗) :

Wilks’ theorem : an example application - I

Again, let us assume that 𝜇 is the only parameter-of-interest (a signal strength) whereas 𝜃⃗ = 𝜃0, … , 𝜃3 are the nuisance parameters.

𝐿 𝒙𝟏,… , 𝒙𝑵; 𝜇, 𝜃⃗ =?
%@0

¬

𝑓(𝑥⃗%; 𝜇, 𝜃⃗)

The two hypotheses 𝐻· and 𝐻0 are represented as two possible sets of values Θ0 and Θ· of the parameters (𝜇, 𝜃⃗).
Typically, 𝐻0 represents the presence of both signal and background (i.e. 𝜈 = 𝜇𝑠 + 𝑏 ) while…

… 𝐻· represents the presence of only background events in our data samples (i.e. 𝜈 = 𝑏 , namely 𝜇 = 0 ).
This means that hypothesis 𝐻· is nested in 𝐻0 since 𝜈 = 𝑏 is 𝜈 = 𝜇𝑠 + 𝑏 with 𝜇 = 0 !

In general, the # of events 𝑵 can also be used as information
and we need to consider the extended likelihood function:
(Note that in the poissonian term the expected # of events 𝜈
may also depend on the parameters).

𝐿 𝒙𝟏,… , 𝒙𝑵; 𝜇, 𝜃⃗ =
𝑒GÈ ­,L 𝜈 𝜇, 𝜃⃗

¬

𝑁! ²?
%@0

¬

𝑓(𝑥⃗%; 𝜇, 𝜃⃗)

Note that the multiplicative parameter 𝜇 , called signal strength, is typical of many data analyses performed at the LHC; 
it was introduced assuming that the expected signal yield from theory is 𝑠 and all possible values of the expected signal 
are obtained by varying 𝜇 (after assuming that 𝜇 = 1 corresponds to the theory prediction).
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Wilks’ theorem : an example application - II

Note that in general 𝑠 and 𝑏 depend also on the unknown parameters, namely s = s 𝜃⃗ and 𝑏 = 𝑏 𝜃⃗ .
An example to understand this: in a search for the Higgs boson the theoretical cross section may depend on the Higgs boson’s mass. 

The PDF 𝑓(𝑥⃗; 𝜇, 𝜃⃗) - for a generic index 𝑖 so we can drop the index - can be expressed as the superposition of two components:

- one PDF for the signal :                𝑓𝒔 (𝑥⃗; 𝜇, 𝜃⃗) [it typically represents a resonance peak]

- one PDF for the background : 𝑓𝒃 (𝑥⃗; 𝜇, 𝜃⃗)

… to be weighted by the expected signal and background fractions :      𝑓 𝑥⃗; 𝜇, 𝜃⃗ = ­À
­À§Â 𝑓𝒔 𝑥⃗; 𝜇, 𝜃⃗ + Â

­À§Â 𝑓𝒃 𝑥⃗; 𝜇, 𝜃⃗

=
𝑒G ­À(L)§Â(L) 𝜇𝑠(𝜃⃗) + 𝑏(𝜃⃗)

¬

𝑁! ²?
%@0

¬
1

𝜇𝑠(𝜃⃗) + 𝑏(𝜃⃗)
𝜇𝑠(𝜃⃗)𝑓À(𝑥⃗%; 𝜇, 𝜃⃗) + 𝑏(𝜃⃗)𝑓Â(𝑥⃗%; 𝜇, 𝜃⃗)

In this case the extended likelihood can be written as:

𝐿À§Â 𝒙𝟏, … , 𝒙𝑵; 𝜇, 𝜃⃗

=
𝑒G ­À(L)§Â(L)

𝑁!
²?
%@0

¬

𝜇𝑠(𝜃⃗)𝑓À(𝑥⃗%; 𝜇, 𝜃⃗) + 𝑏(𝜃⃗)𝑓Â(𝑥⃗%; 𝜇, 𝜃⃗)

Under the background-only (null) hypothesis (𝐻·) : 𝜇 = 0 𝐿Â 𝒙𝟏,… , 𝒙𝑵; 𝜃⃗ =
𝑒GÂ(L)

𝑁! ²?
%@0

¬

𝑏(𝜃⃗)𝑓Â(𝑥⃗%; 𝜇, 𝜃⃗)
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Wilks’ theorem : an example application - III

At this point we can write down the likelihood ratio                                    for the specific considered case: 

… and thus the negative logarithm of the likelihood ratio is (applying as usual the logarithm’s 
properties):

=
𝑒G ­À(L)§Â(L)

𝑁! ² ∏%@0
¬ 𝜇𝑠(𝜃⃗)𝑓À(𝑥⃗%; 𝜇, 𝜃⃗) + 𝑏(𝜃⃗)𝑓Â(𝑥⃗%; 𝜇, 𝜃⃗)

𝑒GÂ(L)
𝑁! ² ∏%@0

¬ 𝑏(𝜃⃗)𝑓Â(𝑥⃗%; 𝜇, 𝜃⃗)

𝜆 𝑥⃗ =
𝐿 𝑥⃗|𝐻0
𝐿 𝑥⃗|𝐻·

− ln 𝜆 𝒙𝟏,… , 𝒙𝑵; 𝜇, 𝜃⃗ = − ln 𝑒G ­À(L) − ln?
%@0

¬
𝜇𝑠(𝜃⃗)𝑓À(𝑥⃗%; 𝜇, 𝜃⃗)
𝑏(𝜃⃗)𝑓Â(𝑥⃗%; 𝜇, 𝜃⃗)

+ 1 = +𝜇𝑠 𝜃⃗ −S
%@0

¬

ln
𝜇𝑠(𝜃⃗)𝑓À(𝑥⃗%; 𝜇, 𝜃⃗)
𝑏(𝜃⃗)𝑓Â(𝑥⃗%; 𝜇, 𝜃⃗)

+ 1

=
𝑒G ­À(L)§Â(L)

𝑒GÂ(L)
²?
%@0

¬
𝜇𝑠(𝜃⃗)𝑓À(𝑥⃗%; 𝜇, 𝜃⃗) + 𝑏(𝜃⃗)𝑓Â(𝑥⃗%; 𝜇, 𝜃⃗)

𝑏(𝜃⃗)𝑓Â(𝑥⃗%; 𝜇, 𝜃⃗)
= 𝑒G ­À(L) ²?

%@0

¬
𝜇𝑠(𝜃⃗)𝑓À(𝑥⃗%; 𝜇, 𝜃⃗)
𝑏(𝜃⃗)𝑓Â(𝑥⃗%; 𝜇, 𝜃⃗)

+ 1

This equation can be used to determine Upper Limits  in searches for new signals (L.Lista’s book pagg. 222-223 -CLs method)!
Despite the fact that this neg-log-likelihood ratio is written with 𝐻· at the denominator and 𝐻0 at the numerator, that is the inverse 
convention w.r.t. that used for the Wilks’ theorem (but identical to the ratio defined in the framework of the Nyman-Pearson Lemma)
… Wilk’s theorem can apply also in this case with the only change of an extra “-” sign in the definition of the test statistic
(a “-” in front of the logarithm of a ratio just makes the inversion of the ratio).

𝜆 𝒙𝟏,… , 𝒙𝑵; 𝜇, 𝜃⃗ =
𝐿À§Â 𝒙𝟏, … , 𝒙𝑵; 𝜇, 𝜃⃗
𝐿Â 𝒙𝟏, … , 𝒙𝑵; 𝜃⃗
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Wilks’ theorem : (simple counting experiment example) - IV

In the case of a simple counting experiment … the likelihood function only accounts for the Poissonian probability term which only 

depends on the # of observed events 𝑁 and the dependence on the parameters only appears in the expected signal and background yields:

… which is a simplified version of the previous expressions with the terms 𝑓À and 𝑓Â dropped.

The same considerations about the application of Wilks’ theorem hold.

− ln 𝜆 𝑁; 𝜇, 𝜃⃗ = − ln 𝑒G ­À(L) − ln
𝜇𝑠(𝜃⃗)
𝑏(𝜃⃗)

+ 1
¬

= +𝜇𝑠 𝜃⃗ − 𝑁 ln
𝜇𝑠(𝜃⃗)
𝑏(𝜃⃗)

+ 1

=
𝑒G ­À(L)§Â(L)

𝑒GÂ(L)
²?
%@0

¬
𝜇𝑠(𝜃⃗) + 𝑏(𝜃⃗)

𝑏(𝜃⃗)
= 𝑒G ­À(L) ²?

%@0

¬
𝜇𝑠(𝜃⃗)
𝑏(𝜃⃗)

+ 1 = 𝑒G ­À(L) ²
𝜇𝑠(𝜃⃗)
𝑏(𝜃⃗)

+ 1
¬

𝜆 𝑁; 𝜇, 𝜃⃗ =
𝐿À§Â 𝑁; 𝜇, 𝜃⃗
𝐿Â 𝑁; 𝜃⃗
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The goal of many experiments is to search for new physical phenomena.
If an experiment provides a convincing measurement of a new signal the result should be published and claimed as discovery,
otherwise, it can be nonetheless interesting to quote an upper limit to the yield of the possible new signal. 

Given an observed data sample, claiming the discovery of a new signal requires determining that the sample is sufficiently
inconsistent with the hypothesis that only background is present in the data (null hypothesis 𝐻·). 
A test statistic can be used to measure this inconsistency of the observation in the hypothesis of the presence of background only.

To claim a discovery one needs to quote a p-value or alternatively a statistical significance given as an equivalent number of 
standard deviations !

Introduction to the search for New Signals - I

Probability that 
the considered test statistic t assumes 
a value greater or equal to the observed one
in the case of pure background fluctuation

𝒑 − 𝐯𝐚𝐥𝐮𝐞
[ large values of the test statistic

correspond to a more signal-like sample ]

In the case of an event counting experiment (in which the number of observed events is adopted as test statistic,
the p-value can be determined as the probability to count a number of events equal to or greater than the observed one
assuming the presence of no signal and the expected background level (see example next slide). 
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From L.Lista’s book (pagg. 206-7):

Introduction to the search for New Signals - II
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Instead of quoting a p-value, it’s often preferred to report the equivalent number of standard deviations that 
correspond to an area equal to the p-value under the right-most tail of a normal distribution.
Thus one quotes a Zs significance corresponding to a given p-value using the following transformation:

Introduction to the search for New Signals - III

𝑝 = �
á

� 𝑒GKN/E𝑑𝑥
2𝜋

= 1 − Φ 𝑍 = Φ −𝑍 =
1
2 1 − 𝑒𝑟𝑓

𝑍
2

This table provides the correspondence between Zs & p-value :

Evidence

Observation
A.A. 2021-22 / Prof. A.Pompili / Statistical Data Analysis

(>3s)

(>5s)

Typical convention



In a counting experiment the # of observed events is the only considered information.
The selected event sample contains - in general - a mixture of n events due to both signal and background process;
the expected total number of events is s + b where s and b are the expected # of signal and background events respectively.

Assuming the expected background is known (from theory or from a control data sample with negligible uncertainty) the
main unknown parameter of the problem is s and the likelihood function is: 

Significance for Poissonian counting experiment

𝐿 𝑛; 𝑠, 𝑏 =
(𝑠 + 𝑏)A

𝑛! 𝑒G À§Â
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The # of observed events n must be compared with the expected number of background events b in the null hypothesis (s = 0)

If b is sufficiently large, the distribution can be approximated with a Gaussian with average b and standard deviation = b ).
An excess in data, quantified as s = n − b should be compared with the expected standard deviation b and the statistical 
significance can be approximately evauated with a well-popular expression: 

Z =
𝑠
b

In case the expected background is affected by a non-negligible uncertainty the previous expression must be modified: Z =
𝑠

b + 𝜎ÂE
Cowan suggest a better approximation valid even in the case b ≪ 1 :

𝑍 = 2 𝑠 + 𝑏 ln 1 +
𝑠
𝑏 − 𝑠

À≪Â
Z =

𝑠
b



As already pointed out, a test statisic suitable for searches for a new signal is the likelihood ratio:

Significance with Likelihood ratio - I
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𝜆 𝑥⃗ =
𝐿 𝑥⃗|𝐻0
𝐿 𝑥⃗|𝐻·

For instance, as discussed before, a likelihood ratio of the form 𝜆 𝒙𝟏,… , 𝒙𝑵; 𝜇, 𝜃⃗ =
𝐿À§Â 𝒙𝟏, … , 𝒙𝑵; 𝜇, 𝜃⃗
𝐿Â 𝒙𝟏, … , 𝒙𝑵; 𝜃⃗

Of course, a minimum of the test statistic −𝟐𝐥𝐧 𝝀 𝝁 …
[I write here compactly 𝜆 𝑥⃗0, … , 𝑥⃗¬; 𝜇 ≡ 𝜆 𝜇 ,  having dropped the dependence on nuisance parameters (*)] 
… at 𝝁 = �𝝁 indicates the possible presence of a signal having a signal strength equal to �𝝁 .

Important note: The advantage of the (negative-log) likelihood ratio as test statistic is that 𝐻· , assumed in the denominator, 
can be taken as a special case of the 𝐻0 , assumed in the nominator, with 𝝁 = 𝟎.
This represents a case of nested hypothesis and, assuming the likelihood function is sufficiently regular to satisfy 
the Wilks’ theorem requisites, the theorem holds!
Again, note that the convention is the opposite of the Wilks theorem (numerator and denominator hypotheses are 
exchanged and an extra “-” sign is involved. Thus, the test statistic must correctly expressed as +𝟐𝐥𝐧 𝝀 𝝁 .

According to Wilks’ theorem, the distribution of 𝟐𝐥𝐧 𝝀 �𝝁 can be approximated by a 𝝌𝟐 distribution with 1 degree of freedom.
In particular, an approximate estimate of the significance level Z is given by :

(*) this significance is called “ local ” in the sense that it corresponds to a fixed set of values for the nuisance parameter(s) 𝜃⃗ !

𝐙 ≅ 2 ln 𝝀 �𝝁



In case one or more parameters are estimated from data … the local significance at fixed values of the measured parameters 
can be affected by the look-elsewhere-effect as we will discuss in the annex slides.  

Significance with Likelihood ratio - II
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An accurate estimate of the statistical significance corresponding to the test statistic−2 ln 𝝀 can be achieved 
by generating a large number of Monte Carlo pseudo-experiments assuming the presence of no signal (𝝁 = 𝟎),
which gives a good approximation of the expected distribution of −2 ln 𝝀 which is not known when the Wilks’ theorem
does not apply/hold.

In order to determine large significance values (≥ 5𝜎) with sufficient precision, very large samples of these “ MC toys ”  
are needed, as we will discuss later. 

A convenient statistics that accounts for nuisance parameters (all the parameters are treated as nuisance with the
exception of 𝝁 treated as the only parameter-of-interest) is the Profile Likelihood (ratio), introduced earlier.
A scan of the test statistic 𝒕𝝁(𝝁) = −𝟐 𝒍𝒏𝝀 (𝝁) as a function of 𝝁 reveals a minimum at the value 𝝁 = �𝝁. 
The minimum value 𝒕𝝁(�𝝁) = 𝟎 by construction! An uncertainty interval for 𝝁 can be obtained with the method 
discussed in an earlier lesson (connection between MINOS and Profile Likelihhod); the interval extremes happen at 𝒕𝝁 = 𝟏. 
To be clear, let me stress here that the Profile Likelihood is introduced in order to satisfy the conditions required by the 
Wilks’ theorem, according to which if 𝝁 corresponds to the true value then 𝒕𝝁 follows a 𝝌𝟐 distribution with 1 d.o.f.!



Profile likelihood as test statistic for Observation

In order to enforce the condition 𝝁 ≥ 𝟎 , since the signal yield cannot have negative values, 
the test statistic 𝒕𝝁(𝝁) = −𝟐 𝒍𝒏𝝀(𝝁) can be modified as follows:

In practise, the estimate of 𝜇 is replaced with zero if the best fit value �𝝁 is negative, which may occur in case of a 
downward fluctuation in data. 

In order to assess the presence of a new signal, the hypothesis of positive signal strength 𝝁 is tested against the 
hypothesis 𝝁 = 𝟎. This is done with the test statistic 𝒕𝝁(𝝁) = −𝟐 𝒍𝒏𝝀(𝝁) evaluated for 𝝁 = 𝟎 .
However, the test statistic 𝒕𝟎 = −𝟐 𝒍𝒏𝝀 𝟎 may reject the hypothesis of null signal (𝝁 = 𝟎) in case of a downward 
fluctuation in data. Therefore, a modification of 𝒕𝟎 has been proposed that is only sensitive to an excess in data 
that produces a positive value of �𝝁 :

The p-value corresponding to the test statistic 𝒒𝟎 can be evaluated with MC pseudo-experiments, as discussed in annex slides.
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For completeness have a reading to the annex slides 
(my talk at the conference Charm 2020 given in may 2021)
and the related Proceedings. 
Links are on the web page of this course.
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