
Prova scritta Fisica-II per Chimica Triennale - 3 maggio ore 16.00-19.00

Esercizio n.1 (10 punti)

Una carica $Q=7\cdot 10^{-9}C$ è distribuita uniformemente su di un guscio sferico di raggio interno $r_1=1cm$ e raggio esterno $r_2=2$ r_1 . Una carica elettrica puntiforme q è posta a distanza R=0.5cm dal centro del guscio sferico. Il campo elettrostatico su un punto P equidistante dalle due superfici del guscio e a distanza $r_3=1cm$ dalla carica q è nullo. Determinare il valore di q.

Esercizio n.2 (10 punti)

Un nucleo di elio (*) viaggia con velocità v_0 ed entra in una regione di spazio in cui è presente un campo magnetico uniforme $B=10^{-5}T$ perpendicolare alla velocità. Se il campo viene spento istantaneamente dopo un tempo $t^*=1ms$ dall'ingresso del nucleo nella regione con il campo magnetico, determinare il valore dell'angolo fra i vettori velocità $\vec{v}(t^*)$ e \vec{v}_0 .

(*)
$$q = 3.2 \cdot 10^{-19} C$$
, $m_{He} = 6.68 \cdot 10^{-27} Kg$

Esercizio n.3 (10 punti)

Una sbarra di metallo di lunghezza L=25cm scorre senza attrito lungo due binari conduttori connessi tra loro con una resistenza $R=1\Omega$ in serie ad un generatore di tensione $V_0=6V$. È presente un campo magnetico uniforme e costante $B=0,5\,T$ uscente e perpendicolare al piano del circuito. Una forza esterna $F_{ext}=0,25N$ viene applicata nel piano, perpendicolarmente alla sbarra, per mantenere quest'ultima in moto con velocità costante. Determinare la corrente che scorre nel circuito e la velocità della sbarretta.

Prova scritta (2° esonero) Fisica-II per Chimica Triennale - 3 maggio ore 16.00 -19.00

Esercizio n.1 (10 punti)

Un nucleo di elio (*) viaggia con velocità v_0 ed entra in una regione di spazio in cui è presente un campo magnetico uniforme $B=\mathbf{10}^{-5}T$ perpendicolare alla velocità. Se il campo viene spento istantaneamente dopo un tempo $t^*=\mathbf{1}ms$ dall'ingresso del nucleo nella regione con il campo magnetico, determinare il valore dell'angolo fra i vettori velocità $\vec{v}(t^*)$ e \vec{v}_0 .

(*)
$$q = 3.2 \cdot 10^{-19} C$$
, $m_{He} = 6.68 \cdot 10^{-27} Kg$

Esercizio n.2 (10 punti)

Una spira conduttrice rettangolare quadrata di lato $\ell=20cm$ ruota attorno ad un suo lato con velocità angolare $\omega=157rad/s$. Nella zona in cui la spira ruota è presente un campo magnetico uniforme e costante nel tempo di modulo $B=0,5\,T$ perpendicolare all'asse di rotazione della spira. Se all'istante iniziale il campo è perpendicolare al piano della spira, calcolare il primo istante in cui il valore della f.e.m. indotta sulla spira raggiunge il valore massimo e quest'ultimo.

Esercizio n.3 (10 punti)

Una sbarra di metallo di lunghezza L=25cm scorre senza attrito lungo due binari conduttori connessi tra loro con una resistenza $R=1\Omega$ in serie ad un generatore di tensione $V_0=6V$. È presente un campo magnetico uniforme e costante $B=0,5\,T$ uscente e perpendicolare al piano del circuito. Una forza esterna $F_{ext}=0,25N$ viene applicata nel piano, perpendicolarmente alla sbarra, per mantenere quest'ultima in moto con velocità costante. Determinare la corrente che scorre nel circuito e la velocità della sbarretta.