Chapter 10

Potentials and Fields

10.1 The Potential Formulation

10.1.1 Scalar and Vector Potentials

In this chapter we ask how the sources (p and J) generate electric and magnetic fields; in
other words, we seek the general solution to Maxwell’s equations,
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Given p(r, £) and J(r, ¢), what are the fields E(r, ¢) and B(r, )7 Inthe static case Coulomb’s
law and the Biot-Savart law provide the answer. What we’re looking for, then, is the
generalization of those laws to time-dependent configurations.

This 1s not an easy problem, and it pays to begin by representing the fields in terms of
potentials. In electrostatics V x E = 0 allowed us to write E as the gradient of a scalar

potential: E = —V V. In electrodynamics this is no longer possible, because the curl of E
1s nonzero. But B remains divergenceless, so we can still write

as in magnetostatics. Putting this into Faraday’s law (iii) yields

0
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Here 18 a quantity, unlike E alone, whose curl does vanish; it can therefore be written as the
gradient of a scalar:

0A
E - = —VV.
0t
In terms of V and A, then,
dA
E=-VV o (10.3)

This reduces to the old form, of course, when A is constant.

The potential representation (Eqs. 10.2 and 10.3) automatically fulfills the two homo gé-
neous Maxwell equations, (i) and (ii1). How about Gauss’s law (1) and the Ampere/Maxwell
taw (1v)? Putting Eq. 10.3 into (i), we find that

, 3 1
VIV 4 (V- A) = o (10.4)

this replaces Poisson’s equation (to which it reduces in the static case). Putting Egs. 10.2
and 10.3 1nto (iv) yields

AV 3%A
V X (V x A) :MOJ-—M()éoV(ar ) ~ Ho€0 77

or, using the vector identity V x (V x A) = V(V -A) — V?A, and rearranging the terms
a bit: ' '
9°A
12

(VzA — LOEQ

oV
) —V (V - A + o€ Yy ) = —uod. (10.5)

Equations 10.4 and 10.5 coniain all the information in Maxwell’s equations.

Example 10.1 N O

Find the charge and current distributions that would give rise to the potentials

Hok

(ct — \x\)z 7, for x| < ct,
V=0 A={ %

0, for |x| > ct,

where k is a constant, and ¢ = 1/ VEOLO-

Solution: First we’ll determine the electric and magnetic fields, using Eqgs. 10.2 and 10.3:
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Figure 10.1

(plus for x > 0, minus for x < 0). These are for |x| < ct; when |x| > ¢t, E = B =
(Fig.10.1). Calculating every derivative in sight, I find

V-E=0; V.-B=0;, VxE=m= V: VxB= Z:

ok upkc . OB nwok ..
a2 7 T T Y

As you can easily check, Maxwell’s equations are all satisfied, with p and J both zero. Notice,
however, that B has a discontinuity at x = 0, and this signals the presence of a surface current

K 1in the yz plane; boundary condition (iv) in Eq. 7.63 gives

kty =K x %,

and hence
K = kt1z.

Evidently we have here a uniform surface current flowing in the z direction over the plane
x = 0, which starts up at + = 0, and increases in proportion to ¢. Notice that the news travels
out (in both directions) at the speed of light: for points |x| > ct the message (that current 1s
now flowing) has not yet arrived, so the fields are zero.

NO
Problem 10.1 Show that the differential equations for V and A (Eqgs. 10.4 and 10.5) can be

written 1n the more symmetrical form

or € (10.6)
“A— VL = —pol,

where

pY Vv
2 7 -
= V*“ — en—= and L=V . A+ —_—
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Figure 10.2

NO

Problem 10.2 For the configuration in Ex. 10.1. consider 2 rectangular box of length /, width
w, and height 4, situated a distance d above the vz plane (Fig. 10.2).

(a) Find the energy in the box at time Iy =d/c,and attr) = (d + h)/c.

(b) Find the Poynting vector, and determine the energy per unit time flowing into the box
during the interval #; < ¢ < ¢5.

(c) Integrate the result in (b) from f1 to fp and confirm that the increase in energy (part (a))
equals the net influx.

10.1.2 Gauge Transformations

Equations 10.4 and 10.5 are ugly, and you might be inclined at this stage to abandon the
potential formulation altogether. However, we have succeeded in reducing six problems—
finding E and B (three components each)-—down to four: V (one component) and A (three
more). Moreover, Egs. 10.2 and 10.3 do not uniquely define the potentials; we are free to
1Impose extra conditions on V and A, as long as nothing happens to E and B. Let’s work out

precisely what this gauge freedom entails. Suppose we have two sets of potentials, (V, A)
and (V’, A”), which correspond to the same electric and magnetic fields. By how much can

A'=A+a and V' =V 48

since the two A’s give the same B, their curls must be equal, and hence

........
il l’l .....
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The two potentials also give the same E, so

oY
ot

0 A
o (5+ %) =0

The term 1n parentheses 1s therefore independent of position (it could, however, depend on
time); call 1t k(¢):

Or

0 A

B =" +k),

.. . .
At - 1L LA S L I L L N L L L an . .

Actually, we might as well absorb k() into A, defining a new A by adding fé k(t"dt’ to the
old one. This will not atfect the gradient of A; it just adds k£(¢z) to oA /d¢. It follows that

A=A+ VA,

. . L
- . L LT i e AN Y . . . Xrue . e o
“ s St i LN 2k it B A 5t bl o A vt s e g e e e o Sl £t oy S

91 (10.7)

ot

V =V

Conclusion: For any old scalar function A, we can with impunity add VA to A, provided
we simultaneously subtract dA/d¢ from V. None of this will affect the physical quantities E
and B. Such changes in V and A are called gauge transformations. They can be exploited
to adjust the divergence of A, with a view to simplifying the “ugly” equations 10.4 and
10.5. In magnetostatics, it was best to choose V - A = 0 (Eq. 5.61); in electrodynamics
the situation 1s not so clear cut, and the most convenient gauge depends to some extent on
-+ the problem at hand. There are many famous gauges in the literature; I'1l show you the two

most popular ones.

e

Problem 10.3 Find the fields, and the charge and current distributions, corresponding to 5

1 gt , .
V) =0 At =-—2=L¢
4 eq ré

Problem 10.4 Suppose V = 0 and A = Ay sin(kx — wt) y, where Ag, w, and k are constants.

Find E and B, and check that they satisfy Maxwell’s equations in vacuum. What condition
must you 1impose on « and k7

Problem 10.5 Use the gauge function A = —(1/4meq)(gt/r) to transform the potentials 1n
Prob. 10.3, and comment on the result.
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V-A=0. (10.8)

With this, Eq. 10.4 becomes

|
V2V = P (10.9)

This 1s Poisson’s equation, and we already know how to solve it: setting V = 0 at inhnity,

/
Vir, t) = : pr, ) dt’. (10.10)
477,'60 7

Don’t be fooled, though—unlike electrostatics, V by itself doesn’t tell you E; you have to
know A as well (Eq. 10.3).

There is a peculiar thing about the scalar potential in the Coulomb gauge: itis determined
by the distribution of charge right now. If I move an electron in my laboratory, the potential
V' on the moon immediately records this change. That sounds particularly odd in the light
of special relativity, which allows no message to travel faster than the speed of light. The
pointis that V by itselfis not a physically measurable quantity—all the man in the moon can
measure 1s K, and that involves A as well. Somehow it is built into the vector potential, in the
Coulomb gauge, that whereas V instantaneously reflects all changes in p, the combination
—VV — (0A/0t) does not; E will change only after sufficient time has elapsed for the
“news” to arrive.l

TI'he advantage of the Coulomb gauge 1s that the scalar potential is particularly simple to
calculate; the disadvantage (apart from the acausal appearance of V') is that A is particularly

difficult to calculate. The differential equation for A (10.5) in the Coulomb gauge reads

9“A Vv
VA — - % . 10.11
Ho€0 —— Hod + o€ ( o ) ( )
The Lorentz gauge. In the Lorentz gauge we pick
oV
V. A= —-/VLQG()—a—E-. (10.12)

This is designed to eliminate the middle term 1n Eq. 10.5 (in the language of Prob. 10.1, it
sets L. = (). With this
> 9°A
VA — HOEQD 8l‘2 = -—-;,L()J. (10.13)

Meanwhile, the differential equation for V, (10.4), becomes

0°V 1 .
VY — HLOED »: s 0. | (10.14)
€0

'See O. L. Brill and B. Goodman. Am. J. Phys. 35, 832 (1967).
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The virtue of the Lorentz gauge is that it treats V and A on an equal footing: the same
differential operator
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V* — 1o€

(called the d’Alembertian) occurs in both equations:

(1) V= 0,
€0 - (10.16)

(i) O*A = —uol.

This democratic treatment of V and A is particularly nice in the context of special relativity,
where the d’ Alembertian is the natural generalization of the Laplacian, and Egs. 10.16 can
be regarded as four-dimensional versions of Poisson’s equation. (In this same spirit the wave
equation, for propagation speed c, 2 f = 0, might be regarded as the four-dimensional
version of Laplace’s equation.) In the Lorentz gauge V and A satisty the inhomogeneous
wave equation, with a “source” term (in place of zero) on the right. From now on I shall
use the Lorentz gauge exclusively, and the whole of electrodynamics reduces to the problem
of solving the inhomogeneous wave equation for specified sources. That's my project for
the next section.

M D Problem 10.6 Which of the potentials in Ex. 10.1, Prob. 10.3, and Prob. 10.4 are in the Coulomb
g gauge? Which are in the Lorentz gauge? (Notice that these gauges are not mutually exclusive.)

Problem 10.7 In Chapter 5, I showed that it is always possible to pick a vector potential
whose divergence is zero (Coulomb gauge). Show that it is always possible to choose V - A =
— o€ (dV/dt), as required for the Lorentz gauge, assuming you know how to solve equations
of the form 10.16. Is it always possible to pick V = 0?7 How about A = 07 ’*

10.2 Continuous Distributions

10.2.1 Retarded Potentials

In the static case, Eqgs. 10.16 reduce to (four copies of) Poisson’s equation,

1
V2V = e VZA = —uol,

with the familiar solutions

g S e

1 p(r) HO r) dt’ (10.17) 4

V (I') — dt’, A (l‘ ) — T, RO T N
47T ¢ - \ P : S “_ :E::
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Figure 10.3

where 2, as always, is the distance from the source point r’ to the field point r (Fig. 10.3).
Now, electromagnetic “news” travels at the speed of light. In the nonstatic case, therefore,

1t’s not the status of the source right now that matters, but rather its condition at some earlier

time 7, (called the retarded time) when the “message” left. Since this message must travel
a distance 2, the delay is 2/c:

2
=1t — —. ‘ (10.18)

C

The natural generalization of Eq. 10.17 for nonstatic sources 1s therefore

1 / tf’ /5 Zf‘
V(r,t) = /’O(rj; )dr’, A(r, t) = %/J(Z )dr". (10.19)

Here p(x’, t,) is the charge density that prevailed at point r’ at the retarded time .. Because
the integrands are evaluated at the retarded time, these are called retarded potentials. (1
speak of “the” retarded time, but of course the most distant parts of the charge distribution
have earlier retarded times than nearby ones. It’s just like the night sky: The light we see
now left each star at the retarded time corresponding to that star’s distance from the earth.)

--------
By,

.~ Note that the retarded potentials reduce properly to Eq. 10.17 in the static case, for which
p and J are independent of time.

Well, that all sounds reasonable—and surprisingly simple. But are we sure it’s right? 1
didn’t actually derive these formulas for V and A; all I did was invoke a heuristic argument
(“electromagnetic news travels at the speed of light”) to make them seem plausible. To
. prove them, I must show that they satisfy the inhomogeneous wave equation (10.16) and
meet the Lorentz condition (10.12). In case you think I'm being fussy, let me warn you that
if you apply the same argument to the fields you’ll get entirely the wrong answer:
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as you would expect if the same “logic” worked for Coulomb’s law and the Biot-Savart law.
Let’s stop and check, then, that the retarded scalar potential satisfies Eq. 10.16; essentially
the same argument would serve for the vector potential. 2 T shall leave it for you (Prob. 10.8)
to check that the retarded potentials obey the Lorentz condition.

In calculating the Laplacian of V (r, t), the crucial point to notice 1s that the integrand
(in Eq. 10.19) depends on r in two places: explicitly, in the denominator (2 = |r — r'|), and
implicitly, through t, =t —2/c, in the numerator. Thus

| r1 1 |
VV — [ (Vp)~ +pV (;)] dt’, (10.20)

dmey J |
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and
1

Vo =pVt, = —=pVa (10.21)
C

(the dot denotes differentiation with respect to time).” Now V2 =z and V(1/2) = —2/2?

(Prob. 1.13), so - .
1 ) )
VV = / P2 _ 2 lar, - (10.22)
47 € c % 22

Taking the divergence,

as in Eq. 10.21, and
(Prob. 1.62), whereas

(Eq. 1.100). So

o e i

I I I 1., 18V
V2V = — A ps>(n) | dT’ = I, 1),
4t g f L.z , e )} 232 oY

Al

confirming that the retarded potential (10.19) satisfies the inhomogeneous wave equation

2’11 give you the straightforward but cumbersome proof; for a clever indirect argument see M. A. Heald and J.
B. Marion, Classical Electromagnetic Radiation, 3d ed., Sect. 8.1 (Orlando, FL: Saunders (1995)).
SNote that 9/t = 9/9¢, since t, = t —2/c and % is independent of ¢.

[
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Incidentally, this proof applies equally well to the advanced potentials,

1 ', t r, 1
Vao(r, t) = / PI', ta) dt’, Ag(r, t) = 20 / I o) dt’, (10.23)
4 e 2 4T v

in which the charge and the current densities are evaluated at the advanced time

=142 (10.24)

the charge and the current distribution will be at some time in the future—the effect, in

other words, precedes the cause. Although the advanced potentials are of some theoretical
interest, they have no direct physical significance.?

Example 10.2 N

An infinite straight wire carries the current

0, forr <0,
(1) =
Iy, fort > 0.

That s, a constant current I is turned on abruptly at # = 0. Find the resulting electric and
magnetic fields.

Solution: The wire is presumably electrically neutral, so the scalar potential 1s zero. Let the
wire lie along the 7 axis (Fig. 10.4); the retarded vector potential at point P is

Fort < s/c, the “news” has not yet reached P, and the potential is zero. For f > g /c, only
the segment '

z2] < \/ (ct)? — 52 (10.25)

nolo V(en?=s?

I t )2 — s2
_ ZI'H(\/SZ-I-ZZ-I-Z) :U«O Oln(C +\/(C) S )i
27( - 0 27( S

T “Because the d’Alembertian involves #2 (as opposed to t), the theory itself is time-reversal invariant, and does
. not distinguish “past” from “future.” Time asymmetry 1s introduced when we select the retarded potentials in

“ preference to the advanced ones, reflecting the (not unreasonable!) belief that electromagnetic influences propagate

© . forward, not backward, in time,
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Js 270S \/(ct)2 — 52

7

az

7
$
- P
Figure 10.4

The electric field 1s oA ;
C ~
E(s, 1) = — H0°0 Z,
ot 27/ (ct)? — 52
and the magnetic field is
0A, - I ct A %
B(s, 1) =V X A= z¢mﬂv00 }. 3

Notice that as t — o0 we recover the static case: E =0, B = (ugly/27s) q?)

- TR S R o eighepee e e . e . v
ox wiana e A A o el i e gt O A A

NV

! " Problem 10.8 Confirm that the retarded potentials satisfy the Lorentz gauge condition. [Hint:

First show that
A (-”I-) — 1(V-J) | 1(V’-J)-V" (-'-]-)
7 7 /7 /L

where V denotes derivatives with respect to r, and V’ denotes derivatives with respect to r’.
Next, noting that J(r’, t —2/c¢) depends on r’ both explicitly and through 2, whereas it depends

on r only through 2, contirm that

] . 1.
V-JmeJ-(sz,), Vi J=—p CJ-(V’»;).

Use this to calculate the divergence of A (Eq. 10.19).]

! - Problem 10.9

(a) Suppose the wire in Ex. 10.2 carries a linearly increasing current
[(t) = kt,

for + > 0. Find the electric and magnetic fields generated.

(b) Do the same for the case of a sudden burst of current:

1(1) = qod(2).
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Figure 10.5

N,

( /ﬂ‘/roblem 10.10 A piece of wire bent into a loop, as shown in Fig. 10.5, carries a current that
increases linearly with time:

I(t) = kt.

Calculate the retarded vector potential A at the center. Find the electric field at the center. Why

does this (neutral) wire produce an electric field? (Why can’t you determine the magnetic field
from this expression for A?)

10.2.2 Jefimenko’s Equations

Given the retarded potentials

| 1 ' 1 s
V(r,t) = / P, i) dt’, A(r,?) = &Q.f J(r, ) dt’, (10.26)
47[60 7 47 7

1t 18, in principle, a straightforward matter to determine the tields:

0A -
E=-VV TR B=V xA. (10.27)
But the details are not entirely trivial because, as I mentioned earlier, the integrands depend
on r both explicitly, through 2 = |r — r/| in the denominator, and implicitly, through the
retarded time 7, = ¢ — 2/c in the argument of the numerator

| already calculated the gradient of V (Eq. 10.22); the time derivative of A is €asy:

dA '
= gﬂ/’_‘!df’. (10.28)
ot 47 )

Putting them together (and using ¢? = 1 / o€p):

E(,t) =

1 ‘ /9 rr ~ . /at ~ ] /3 t?‘
- [ ASLOF SISO (LSNP (10.29)

dme 0 22 7/ c2

. This is the time-dependent generalization of Coulomb’s law, to which it reduces in the static

.........
Y- -
----

- case (where the second and third terms drop out and the first term loses its dependence on ¢, ).
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As for B, the curl of A contains two terms:

VXA:@ l(V><J)—--J><V(}--)_Ialr’.

4t ) |2 72
Now
V x T d0J;, dJy
X = ,
g 0y 027
and
oJ;, .ot 1. 02
dy 3y ¢ "0y’
SO

But V2 = 2 (Prob. 1.13), so

1. .
VxJ=-J]x2x (10.30)
C

Meanwhile V (1/2) = —2/2* (again, Prob. 1.13), and hence

/,l‘ 3 /, ¢ A
B(r, 1) = i’_’ﬂ] LELPNNE L1120 NP RS (10.31)
T 7 C7)

This is the time-dependent generalization of the Biot-Savart law, to which it reduces 1n the
static case.

Equations 10.29 and 10.31 are the (causal) solutions to Maxwell’s equations. For some
reason they do not seem to have been published until quite recently—the earliest explicit
statement of which I am aware was by Oleg Jefimenko, in 1966.> In practice Jefimenko’s
equations are of limited utility, since it is typically easier to calculate the retarded potentials
and differentiate them, rather than going directly to the fields. Nevertheless, they provide
a satisfying sense of closure to the theory. They also help to clarify an observation I made
in the previous section: To get to the retarded potentials, all you do is replace ¢ by 7, 1n
the electrostatic and magnetostatic formulas, but in the case of the fields not only is time
replaced by retarded time, but completely new terms (involving derivatives of o and J)
appear. And they provide surprisingly strong support for the quasistatic approximation (see€

Prob. 10.12).

0. D. Jefimenko, Electricity and Magnetism, Sect. 15.7 (New York: Appleton-Century-Crofts, 1996). Closely
related expressions appear in W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism, Sect. 1‘4.3
(Reading, MA: Addison-Wesley, 1962). See K. T. McDonald, Am. J. Phys. 65, 1074 (1997) for illuminating

commentary and references. |
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Problem 10.11 Suppose J(r) is constant in time, so (Prob. 7.55) p(r, t) = p(r,0) + p(r, 0)r.

Show that /
I 1) .
E(r,t) = / pLr )fn{f’;
47‘(60 22

- that is, Coulomb’s law holds, with the charge density evaluated at the non-retarded time.

Problem 10.12 Suppose the current density changes slowly enough that we can (to good
approximation) ignore all higher derivatives in the Taylor expansion

Jt) =J&)+ (t —OJ@t) + . ..

(for clarity, I suppress the r-dependence, which is not at 1ssue). Show that a fortuitous cancel-
lation in Eq. 10.31 yields
Ja',t)y xa

2%y
B(r,1) = — adr’.
(r, 1) 47 2 t

That 1s: the Biot-Savart law holds, with J evaluated at the non-retarded time. This means that
the quasistatic approximation is actually much better than we had any right to expect: the two
errors ivolved (neglecting retardation and dropping the second term in Eq. 10.31) cancel one
another, to first order.

.3 Point Charges

10.3.1 Liénard-Wiechert Potentials

My next project is to calculate the (retarded) potentials, V (r, ¢) and A(r, 1), of a point
charge ¢ that is moving on a specified trajectory

w(z) = position of g at time z. - (10.32)
The retarded time is determined implicitly by the equation
T —w(t)| = c(t — 1), (10.33)

for the left side is the distance the “news” must travel, and (¢ — ¢,) is the time it takes to
make the trip (Fig. 10.6). I shall call w(?,) the retarded position of the charge; 2 is the
vector from the retarded position to the field point r:

2=1 — W(t). (10.34)



430 ' CHAPTER 10. POTENTIALS AND FIELDS

Retarded
position \ Particle
trajectory
s
Present
w(t) g .~ position
7 A
r
B
X
Figure 10.6

Then 2 — 27 = c(ty — 11), so the average velocity of the particle in the direction of r would
have to be c—and that’s not counting whatever velocity the charge might have in other
directions. Since no charged particle can travel at the speed of light, it follows that only

one retarded point contributes to the potentials, at any given moment .0
Now, a naive reading of the formula

e o - . .
Era b it N e e et wle b NS Tt L e e . mim e x mm

g

A ML S Sk

1 r', ¢

V(r,t) = / polr, tr) dt’ (10.35) ;

47T €q 2 ]

might suggest to you that the retarded potential of a point charge 1s simply |
I g
4 €n 72

.g
3
3
;3
i

(the same as in the static case, only with the understanding that 2 is the distance to the
retarded position of the charge). But this is wrong, for a very subtle reason: It is true that
for a point source the denominator 2 comes outside the integral,’ but what remains,

[ o(r',t,)dt’, (10.36)

is not equal to the charge of the particle. To calculate the total charge of a configuration you
must integrate p over the entire distribution at one instant of time, but here the retardation,
t, = t—2/c, obliges us to evaluate p at different times for different parts of the confi guration.
If the source is moving, this will give a distorted picture of the total charge. You might

6For the same reason, an observer at r sees the particle in only one place at a time. By contrast, it is possible to
hear an object in two places at once. Consider a bear who growls at you and then runs toward you at the speed of
sound and groWls agé._in_; you hear both growls at the same time, coming from two different locations, but there’s
only one bear. | | S o | '

"There is, however, an implicit change in its functional dependence: Before the integration, 2 = r — r’| is a
function of r and r’; after the integration (which fixes r’ = w(#)) 2 = |r — w(#)| is (like ) a function of rand?.
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think that this problem would disappear for point charges, but it doesn’t In Maxwell’s
electrodynamics, formulated as it is in terms of charge and current densities, a point charge
must be regarded as the limit of an extended charge, when the size goes to zero. And for ?
an extended particle, no matter how small, the retardation in Eq. 10.36 throws in a factor '
(1 —%2-v/c)~!, where v is the velocity of the charge at the retarded time: -

. . e 8 . 2 - .:_- ._,._-__ e
A I 1t sy 140 YO 7K WAL it o A P S AL et b s 1 e

r', ) dt’ = ke .
[/0( r)dt =% v/ (10.37)

Proof: This is a purely geometrical etfect, and it may help to tell the story 1n j
a lesg abstract context. You will not have noticed it, for obvious reasons, but
the fact is that a train coming towards you looks a little longer than it really is,
because the light you receive from the caboose left earlier than the light you
receive simultaneously from the engine, and at that earlier time the train was

farther away (Fig. 10.7). In the interval it takes Ij ght from the caboose to travel
the extra distance L', the train itself moves a distance [,/ — L: '

RTINSO L~ W TR ST ol [ S

CRREPYRUPEN RIS B T TT S S

L L —L L
— = , or L = .
C v 1l —v/c

TS B TRE S NP APCRT ¥ 2P T PRI I PO RSPV IS IS S S o AL S P SpU SR SIS PpRy S S DA PPN

>0 approaching trains appear longer, by a factor (1 — v/c)~ !, By contrast, a
train going away from you looks shorter,® by a factor (1+v/c)~ L. In general, if
the train’s velocity makes an angle & with your line of sight,” the extra distance

light from the caboose must coveris 7./ cos 0 (Fig. 10.8). Inthe time L/ cos 8 /c,
then, the train moves a distance (1’ — L):

L'cos® L' — L , L
— , or L' = -
C v Il —vcosb/c

., - . .. v 8 w2 ‘. - " -8 1 e 8. .
o PR CCLNE IR PR IR S PRSI T T [T R [ FCR L L O TR VI TR VT SRR LSy Gy | e S N e

-e<
E/AY

Lpent ..-\‘-;s;:l-'h.;::{.‘._..‘: =i P B :&.'1..'. s k::.:‘v a (R I f"..‘- ‘.‘_"‘j" - ;; ,....‘_'_-_..'i\_'.':,,l.'. N 'i. e 'v'-. - ,;;-.,J, 008 o300 5 80 Slenigl TN S

| a 7 »
o e e A
L | '
L/
Figure 10.7

of the moving train, and its rest length is not at issue, The '
’1 assume the train is far enough away or (more to'th
engine can be considered parallel. L
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observer

Figure 10.8

Notice that this etfect does nor distort the dimensions perpendicular to the
motion (the height and width of the train). Never mind that the light from the
tfar side 1s delayed 1n reaching you (relative to light from the near side)—since
there’s no motion in that direction, they’ll still look the same distance apart.
The apparent volume t’ of the train, then, is related to the actual volume t by

, T

T = : , (10.38)
l —2-v/c

where % i1s a unit vector from the train to the observer.

In case the connection between moving trains and retarded potentials escapes
you, the point 1s this: Whenever you do an integral of the type 10.37, in which
the integrand 1s evaluated at the retarded time, the effective volume 1s modified
by the factor in Eq. 10.38, just as the apparent volume of the train was—and
for the same reason. Because this correction factor makes no reference to the
size of the particle, 1t 1s every bit as significant for a point charge as for an

extended charge.  ged

ol . B M e ST ek b R W, L AT, et e thiee s T

P P ——

LA My V2 Y L At S 21 AN rd T L Wt A Lt a2 ke

It follows, then, that

1
Vi, t) = 1 , (10.39)
471'60 (/LC — V)

i ety R R , o .

where v 1s the velocity of the charge at the retarded time, and 2 is the vector from the retarded
position to the field point r. Meanwhile, since the current density of a rigid object is pV
(Eq. 5.26), we also have :

't )v(t) |
A(ra t) — ":_-'L'g / p( . r)V( r) df/. . i / /O(r/p t}‘) d.f/,
T n 47t 2

.....
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Or

po  gev v
A(r,t) = = —=V(r, ). .
R v e RALIL) (1040

Equations 10.39 and 10.40 are the famous Liénar
charge. !V

- —

Ui s

e R P -T-"T?"_':L"'l"'?:."?:‘_":’" Y Ml S T P - . )
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d-Wiechert potentials for a moving point

Example 10.3
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Find the potentials of a point charge moving with constant velocity.

Solution:

For convenience, let’s say the particle passes through the origin at time 7 — 0, so
that

W(t) = vt.
We first compute the retarded time. using Eq. 10.33:

r — V| = c(t — I ),

Oor, squaring:
re — 2r. Vi, + vzt,,z = 02(1“2 — 21t + z‘,,z).

Solving for # by the quadratic formula, I find that

(%t —r1-v) + V(2 —r. V)2 + (c?2 —v2)(r2 — c212)
[, = C2 U2 : (1041)

To fix the sign, consider the limit v = 0:

¥
tr:Z::‘_.
C

In this case the charge is at rest at the origin, and the retarded time sho

uldbe (£ —r/c); evidently
we want the minus sign.

Now, from Egs. 10.33 and 10.34

dete
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— . 2
2(1 — 5. v/e) — }C(Z )] v (r Vi) V-r 1

= %[(021“ —1-V) = (¢* — v%)1]

1
— —C-\/(czt —Tr- V)2 -+ ((;'2 — v2) (r2 — cztz)

10There are many ways to obtain the Liénard-Wiechert potentials. I have tried to emphasize the geometrical
origin of the factor (1 —2-vy / c)""1 , for illuminating commentary see W. K. H. Panofsky and M. Phillips, Classical

Llectricity and Magnetism, 2d ed., pp. 342-3 (Reading, MA: Addison-Wesley, 1962). A more rigorous derivation
1s provided by J. R. Reitz, F. J. Milford, and R. W. Chri Fou

. Sect. 21.1 (Reading, MA: Addison-Wesley, 1979), or M. A. Heald and J. B. M
¢ Radiation, 3d ed., Sect. 8.3 (Orlando, FL: Saunders, 1995).
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(I used Eq. 10.41, with the minus sign, in the last step). Theretore,

qcC

Vir,t) = ,
(r. 1) 477 € \/(622} — T - V)2 1 (C2 _ UZ)(rZ _ C2t2)

(10.42)

and (Eq. 10.40)

MO qCV |
41 \/(CZ; —1r-v)2 + (c? — 02)(r2 — c?t4)

A(r,t) = (10.43)

Problem 10.13 A particle of charge g moves in a circle of radius a at constant angular velocity
w. (Assume that the circle lies in the xy plane, centered at the origin, and at time ¢ = 0 the
charge is at (a, 0), on the positive x axis.) Find the Liénard-Wiechert potentials for points on

the z axis.

Problém 10.14 Show that the scalar potential of a point charge moving with constant velocity
(Eq. 10.42) can be written equivalently as

1 q

V(r, 1) =
4o R\/ 1 — v2sin? 6/c2

, (10.44)

where R = r — vz is the vector from the present (!) position of the particle to the field point
r, and 9 is the angle between R and v (Fig. 10.9). Ev1dent1y for nonrelativistic Veloc:1tles

(v* K c?),

1 g
V(r, t) = 47[60-15

Figure 10.9

@Q _ Problem 10.15 I showed that at most one point on the particle trajectory communicates with

%

r at any given time. In some cases there may be no such point (an observer at r would not see
the particle—in the colorful language of General Relativity it is “beyond the horizon™). As an
-example, consider a particle in hyperbolic motion along the x axis:

w(t) = \/ b2 + (ct)2%  (—o00 <t < 00). (10.45) .

hlik&.“t&um.f.m A 3 s ety ) Pt dp g

......

D adby
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d ~ (In Special Relativity this is the trajectory of a particle subject to a constant force F — mc? /b.)
~ / Sketch the graph of w versus . At four or five representative points on the curve, draw the
/ trajectory of a light si gnal emitted b | |

l
V(r, 1) — e Am = v (10.46)
deg (2c — 2 - V) c?

and the equations for E and B:

JA
at

E=-vy.

B:':VXA.

The differentiation is tricky, however, because

2=T—W() and v — w(z,)

ey, et
N
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Since 2 = c(t — &),
Vi = —cVit,. (10.50)

As for the second term, product rule 4 gives

V- v) =@ - VIV+ V- V)a+ax(VXV)+VX (V X 2). (10.51)

Evaluating these terms one at a time:

(- V)V

|
"
»
[og
1
&
!
Q>
| @
&
N
‘cw
~
-
P aain
~
N’

1
oy

a(z- Vi), (10.52)
where a = Vv is the acceleration of the particle at the retarded tuime. Now

(v -Via= (v -V)r—(v-V)w, (10.53)

and

(Vv-V)r

0 0 3, . . .
| Fvu,— } (XX + + 7 Z
(Ux o1 Uy 3y Uz aZ)( yYyY )

iy X+ vy ¥+ v 2=, (10.54)

I

while
(v - V)W =v(v- V)

(same reasoning as Eq. 10.52). Moving on to the third term 1n Eq. 10.51,

v,  0Uy \ .. 0 Uy sz) ) (8vy E)vx) .
— - — T //
Vo (By az)x+(8z 0X Y 0x Jy

_ (dvz oty dvy 82}) - (dvx at,  dv, 81}) 3’ N (dvy 0t,  dvy 82}) ;

dt, 0y dt, 0% dt, 0z  dt, 0x dt, 0x dt, 0y
= —a X Vi,. (10.55)

Finally,
Vxa=Vxr—V xw, (10.56)

but V x r = 0, while, by the same argument as Eq. 10.55,

V X W = .---V X V. (10.57)
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Putting all this back into Eq. 10.51, and using the “BAC-CAB” rule to reduce the triple
Cross products,

Viz-v) = a((z'VZr)—I—V*V(V'VZ})—/LX (@ X V) 4+ v x (v x Vi)
= V+(r-a—-1%)Vvr. ©(10.58)

Collecting Egs. 10.50 and 10 58 together, we have

gc 1
VV =
dreg (2 — - v)2

[V + (02 — v . a)Vrr] . (10.59)

To complete the calculation, we need to know Vi.. This can be found by taking the
gradient of the defining equation (10.48)—which we have already done in Eq. 10.50—and

1

—cVt, = Va=V./n »— Vz- 2
c V4 N (2 2)
1
=~ V)22 x (V x2)], (10.60)

But |
(2-Vza=a— v(iz- Vi)

(same idea as Eq. 10.53), while (from Eq. 10.56 and 10.57)

VX)‘L:(VXV&).

Thus
| |
—CVly = —=[2—v(2- V1) + 2 x (VX V)] =~[2— (2. V)Vt .
) 2
and hence
Vtr = —* : (1061)
2C — -V
Incorporating this result into Eq. 10.59, I conclude that
1
VV — . ¢ [(/zc ~2-V)V—(c* — 2 L 4. a)fb] . (10.62)
47‘[60 (2c — 2 - V)3

A similar calculation, which I shall leave for you (Prob. 10.17), yields

JA 1 gc
—— — @ -_...4.‘] ——— —_——
- e e [( c )(=V + 2a/0)

+ 2P =2, a)vJ . (10.63)
C

seine e
o
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Combining these results, and introducing the vector

u=cia—V, (10.64)

| ind é

Er, {) = — (2 — v¥yu42 x (u x a)l. (10.65)

dreg (2 ll)3

Meanwhile,
VXAx—EVX(VV)':—“—?[V(VXV)—VX(VV)]. |

C C ]

We have already calculated V x v (Eq. 10.55) and V'V (Eq. 10.62). Putting these together, 3
_l g 1 2 _ 2

V XA=-— 2 x [(c—v)v+ (2-a)y+ (2-uw)a]. .5

c 4meg (U -4)3 ;

The quantity in brackets is strikingly similar to the one in Eq. 10.65, which can be written,
using the BAC-CAB rule, as [(c? —v®)u+ (2-a)u— (2-u)a]; the main difference 1s that we
have v’s instead of w’s in the first two terms. In fact, since it’s all crossed into 2 anyway, we
can with impunity change these v’s into —u’s; the extra term proportional to 2 disappears

in the cross product. It follows that

_ »
B(r, 1) = -4 x E(r, 1). (10.66)
C

Evidently the magnetic field of a point charge is always perpendicular to the electric field,

and to the vector from the retarded point.
The first term in E (the one involving (c? — v®)u) falls off as the inverse square of the

distance from the particle. If the velocity and acceleration are both zero, this term alone

survives and reduces to the old electrostatic result

Amegn ]
For this reason, the first term in E is sometimes called the generalized Coulomb field.
(Because it does not depend on the acceleration, 1t 1s also known as the velocity field.) The

second term (the one involving 2 x (u x a)) falls off as the inverse firsz power of 2 and 1S
therefore dominant at large distances. As we shall see in Chapter 11, 1t 18 this term that 1s

responsible for electromagnetic radiation; accordingly, it is called the radiation field—or,
since it is proportional to a, the acceleration field. The same terminology applies to the

R £
L ahg

magnetic field.
Back in Chapter 2, I commented that if we could only write down the formula for the

force one charge exerts on another, we would be done with electrodynamics, in principle.
That, together with the superposition principle, would tell us the force exerted on a test

‘‘‘
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charge Q by any configuration whatsoever. We]] here we are: Eqs. 10.65 and 10.66 give

he resulting force:

r g0 2

N 2 .2
= e o {[(c VU + 2 X (u X a)]

Vv

+ = x [Ax [ = v)u+2 x (u x 21|} (10.67)

Example 10.4

Calculate the electric and magnetic fields of a point charge moving with constant velocity.
Solution: Putting a = 0 in Eq. 10.65,

In Ex. 10.3 we found that

/zc——/z.v:a-uz\/(czz‘—-r.v)2+(cz——v2)(r2—~c2r2).

In Prob. 10.14, you showed that this radical could be written as

S,
''''''

e — 5 (10.68)

2 Notice that E points along the line from the present position of the particle. This is an
i extraordinary coincidence, since the “message” came from the retarded position. Because of

the sin? @ in the denominator, the field of a fast-moving charge is flattened out like a pancake in

the direction perpendicular to the motion (Fig. 10.10). In the forward and backward directions
K 1s reduced by a factor (1 — v2 / (32) relative to the field of a ch_arg_e at rest; in the perpendicular
M { direction it is enhanced by a factor 1/ \/ ] — 2 /c?, o |
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E

A

84

~ Figure 10.10

As for B, we have

r—vt, @—vD)+@—1)v R v

/AI, i e p— ! :
| L /L L
and therefore
I . 1
B=-(axE) =—=(vxEkE). (10.69)
C c2

I ines of B circle around the charge, as shown in Fig. 10.11.

@ SR

Figure 10.11

The fields of a point charge moving at constant velocity (Egs. 10.68 and 10.69) were first
obtained by Oliver Heaviside in 1888.13 When r* < ¢2 they reduce to

E(r, 1) = — R, B )= M/o;} (v x R). (10.70)

The first is essentially Coulomb’s law, and the latter is the “Biot-Savart law for a point charge”
I Wamed you about inChapte:r 5 (Eq. 5.40). '

L3 For history and references, see O. J. ] efimenko, Am. J. Phys. 62,779 (1994).
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11.2 Point Charges

11.2.1 Power Radiated by a Point Charge

In Chapter 10 we derived the fields of a point charge g in arbitrary motion (Egs. 10.65 and
10.66):

q

2 .2
e (n )3 [(c vI)u+2 x (u x a)l, (11.62)

E(r,t) =

where u = ¢z — v, and

1.
B(r,t) = -2 < KE(r, ). (11.63)
C :

The first term in Eq. 11.62 is called the velocity field, and the second one (with the triple
cross-product) is called the acceleration field.

The Poynting vector 1S

S:i-(ExB)_—_ lc[Ex(fixE)]:—_

1 A Fat
[E“%2— (2- E)E]. (11.64)
240 L0 C

MO

However, not all of this energy flux constitutes radiation; some of it is just field energy

carried along by the particle as it moves. The radiated energy is the stuff that, in effect,

detaches itself from the charge and propagates off to infinity. (It’s like flies breeding on a

garbage truck: Some of them hover around the truck as it makes 1ts rounds; others tly away

and never come back.) To calculate the total power radiated by the particle at time ¢,, we

draw a huge sphere of radius 2 (Fig. 11.11), centered at the position of the particle (at time
tr ), wait the appropriate interval

2

f— 1 = —

C

(11.65)

for the radiation to reach the sphere, and at that moment integrate the Poynting vector over

the surface.® I have used the notation . because, in fact, this is the retarded time for all

points on the sphere at time 7.

Now, the area of the sphere is proportional to 2°, so any term in S that goes like 1/ 27

will yield a finite answer, but terms like 1/2° or 1/2* will contribute nothing in the limit
- 2 — oo. For this reason only the acceleration fields represent true radiation (hence their
~ other name, radiation fields):

q
direg (2 - 1)

E g = [2 X (u x a)]. (11.66)

ONote the subtle change in strategy here: In Sect. 11.1 we worked from a fixed point (the origin), but here it is

more appropriate to use the (moving) location of the charge. The implications of this change in perspective will
become clearer 1n a moment.
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The total power radiated 1s evidently

2 2 . 2
sin“- &
P = %Srad cda = Hogq < [ 5 /7/2 sin 6 do@ d¢,
| )

Or

2.2
da |
p=ro1e - (11.70)

This, again, is the Larmor formula, which we obtained earlier by another route (Eq. 11.61).

Although I derived them on the assumption that v = 0, Egs. 11.69 and 11.70 actually
hold to good approximation as long as v < c¢. An exact treatment of the case v # 0 is

- more difficult,” both for the obvious reason that E .4 is more complicated, and also for the

more subtle reason that S;.4, the rate at which energy passes through the sphere, 1s nor the
same as the rate at which energy left the particle. Suppose someone 1s firing a stream of
bullets out the window of a moving car (Fig.11.13). The rate N; at which the bullets strike
a stationary target is not the same as the rate N, at which they lett the gun, because of the
motion of the car. In fact, you can easily check that N, = (1 — v/c) NV, 1t the car 1S moving

towards the target, and
-V
C

for arbitrary directions (here v is the velocity of the car, c 1s that of the bullets—relative to
the ground—and % is a unit vector from car to target). In our case, if d W /dt 1s the rate at
which energy passes through the sphere at radius 2, then the rate at which energy lett the

charge was

M Wby B g . CAm e £t 10 el ot ] ks s el h ok b LWL Ty e -

i 2 it e A ey AT S0 00 s B s Pt e A 2 AL e e W o el ffor

(11.71)

daw  dW/dt (aou) dW

dt, 34,9t  \ ac / dt

——..—.-—_-nn“_——'—_—-h”-ﬂllhﬁﬂu-——hﬂ-———_-—wh—lv—h—ﬂ—lﬂ- K
=<
el

Figure 11.13 '

n the context of special relativity, the condition v = ( simply represents an astute choice of reference system,
~ with no essential loss of generality. If you can decide how P transforms, you can deduce the general (Liénard)

result from the v = 0 (Larmor) formula (see Prob. 12.69).
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(I used Eq. 10.71 to CXPress oz, /0t.) But

2-U 2.V

|

1C C

which is precisely the ratio of N,

to Vi3 1t’s a purely geometrical factor (the same as in the
Doppler effect).

the answer:

where y = 1/,/1 — 12 /c?. This is Liénard’s generalization of the
which it reduces When V < ¢). The factor y6 means
enormously as the particle velocity approaches the speed of light.

Example 11.3

Suppose v and a are instantaneously collinear (at time #,), as,

for example, in straight-line
motion. Find the angular distribution of the radiation

(Eq. 11.72) and the total power emitted.
Solution: In this case (u x a) = ¢(% x a), SO
dP g% |Ax (hxa)?
A2 1672 €0 (c—2-v)>

Now

Y oy

2 X (2 X a) = (2-a)2—a, 5ok x (2 x a)]* = a2 _ (% - a)~.
In particular, if we let the 7 axis point along v, then

'."a_ T d P 2 2 L 2 9
GRoaar o E
I Y s

C——
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2 ' 5 9 (
R Bt Lo S Cl Q 1 6” C (1 ﬁ COS 9)
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Ce i v
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gy Mo T

il ".:JI.J R

PRI AL

W ESTRIEE Nl

where 8 = v/c. This is consistent, of course, with Eq. 11.69, in the case v = (. However, for

very large v (8 ~ 1) the donut of radiation (Fig. 11.12) is stretched out and pushed forward
by the factor (1 — B cos8)~3, as ind; ' - .
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emax

N Y

Figure 11.14

The total power emitted 1s found by integrating Eq. 11.74 over all angles:

dP sin® @ |
P = -———dQ-- sinf dob do.
d §2 167r (1 — BcosH)?

The ¢ integral is 277; the 0 integral is simplified by the substitution x = cos :

dx.

b _ nog*a [“ (1 — x*%)

8me  J_1 (1 — Bx)?

Integration by parts yields %(1 — A5 and I COIlCludfi:[hat

2 2.6
d - |

p=rod ey - 175
67TC |

' This result is consistent with the Liénard formula (Eq. 11.73), for the case of collinear v and a.

- Notice that the angular distribution of the radiation is the same whether the particle 1s accel-

| | | erating or decelerating; it only depends on the square of a, and 1s concentrated 1n the forward

\

1

\ direction (with respect to the velocity) 1n either case. When a high speed electron hits a metal
target it rapidly decelerates, giving off what 1s called bremsstrahlung, or “braking radiation.”

' What I have described in this example is essentially the classical theory of bremsstrahlung.

A\

AN

Problem 11.13

(a) Suppose an electron decelerated at a constant rate a from some initial velocity vg down
to zero. What fraction of its initial kinetic energy 1s lost to radiation? (The rest is absorbed
by whatever mechanism keeps the acceleration constant.) Assume vg < ¢ so that the Larmor
formula can be used. |

(b) To get a sense of the numbers involved, suppose the initial velocity is thermal (around 10°
m/s) and the distance the electron goes 1s 30 A. What can you conclude about radiation losses
for the electrons in an ordinary conductor?

‘Problem 11.14 In Bohr’s theory of hydrogen, the electron in its ground state was supposed to

travel in a circle of radius 5 x 10~ !!1m, held in orbit by the Coulomb attraction of the proton.

i
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