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The usual discretized approach to Quantum Field Theory is
the (Euclidean) Lagrangian approach [Wilson, 1974]. We
discretize both space and time, obtaining a d+1-dimensional
classical statistical system.

Alternatively, we can adopt the (Minkowskian) Hamiltonian
approach [Kogut, Susskind, 1975], discretizing space but
keeping time continuous, obtaining to a d-dimensionals
quantum system.

For the purpose of numerical simulations, the Lagrangian
approach is by far the most popular, and it has notable
advantages over the Hamiltonian approach:

Lagrangian Hamiltonian
very effective Monte Carlo Monte Carlo techniques are
techniques are available; more complicated and less
effective;
a discrete subgroup of the Lorentz invariance is

(Euclidean) Lorentz group is ~ completely broken;

preserved;

many fermionic systems do most fermionic systems

not suffer from the sign suffer from the sign problem.
problem.
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On the other hand, the Hamiltonian approach has several

advantages:

Lagrangian

fermions must be integrated
out, leading to a non-local
action;

properties of the vacuum
must be obtained indirectly;

supersymmetry must be
broken completely;

it is difficult to exploit
knowledge of the vacuum

Hamiltonian

fermions are implemented
directly;

the vacuum (ground-state)
wavefunction is directly
accessible;

a 1-d supersymmetry algebra
can be preserved;

approximations to the
vacuum wavefunction can
be used to improve the
simulations

Checks of universality between the Lagrangian and the

Hamiltonian formalism are also very welcome.
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Many powerful many-body techniques developed for
condensed-matter physics can be applied to Hamiltonian
lattice models.

Among many Monte Carlo techniques available to compute
the vacuum wavefunction, | will focus on the Green Function

Monte Carlo (GFMC) algorithm

The basic ingredient of the GFMC algorithm is the
projection of a generic state |i) over the ground state

Wo) = lim exp[—tH][i),  (Toli) £0 (1)

t—o0

(apart from a t-dependent normalization).

We implement Eq. (1) stochastically: set

Yo) =12),  [¥n) =GlYn—1), G =exp|-fH],

so that |¥g) = lim,_, o [t¥n); choose a basis {|m)};
decompose G into a stochastic matrix P and a weight W':

G(l,m) = P(l,m) W (m),
0<P(l,m)<1, >,P(lm)=1;

represent 1,, as an index m,, plus a weight w,,:

%) = wp|man); (2)

Prob(m,y1=m) = P(m,m,), wpy+1 =W (my,)w,. (3)
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The vacuum expectation value of a generic observable can

be computed as

— bm (f| exp[—TH] O exp|—tH]|7)
WolOlYo) = e el + ) AT
— lim wn+l<f|0|mn>

n,l—)oo wn+l<f|mn>

(4)

(forward walking), where |f) is a generic state non-orthogonal
to |Wq); in practice, the choice of |f) is very important.

The ground state energy can be obtained simply as

) o (FIH expl—tH]li
Eo = (Wo|H[Wo) = t1—>oo (f|exp|—tH]|i)

= lim :

exp[—tH] is typically implemented using the formula

exp[—~B(A+B)] = exp|—3 B A] exp[—SB] exp[—3 84| +O(8°),

therefore an extrapolation to 8 — 0 is required.
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The procedure given above does not actually work: at each
step, ever more small w,, are generated, and the variance of

any observable diverges.

This problem is solved by branching

e use an ensemble of K walkers
ens, = My (1), w,(1);...;m,(K), w,(K);

e evolve each configuration independently, according to Eq.
(3);
e periodically, eliminate walkers with a small weight and

duplicate walkers with a large weight, respecting Eq. (2)
and keeping the variance finite.

A typical reconfiguration: take int(cw(i) + &) copies of m(i),
and set w(7) to 1.

In practice, Eq. (4) is respected only in the K — oo limit.
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The variance can be reduced dramatically by using a

guiding wavefunction Wg approximating W,: write

(mlihn) = (m|¥c){m|¢n),

and represent 1,, as an index m,, plus a weight w,,:

%) = wn|my),

Prob(m,+1=m) = P(m,my), wp+1 = W(m,)wy,,
((|¥g) G, m)
(m|¥¢q)
0< P(l,m)<1, Y,P(l,m)=1;

G(l,m) = = P(I,m) W(m),

notice that, if Y = Wy, the sampling is perfect.
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In practice, ¥ will depend on a set of optimization
parameters {a}; traditionally, they are determined by a
variational computation; we prefer to optimize the as
adaptively during the Monte Carlo simulation :
by minimizing the variance of E estimated over the walker

ensemble:

ai(n+1) =a;(n) — n(n)%\farensn (Ey)

and 7(n) is suitably chosen.

The optimal values of {a} can give direct information on

the vacuum wavefunction.
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Let us remind the (continuum) N = 1 supersymmetry
algebra

{Qa, Qp}t =2(PC)ap; (5)

since P; are not conserved on the lattice, a lattice formulation
of a supersymmetric model must break (5) explicitly.

A very important advantage of the Hamiltonian formulation
is the possibility of conserving exactly a 1-d subalgebra of (5)
; specializing to 1 4+ 1
dimensions, in a Majorana basis v = C = 09, 71 = ios,
Eq. (5) becomes

Q%:Q§:POEH7 {Q17Q2}22P152P7 (6)

On the lattice, since H is conserved but P is not, we can hold,
e.g., Q2 = H, and expect to recover the rest of (6) in the

continuum limit,

Observe that Q? = H is enough to guarantee that
Eo = (Vo|H|Tp) > 0, that all eigenstates of H with £ > 0
are paired in doublets (|b) = Q1 /VE|f), |f) = Q1/VE|b)),

and that Fy = 0 if and only if supersymmetry is unbroken, i.e.,

the ground state is annihilated by Q1.
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The continuum two-dimensional Wess-Zumino model is
defined by

Qua= [ da n(o)it* (o) - 52 4P @) £ V(0() ¥ (@)

where V() is an arbitrary polynomial, ¢(z) is a real scalar
field, w(z) is its conjugate momentum, ¢ (x) is a Majorana
fermion, H = Q% = Q% as given by Eq. (6), and canonical
(anti)commutation rules hold.

We will adopt the lattice formulation

: bui1 —
QEQ1=Z[W¢L¢£—( S "—1+v<¢n>> wi],

n=1

with canonical (anti)commutation rules.
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The choice of a symmetric difference leads to doubling of
both boson and fermions, but allows the clever transformation

—1)" Fi _
oy = T T i),
{Xn, X5} = 0nm,  {xnoxm} = {0, x5, =0,

leading to

H=Q=

> [vri + (%“ fosty V(¢n>)2 (7)

n=1

— (X} Xn41 + hec) + (=1)"V(¢) (2x)xn — 1)] ;

N | =

choosing for the fermions the occupation number basis

[n1,na,. ) = ()™ (xh)™ ... 10),

the Hamiltonian (7) is free of sign problems (all non-diagonal
matrix elements are non-positive), apart from boundary
problems: with periodic boundary conditions, there is a sign
problem when the (conserved) fermion number is even, which
Is the sector where the supersymmetric ground state is
expected to lie. Therefore we choose free boundary conditions.
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In the free (V' = 0) case, the Hamiltonian is quadratic and
splits into a bosonic part and a fermionic part; the ground state
|Tg) = |[¥F) @ |TE) is computed exactly; when L = 2 (mod 4)
it is unique and supersymmetric (Q|¥,) = 0), and it contains
L /2 fermions; we will always study this sector in the following.

We will adopt the guiding wave function

(6, n|¥a(a)) = exp[Sp(4) + S (¢, n)] ($]T7) (n|T7),

dB
Sp=)_ > g,

dp
1 F ik
S = (1) (1~ 1) Y- a6k,
m k=1

with dg = dr = 4. We expect ¥ to work better and better
as we approach the continuum limit, since it is related to the
free ground state.

For odd V, the model enjoys the symmetry ¢,,, =& —dm,
and odd as can be set to zero.

For even V', the model enjoys the approximate symmetry
Gm — —ODm, Ny — 1 —ny, (it is broken by irrelevant terms
and by boundary terms), and we verified that odd o? and

even aF can be set to zero.

12
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Supersymmetry implies many non-trivial Ward identities: if
Q|¥o) = 0, for each observable X we have

(Tol{Q, X}¥o) = 0.

In order to study supersymmetry breaking, we will look not
only at Ejy, but also at (Y;), with

v,={@. > e1v2}
(Yy,) is computed easily, since for

we have
(@ X} = Y o) [0 L v,
+ )" (o — 3 )}
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A typical example of the behaviour of the optimization
parameters « is the following plot, taken from a run of 10°
iterations at V = ¢%, K = 100, L = 10, 8 = 0.01; odd as are
set to 0. (This run required 3 hours on a PC).

0.8

0.6

04

0.2

0 50k 100 k 150 k | 200 k
iteration
The optimal values of the as are quite insensitive to K;
therefore they can be determined in a run at moderate values
of K (i.e., 100 or 200) and given as initial approximations (or
even kept fixed) for runs at higher values of K.

14
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We plot two typical examples of the behaviour of an
observable, obtained from the above run and from a run of
5x10° iterations at K = 1000: it is easy to measure and to
extrapolate to large Aiter the quantity Y1 = {Q,>. én¥2}.
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Let us now turn to the physical properties of the

two-dimensional Wess-Zumino model.

e In strong coupling, the model reduces to a supersymmetric
quantum mechanics for each site; supersymmetry is broken

if and only if the degree of V is even.

e In the continuum (and on the lattice in weak coupling),
supersymmetry is broken at tree level if and only if V' has

NO ZEroes.

The predictions of strong coupling and weak coupling can
be quite different, and it is interesting to study both
numerically and analytically the crossover from strong to weak
coupling. We will focus on V(¢) = Aa¢? + g with Ay > 0; for
Ao < 0, supersymmetry is unbroken at tree level.

Let us remind that, for models with only scalars and
fermions in 2 dimensions, radiative corrections can change the
pattern of supersymmetry breaking, unlike in 4 dimensions
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We performed a strong-coupling computation of {(¢,,), Eq,
and other quantities; the results are fully compatible with the
Monte Carlo simulations for large V; e.g., for V(¢) = A¢?, the

agreement is very good when \ 2 2.

(pn) vs. n for V =2¢

T T T T | T T T | T T T T | T T T T | T T
0.2 B - —— strong coupling
i o K=100
i o K=200
N o K=500
| K = 1000
0.1 i < K=2000
%— 0.0 B
0.1+
-0.2
0
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The two-dimensional Wess-Zumino model is
superrenormalizable; a 1-loop perturbative computation shows
that ¢ and v do not renormalize, and only V(¢) needs to be
normal-ordered; the dependence on the renormalization scale u
IS

) 0 V(gp) _ 1 02 V(e p)
op  p 4w 0*  p

In the case V = X2 + Ay, on the lattice, write
V = Xad? + Ao, with \; = a);; near the continuum limit,

X2 A AT

~ 1

Ao = a " + a,)\;en2— log (aM),
T

where M is the mass scale at which the renormalized couplings

are defined.
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For the odd V(¢) = A3¢° + A1, both strong coupling and
weak coupling predict supersymmetry to be unbroken. The

Witten index

Iy = Te(-=1)" =) (np(E) — np(E))
E
is a topological invariant and Iy #% 0 implies unbroken
supersymmetry; since at strong coupling Iyy =1,
supersymmetry remains unbroken as we move towards the

continuum limit (unless a phase transition occurs).

Massimo Campostrini October 1, 2002



Hamiltonian study of the lattice two-dimensional Wess-Zumino model 20

For V = ¢3 we plot the ground state energy Ej as a
function of 1/K; the parameters are L = 10, 8 = 0.01, odd as
set to 0; the statistic is 5x10° iterations (10° for K = 100).

0.006 — T

0.004 |~ —

0.002 |- —

0.000 — —

— | | | | | | | | | | | | | | | | | | | | |
o'oc()%OOO 0.002 0.004 0.006 0.008 0.010
VK

The evidence for unbroken supersymmetry is convincing.
The bosonic and fermionic contribution to Ey are ~ £+7.4: we
are observing a cancellation of the order of 107%.
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For the same runs, we plot the quantity

004 T T T T T T T T T T T T T T T T
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Again, the evidence for unbroken supersymmetry is
convincing.
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More interesting is the case of even V (¢) = X292 + .
Strong coupling predicts supersymmetry breaking and Iy = 0,
while weak coupling predicts unbroken supersymmetry for
Ao < 0. We expect the actual transition value A} to be shifted
by renormalization effects, and to depend on As.

According to , supersymmetry should always
be broken at finite L, and only in the L — oo limit
supersymmetry can be restored. Moreover, in the scaling
region, unbroken supersymmetry should be accompanied by a
nonzero (¢), breaking the (approximate) ¢ — —¢@ symmetry.
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At intermediate coupling, we observe Ey > 0 for all Ag; |
present the plot of Ey vs. K for L = 10, Ay = 1, and several
values of \g, with 5x10° iterations for each point.

T T T T | T T T T

0.03F ob—no )‘o =-1.00 |
- o— )‘o =-1.25 -
L A—A )‘o =-1.50 |
L )‘o =-2.00 i

0.02— |

E0 L
0.01+—
O'%QOOO

An extrapolation to K — oo gives

Ey/L x exp(5.5\g) for Ay < —0.5.
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In order to confirm Witten's scenario, we study the
restoring of supersymmetry and the breaking of the ¢ — —¢
symmetry, varying Ag at fixed As.

Supersymmetry breaking is studying by extrapolating Eq/L
to L — oo according to

EO Cr, CK
Loe(1+F 4+,
L g<+L+K

The ¢ — —¢ symmetry breaking is studied by:

e The Binder cumulant

_ (M) _
Q_Wa M_zn:¢n7

where the sum excludes sites closer to the border than
(typically) 6; a good estimate of the transition point is the
intersection of the curves () vs. Ao obtained at different
values of L. () appears to be too noisy to draw any
definite conclusion.

e The bosonic part of the optimized guiding wavefunction

exp|3, S5(6n)| (G1UE),  Sn(8) = af9® +afe’,

which is related to the effective potential of the field ¢:
we expect Sg(¢) to have a double-well shape (af < 0)
for broken symmetry and a single-well shape (o > 0) for
unbroken symmetry.

24
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V=05¢ +A,
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V=05¢ +A\,

30 | | | | | | | | | | | | | | | | |
| O—0 L=22 _
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u > _
25— T —
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V=05¢ +A,

0015 | | | L L L |

0.010

—0.005

—0.010

L1 1 | L1 1 | L1 1 | I 1 1 | I 1 1 | I 1 1 | -
—0.01
00 —50.46 -044 -042 -040 -038 -0.36 -0.34 -0.32

Ao
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What happens in the continuum limit?

We study the trajectory

A
Ao = ﬁ In(4)s),

corresponding to a 1-loop RG trajectory; the effect of Ag is
small in the range we considered, therefore we expect this to
be a reasonable approximation to a RG trajectory.

We estimate the correlation length from the exponential
decay of the connected correlation function G4 = (¢, Pm)
averaged over all n,m pairs with |m — n| = d, excluding pairs
for which m or n is closer to the border than (typically) 8. In
our formulation, fermions are staggered and even/odd d
correspond to different channels.
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V =0.353553 ¢ +0.019502, L =8

10_ | | | | | | | | | | | | | | | | | | | |
- 1/8 = 0.166(4)

<Q(9) Q(x+)>

o) K=100, L =34
L O K=200,L=34
O K =100, L =46 -
& K =200, L=46
_3 | | | | | | | | | | | | | | | | | | | | | | |
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V =0.353553 ¢ +0.019502, L =8

UE = 0.20(3)

o
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V =0.125¢ -0.0137897, L . =8

\III|IIIIIIIIIIIIIIIIIIII|IIII|IIII|I
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V =0.125¢ -0.0137897, L . =8

[ < 1/¢ = 0.158(12) |
N 1/8 = 0.130(11) -
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| show in detail the case V = 0.35 ¢? + 0.02, for which we
have obtained the statistics of 4x10% GFMC iterations. It is
very difficult to extract a correlation length from the even-d
channel, presumably because ¢ has a very small overlap with
the lightest state of the channel, and the value
1/€ = 0.20 + 0.03 should be considered tentative. The odd-d
channel is much cleaner, and it is possible to estimate & with a

good precision.

For the other values of A5, the situation is similar but with
slightly larger errors. The measured values of £,qq follow the

naive scaling behavior

The entire range 0.088 < Ay < 0.35 seem to be in the scaling
region, with Ao = 0.5 a borderline case. The values of &even
have very large errors, and it is hard to draw any conclusion
from them.
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The GFMC algorithm gives a very accurate measurement of
the ground-state energy Ejy; typical results are:

Eo(A2=0.044, L=46, K=200)
Eo(A2=0.5, L=46, K=200)

(1.28 +0.01) x10~;
(69.44 & 0.05)x 1073,

We extrapolate to L — oo and K — oo fitting Ey to

E
2-e(g )

x2/#td.o.f is typically 2, indicating that higher corrections are
very small, but not completely negligible.

For )\2 — 0,
cx ~ const (the algorithm is performing well),

cr,€ ~ const.

Ey/L seems to behave )\2/3, while naive scaling would
predict oc A\3. The value of Ey/L (disregarding this puzzling
exponent) and the lack of any signal for a breakdown of parity
(like a double-peaked distribution of ¢) show that the
trajectory we are considering belongs to the phase with broken
supersymmetry and zero (¢).
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Algorithms like GFMC can be parallelized effectively in
MIMD machines, by putting a sub-ensemble of walkers of each
node: communications are mainly needed for branching, to
balance the number of walkers on each node. We developed a
parallel code using explicit MPI calls, and reached 90%
efficiency on a network of PCs, connected through a dedicated

fast ethernet.
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The two-dimensional lattice Wess-Zumino model can be
simulated to very high accuracy using the GFMC algorithm.

The vacuum energy can be measured with a very high
accuracy; in order to establish the pattern of supersymmetry
breaking, an extrapolation to L — oo is needed.

The optimal values of the guiding wavefunction parameters
are very useful probes of the properties of the vacuum

wavefunction.

The correlation length of ¢ can be measured with a good

accuracy.

Fermions in 2 dimensions can be simulated (in many
instances) at no extra cost. In 3 or more dimensions, we must
tackle the sign problem; several algorithms are being tested for
condensed matter physics (mainly) in 3 dimensions.
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