Steady State of Random Resistor Networks Under Biased Percolation

Cecilia Pennetta Eleonora Alfinito and Lino Reggiani

Dip. di Ingegneria dell'Innovazione, Universita' di Lecce and National Nanotechnology Laboratory of INFM, Italy

OUTLINE

• Aim of the work

Model

Conclusions and open questions

AIM OF THE WORK

- Study the electrical conduction of disordered materials over the full range of the applied stress
- Identify the failure precursors and predict electrical breakdown phenomena
- Investigate the stability of the electrical properties and electrical breakdown phenomena in conductorinsulator composites, in granular metals and in nanostructured materials

R = network resistance

- I = stress current (d.c.), kept constant
- **T**₀ = thermal bath temperature

 α = temperature coeff. of the resistance

n-th resistor :
$$r_{reg}(T_n) = r_0 [1 + \alpha (T_n - T_{ref})]$$

BIASED PERCOLATION MODEL (Gingl et all, 1996; Pennetta et all, 1999)

$$T_n = T_0 + A[r_n i_n^2 + (B/N_{neig}) \sum_m (r_{m,n} i_{m,n}^2 - r_n i_n^2)]$$

Flow Chart of Computations I≠0 Initial network change T **t=0** $R(T_0)$ $\begin{array}{c} r_{reg} \rightarrow r_{D} \\ r_{reg}(T) \end{array}$ **Change T** t = t +1 t>tmax?

RESULTS

Network evolution for the irreversible breakdown case

Observed electromigration damage pattern

Granular structure of the material

- Atomic transport through grain boundaries dominates
- Transport within the grain bulk is negligeable
- Film: network of interconnected grain boundaries

SEM image of electromigration damage in Al-Cu interconnects

Experiments and Simulations Evolution and TTF

Lognormal Distribution

Tests under accelerated conditions

Qualitative and quantitative agreement

Resistance evolution:

Average resistance:

BREAKDOWN: FIRST ORDER TRANSITION

p_c depends on the bias and on E_R

In general: b ≠ pc
at increasing values of ER
(near the stability region)

 $<\!\!p\!\!>_b \rightarrow p_c$

Effect on the average resistance of the bias conditions (constant voltage or constant current) and of the temperature coefficient of the resistance α

We have found that $Y \equiv \frac{\langle R \rangle_b}{\langle R \rangle_0}$ is:

- independent on the initial resistance of the film
- independent on the bias conditions
- **dependent on the temperature coef. of the resistance**
- dependent on the recovery activation energy

 $Y=1.85\pm0.08$

All these features are in good agreements with electrical measurements up to breakdown in carbon high-density polyethylene composites (K.K. Bardhan, PRL, 1999)

Relative variance of resistance fluctuations

Effect on the resistance noise of the bias conditions and of the temperature coefficient of the resistance α

Non Gaussianity of the resistance fluctuations in the pre-breakdown region

 $f_{0} = e^{(-c/2)} (c/(c+1))^{(-c/2)} * \{ z^{\circ} exp[-((1+c)/2)*z^{2}] \}, z=(x-a)/b$

Nakagami distribuion

Linear regime: intrinsic noise (homogeneous processes)

steady state condition:

 $W_{R} > W_{D} / (1 + W_{D})$

Generalization of the model:

A network made of N_{spec} different resistors + broken resistors

The active resistors are different for:

- the resistance value (and/or the TCR)
- the defect generation energy
- the defect recovery energy

Each species can:

- reach a steady-state within a caracteristic time
- extinguish

In the low-bias limit (homogeneous processes) $\tau_i \approx p_i/W_{di}$ where p_i = average fraction of broken resistors of each species Steady-state of a 75x75 network made of several species of resistors

* N_{spec} =15 *homogeneous proc. * uniform distrib. of r_0 * $r_0 \in [0.5, 1.5]$ * logarithmic distr. of τ_i * $p_i \approx 0.25 \quad \forall i$

Power spectral density of resistance fluctuations

Lorentzian spectrum in the case of a single species
1/f spectrum when several species are present

10-4 slope=0.96 10⁻⁵ * N_{spec}=15 sinale process several processes 10⁻⁶ * homogeneous processes * uniform distribution of r_0 * $r_0 \in [0.5, 1.5]$ * logarithmic distribution of τ_i of 10⁻⁷ 10⁻⁸ 10⁻⁹ 10⁻¹⁰ 10⁻¹¹ * $\mathbf{p}_i \approx 0.25 \quad \forall i$ slope=1.7 10⁻¹² 10^{-2} 10^{-3} 10-1 10-4 Frequency (arb. units)

CONCLUSIONS

- We have studied by MC simulations the stationary regime of a 2D RRN resulting from the competition of biased processes.
- The full range of the bias values, from the linear regime up to the breakdown, has been considered with the purpose of identifying precursors of failure.
- We have found scaling relations relating $\langle R \rangle / \langle R_0 \rangle$ and $\langle \Delta R^2 \rangle / \langle R \rangle^2$ with I/I_0
- We have analized, under different bias conditions, the role of different material parameters like: the initial resistance of the film, the TCR, the recovery activation energy.
- The agreement with measurements of the electrical properties of composites and nanostructured materials, and of electromigration damage in metallic lines is largely satisfactory.

OPEN QUESTIONS

1. To what extent the comparison with experiments can be made more quantitative?

2 . Can we identify suitable parameters which act as precursors of the electrical breakdown?

3. For composites K. K. Bardhan (PRL, 1999) suggested that:

$$\Lambda = \frac{Y - 1}{\alpha \kappa \rho_0}$$

would have an universal value, where κ is the thermal conductivity of the material and ρ_0 the resistivity of the conductive component. Λ is really universal ?

4. Is it possible to generalize the scaling relations found in the case of linear regime to the case of nonlinear regime?

5. How the dimensionality, the geometry and the topology of the network would influence the results?

6. Concerning the extension of the model to the case of several species of resistors, we have studied only the linear regime by taking a comparable concentration of the different species. What happens in the biased case and for different initial concentrations of the different species?

REFERENCES

- Z. Gingl, C. Pennetta, L. B. Kish, L. Reggiani, Semicond. Sci. Technol. 11, 1770, 1996.
- C. Pennetta, L. Reggiani , L. B. Kish, *Physica A*, 266, 214, 1999.
- C. D. Mukherijee, K. K. Bardhan, M. B. Heaney, *Phys. Rev. Lett.*, 83,1215, 1999.
- Z. Rubin, A. Sunshine, M.B. Heaney, I. Bloom, I. Balberg, *Phys. Rev.* B, 59, 12196, 1999
- C. Pennetta, L. Reggiani, G. Trefan, Phys. Rev. Lett. 84, 5006, 2000.
- C. Pennetta, L. Reggiani, G. Trefan, *Phys. Rev. Lett.* 85, 5238, 2000.
- C. Pennetta, L. Reggiani, E. Alfinito, G. Trefan, J. Phys. C, 14, 2371, 2002.
- C. Pennetta, L. Reggiani, G. Trefan, E. Alfinito, *Phys. Rev. E*, 65, 066119, 2002.
- C. Pennetta, *Fluctuation and Noise Lett.*, 2, R29, 2002.
- L. B. Kish, C. Pennetta, Z. Gingl, Proc. of the SPIE's Annual Optical Sci. and Tech. Meeting, Seattle, July, 2002.