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We study the global phase diagram of the infinite-range Blume-Emery-Griffiths model both in the
canonical and in the microcanonical ensembles. The canonical phase diagram shows first-order and
continuous transition lines separated by a tricritical point. We find that below the tricritical point, when
the canonical transition is first order, the phase diagrams of the two ensembles disagree. In this region
the microcanonical ensemble exhibits energy ranges with negative specific heat and temperature jumps
at transition energies. These results can be extended to weakly decaying nonintegrable interactions.

DOI: 10.1103/PhysRevLett.87.030601 PACS numbers: 05.20.Gg, 05.50.+q, 05.70.Fh, 64.60.– i
Systems in d dimensions, with a pairwise interaction po-
tential which decays at large distances as V�r� � 1�rd1s

with 2d # s # 0, are referred to as nonintegrable, or
systems with long-range interactions. Such systems have
an ill defined thermodynamic limit [1]. This may be cor-
rectly restored by applying the Kac prescription [2], within
which the potential is rescaled by an appropriate, volume
dependent, factor which vanishes in the thermodynamic
limit. However, even within this scheme, the energy re-
mains nonadditive, i.e., the system cannot be divided into
independent macroscopic parts, as is usually the case for
short-range interactions. This fact has no dramatic con-
sequences if one is restricted to the canonical ensemble,
but it produces striking phenomena in the microcanonical
ensemble. One should, however, recall that the canonical
ensemble has no foundation if it cannot be derived from the
microcanonical, and this is possible only for additive sys-
tems [3]. In the microcanonical ensemble the specific heat
may be negative, as was first clearly discussed by Lynden-
Bell [4] and Thirring [5]. Indeed, it has been originally
observed by Antonov [6] that classical gravitational sys-
tems (s � 22, d � 3) show features of such kind. How-
ever, here the physical situation is made more complex by
the presence of a singularity of the interaction potential at
short distances. For a careful discussion of the statistical
mechanics of these systems, see Ref. [7].

In this Letter we consider a simple model for which the
main features of the phase diagram can be derived ana-
lytically both within the canonical and the microcanoni-
cal ensembles. We demonstrate that, in the region where
the phase transition in the canonical ensemble is first or-
der, the two ensembles are not equivalent, yielding two
distinct phase diagrams. The model we consider is the
Blume-Emery-Griffiths (BEG) model with infinite-range
interactions (s � 2d). This is the simplest model known
to exhibit both continuous and first-order transition lines. It
is defined on a lattice (hence, divergences at short range are
removed), where each lattice point i is occupied by a spin-1
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variable Si � 1, 21, 0. The Hamiltonian is given by

H � D

NX
i�1

S2
i 2

J
2N

√
NX

i�1
Si

!2

, (1)

where J . 0 is a ferromagnetic coupling constant and
D . 0 controls the energy difference between the mag-
netic �S � 61� and the nonmagnetic �S � 0� states. Each
spin interacts with every other spin, and the coupling con-
stant J is scaled by 1�N make the energy extensive. This
is just the Kac prescription applied to our model. How-
ever, this does not entail additivity, in the sense that for a
system made of two parts, X and Y , such that HX1Y �
HX 1 HY 1 HXY , the HXY interaction term never be-
comes negligible in the thermodynamic limit. This prop-
erty applies to all thermodynamic potentials.

The canonical phase diagram of this model has been
studied in the past [8]. At T � 0 the model exhibits a fer-
romagnetic phase for 2D�J , 1 and a nonmagnetic phase
otherwise. The �T, D� phase diagram displays a transition
line separating the low temperature ferromagnetic phase
from the high temperature paramagnetic phase (see Fig. 1).

The transition is first order at high D values and becomes
continuous at low D. The critical (second-order) line is
given by

bJ �
1
2

ebD 1 1 , (2)

where b � 1�kBT . The two segments of the transition
line (high and low D) are separated by a tricritical point
located at D�J � ln�4��3 � 0.4621, bJ � 3. The first-
order segment of the transition line is obtained numerically
by equating the free energies of the ferromagnetic and the
paramagnetic states.

We now consider the phase diagram of the BEG model
(1) within the microcanonical ensemble. Let N1, N2,
and N0 be the number of up, down, and zero spins, re-
spectively, in a given microscopic configuration. Clearly,
N1 1 N2 1 N0 � N . The energy E of a configuration
© 2001 The American Physical Society 030601-1
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FIG. 1. Transition lines in the canonical ensemble. The critical
line (thinner line) ends at the tricritical point (≤), where the tran-
sition becomes first order (thicker line). The first-order region
is zoomed in the inset, where we show again the canonical first-
order line (solid line) and the microcanonical transition lines
(dot-dashed lines)

is obviously a function only of N1, N2, and N0. It does
not depend on the specific spatial distribution of the spin
variables. It is given by

E � DQ 2
J

2N
M2, (3)

where Q �
PN

i�1 S2
i � N1 1 N2 is the quadrupole mo-

ment and M �
PN

i�1 Si � N1 2 N2 is the magnetization
of the configuration. In order to calculate the entropy of a
state with energy E we note that the number of microscopic
configurations V compatible with macroscopic occupation
numbers N1, N2, and N0 is

V �
N!

N1! N2! N0!
. (4)

Thus, in the large N limit, the entropy S � kB lnV corre-
sponding to these occupation numbers is given by

S � 2kBN��1 2 q� ln�1 2 q� 1
1
2 �q 1 m� ln�q 1 m�

1
1
2 �q 2 m� ln�q 2 m� 2 q ln2� , (5)

where q � Q�N and m � M�N are the quadrupole mo-
ment and magnetization per site, respectively.

Let e � E�DN be the energy per site, normalized by
D. Equation (3) can be written as

q � e 1 Km2, (6)

where K � J�2D. Using this relation, one expresses the
entropy per site s � S��kBN� as a function of m and e.
By maximizing s�e, m� with respect to m, one obtains both
the spontaneous magnetization ms�e� and the entropy s�e�
of the system for a given energy. In order to locate the
continuous transition line between the paramagnetic and
ferromagnetic phases we expand s�e, m� in powers of m.
This expansion takes the form

s � s0 1 Am2 1 Bm4 1 O�m6� , (7)
030601-2
where s0 � s�e, m � 0� is the entropy at zero
magnetization

s0 � 2�1 2 e� ln�1 2 e� 2 e lne 1 e ln2 , (8)

and A and B are the expansion coefficients

A � 2K ln
e

2�1 2 e�
2

1
2e

,

B � 2
K2

2e�1 2 e�
1

K
2e2 2

1
12e3 .

(9)

In the paramagnetic phase both A and B are negative, and
the entropy is maximized by m � 0. The continuous tran-
sition to the ferromagnetic phase takes place at A � 0 for
B , 0. In order to obtain the critical line in the �T ,D�
plane we note that the energy e is related to the tempera-
ture by the usual thermodynamic relation

D

kBT
�

≠s

≠e
. (10)

By making use of the fact that the magnetization m van-
ishes on the critical line, one obtains

D

kBT
� ln

2�1 2 e�
e

. (11)

This relation, together with the equation A � 0, yields the
following expression for the critical line:

2b̄K �
1
2

eb̄ 1 1 , (12)

where b̄ � bD. Equivalently, this expression may be
written as b̄K � 1�2e. The microcanonical critical line
thus coincides with the critical line (2) obtained for the
canonical ensemble. The tricritical point of the micro-
canonical ensemble is obtained at A � B � 0. By com-
bining these equations with (11), one finds that, at the
tricritical point, b̄ satisfies

1
8b̄2

eb̄ 1 2

eb̄
2

1
4b̄

1
1
12

� 0 . (13)

Equations (12) and (13) yield a tricritical point at K �
1.0813, b̄ � 1.3998. This has to be compared with the
canonical tricritical point located at K � 3� ln�16� �
1.0820, b̄ � ln�4� � 1.3995. It is evident that the two
points, although very close to each other, do not coincide
and the microcanonical critical line extends beyond the
canonical line. In the region between the two tricritical
points, the canonical ensemble yields a first-order transi-
tion at a higher temperature, while in the microcanonical
ensemble the transition is continuous.

To study the microcanonical phase diagram we con-
sider the temperature-energy relation T�e�. This curve
has two branches: a high-energy branch (11) correspond-
ing to m � 0, and a low-energy branch obtained from
(10) using the spontaneous magnetization ms�e�. At the
intersection point of the two branches the two entropies
become equal. In Fig. 2 we display the T�e� curve for in-
creasing values of D. For D�J � ln�4��3, corresponding
030601-2
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FIG. 2. Temperature versus energy relation in the micro-
canonical ensemble for different values of D. The horizontal
line in some of the plots is the Maxwell construction in the
canonical ensemble and identifies the canonical first-order
transition temperature.

to the canonical tricritical point, the lower branch of the
curve has a zero slope at the intersection point (Fig. 2a).
Thus, the specific heat of the ordered phase diverges at
this point. Increasing D to the region between the two tri-
critical points a negative specific heat in the microcanoni-
cal ensemble first arises (≠T�≠e , 0), see Fig. 2b. At the
microcanonical tricritical point D, the derivative ≠T�≠e

of the lower branch diverges at the transition point, yield-
ing a vanishing specific heat (Fig. 2c). For larger values
of D a jump in the temperature appears at the transition
energy (Fig. 2d). The lower temperature corresponds to
the m � 0 solution (11) and the upper one is given by
exp�b̄� � 2�1 2 q���

p
�q��2 2 �m��2, where m�, q� are

the values of the order parameters of the ferromagnetic
state at the transition energy. The negative specific heat
branch disappears at larger values of D, leaving just a
temperature jump (see Fig. 2e). In the D�J ! 1�2 limit
the low temperature branch, corresponding to q � m �
1 in the limit, shrinks to zero and the m � 0 branch
(11) describes the full energy range (Fig. 2f). In the in-
set of Fig. 1 we report the transition temperatures in the
microcanical ensemble against D�J for both the m � 0
(lower dot-dashed line) and the m fi 0 solutions (upper
dot-dashed line). The lines are drawn starting at the canon-
ical tricritical point. The region between the two tricriti-
cal points is too small to be appreciated in the figure. A
schematic phase diagram in the first-order region is given
in Fig. 3, where we fictitiously expand the region of the tri-
critical points. Note that the canonical first-order line nec-
essarily crosses the upper microcanonical transition line at
some point.

That such unusual effects in the microcanonical
ensemble are associated with a first-order phase transition
was also suggested in Ref. [9]. Some of these authors
030601-3
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FIG. 3. A schematic representation of the phase diagram,
where we expand the region around the canonical (CTP) and the
microcanonical (MTP) tricritical points. The second-order line,
common to both ensembles, is dotted, the first-order canonical
transition line is solid, and the microcanonical transition lines
are dashed (with the bold dashed line representing a continuous
transition).

discuss mainly short-range interactions, for which such
features are produced by finite size effects.

As usual, for mean-field models, one can express the
free energy f�T ,m� in the canonical ensemble as a func-
tion of T and m. The spontaneous magnetization ms�T �,
the temperature-energy relation T�e�, and the free energy
f�T� may be obtained by minimizing f�T ,m� with respect
to m and using well-known thermodynamic relations. We
now note that the negative specific heat branch of the mi-
crocanonical ensemble corresponds to a local maximum of
the free energy f�T , m� with respect to m.

This result can indeed be derived on quite a general
ground. It is easy to show that an extremum of f�T , m�
corresponds to an extremum of s�e, m� with respect to
m. Indeed, the free energy f�T , m� may be obtained by
minimizing f̃�T, e, m� � De 2 s�b with respect to e,
keeping T and m fixed. This minimization yields the
temperature-energy relation (10) which may be multi-
valued. On the other hand, minimizing f̃�T , e, m� with
respect to m yields the result that ≠f�T , m��≠m and
≠s�e, m��≠m are proportional to each other and thus
vanish together. It can be shown [10] by studying the
second derivatives that, when the stationary point of
f̃�T , e, m� with respect to e and m is a saddle point, the
resulting entropy exhibits a negative specific heat. As
a consequence, we can recover the full microcanonical
solution by studying the stationary points of the func-
tion f̃�T , e, m�. However, this function is not typically
available for non-mean-field models.

The relevant features of the BEG model with infinite-
range couplings persist also for nonintegrable interactions.
In order to investigate this point, we introduce a general-
ization of the BEG model given by the Hamiltonian

H � D

NX
i�1

S2
i 2

J
Ñ

X
i.j

SiSj

ra
ij

, (14)

where rij is the distance on a 1D lattice between spins at
sites i and j. The interactions are nonintegrable for a # 1.
030601-3
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The normalization Ñ � 2a�N12a 2 1���1 2 a� ensures
that the energy is extensive. Models of this type have been
previously introduced by other authors, and studied within
the canonical ensemble [11]. We apply periodic bound-
ary conditions (pbc), for which the model is more easily
tractable, and we then take rij to be the smallest of the
two distances compatible with pbc. The interaction matrix
�rij�2a�Ñ can be exactly diagonalized, which allows one
to solve model (14) in the canonical ensemble. When ap-
propriately rescaled thermodynamic quantities are chosen,
the solution is the same as for the a � 0 case (as it hap-
pens for the models studied in Ref. [11]). Moreover, using
a Fourier representation of Hamiltonian (14) and consider-
ing only the long wavelength components, it is possible to
obtain an approximate expression for the entropy in the mi-
crocanonical ensemble [10]. Maximizing this expression
at fixed energy, we find that the a � 0 microcanonical
solution is also left unchanged. Since both the canonical
and the microcanonical solutions are not modified, we con-
clude that ensemble inequivalence persists for the slowly
decreasing case a , 1. Details of this analysis will be re-
ported elsewhere [10].

In summary, we have compared the canonical with
the microcanonical solutions of the infinite-range Blume-
Emery-Griffiths model. We find that the global phase
diagrams are different in the two ensembles. Although
they are found to be the same in the domain where the
canonical transition is continuous, they differ from each
other when the canonical transition is first order. Negative
specific heat and temperature jumps at the transition en-
ergy are found in the microcanonical ensemble. These re-
sults generalize those of Ref. [5] in the context of a simple
model, where, by varying a single parameter, one can ob-
serve a variety of possible features of the phase diagram.
Moreover, we are able to understand the role played by
the constraint of fixing the energy in the microcanonical
ensemble, which produces a stabilization of canonically
unstable solutions. In the phase coexistence region, the
unusual microcanonical thermodynamic properties should
result in some peculiar dynamical behavior, as has been
observed in studies of a different mean-field model with
continuous variables [12]. Our results for the BEG model
030601-4
are not limited to the infinite-range case, but can be ex-
tended to weakly decaying nonintegrable interactions.
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