

Roberto Casalbuoni

Department of Physics and INFN - Florence

Bari, September 29 – October 1, 2004 \blacksquare

Introduction Introduction

Motivations for the study of high-density QCD:

- Understanding the interior of CSO's
- Study of the QCD phase diagram at T~0 and high μ

Asymptotic region in µ fairly well understood: existence of a CS phase. Real question: does this type of phase persists at relevant densities (\sim 5-6 ρ_0)?

- Mini review of CFL and 2SC phases
- Pairing of fermions with different Fermi momenta
- The gapless phases g2SC and gCFL
- The LOFF phase and its phonons

Study of CS back to 1977 (Barrois 1977, Frautschi 1978, Bailin and Love 1984) based on Cooper instability:

At $T \sim 0$ a degenerate fermion gas is unstable

Any weak attractive interaction leads to Any weak attractive interaction leads to Cooper pair formation Cooper pair formation

▶ Hard for electrons (Coulomb vs. phonons) > Easy in QCD for di-quark formation (attractive channel 3) $(3 \otimes 3 = 3 \oplus$ = $=3\oplus 6$

In QCD, CS easy for large μ due to asymptotic freedom

At high μ , m_s , m_d , $m_u \sim 0$, 3 colors and 3 flavors Possible pairings: $\left\langle 0 \left| \psi_{ia}^\alpha \psi_{jb}^\beta \right| 0 \right\rangle$

 \triangleleft Antisymmetry in color (α, β) for attraction

 \triangleleft Antisymmetry in spin (a,b) for better use of the Fermi surface

 \triangleleft Antisymmetry in flavor (i, j) for Pauli principle

Only possible pairings LL and RR

Favorite state CFL (color-flavor locking) **(**Alford, Alford, Rajagopal Rajagopal & Wilczek Wilczek 1999**)** $\alpha_{\alpha\beta}$ β $\alpha_{\alpha\beta}$ $\alpha_{\beta\beta}$ $\alpha_{\beta\beta}$ $\alpha_{\beta\beta}$ $\langle 0 | \psi^\alpha_{\mathit{aL}} \psi^\beta_{\mathit{bL}} | 0 \rangle$ = - $\langle 0 | \psi^\alpha_{\mathit{aR}} \psi^\beta_{\mathit{bR}} | 0 \rangle$ = $\Delta \varepsilon^{\alpha \mathsf{pC}} \varepsilon_{\mathit{a} \mathit{bC}}$

Symmetry breaking pattern Symmetry breaking pattern SU $\rm U(3)_c \otimes \rm SU(3)_L \otimes \rm SU(3)_R \Rightarrow \rm SU(3)_{c+L+R}$ What happens going down with μ ? If $\mu \ll m_s$ we get 3 colors and 2 flavors (2SC) 3 colors and 2 flavors (2SC)

$$
\langle 0 | \psi_{aL}^{\alpha} \psi_{bL}^{\beta} | 0 \rangle = \Delta \epsilon^{\alpha \beta 3} \epsilon_{ab}
$$

 ${\rm SU(3)}_{\rm c}\otimes{\rm SU(2)}_{\rm L}\otimes{\rm SU(2)}_{\rm R} \Rightarrow {\rm SU(2)}_{\rm c}\otimes{\rm SU(2)}_{\rm L}\otimes{\rm SU(2)}_{\rm R}$

But what happens in real world ?

- \bullet M_s not zero
- Neutrality with respect to em and color in neutral \rightarrow singlet, Amore et al. 2003)
- Weak equilibrium

All these effects make Fermi momenta of different fermions unequal causing problems to the BCS pairing mechanism

(no free energy cost (no free energy cost

Consider 2 fermions with $m_1 = M$, $m_2 = 0$ at the same chemical potential µ. The Fermi momenta are

 ${\sf p}_{\sf F1} = \sqrt{{\mu}^2 - {\sf M}^2}$ $-{\sf M}$

 ${\sf p}_{\sf F2}$ $= \mu$

Effective chemical potential for the massive quark $\frac{1}{2}$ $\frac{1}{2}$ eff $\mu_{\text{eff}} = \sqrt{\mu^2 - M^2} \approx \mu - \frac{M}{2\mu}$ μ $\hbox{\bf M}^2$ 2 $\delta \mu$ \approx μ Mismatch:

If electrons are present, weak equilibrium makes chemical potentials of quarks of different charges unequal:

 $\mathrm{d} \rightarrow \mathrm{u} \mathrm{e} \overline{\nu} \;\;\Rightarrow\;\;\; \mu_{\mathrm{d}} - \mu_{\mathrm{u}} = \mu_{\mathrm{e}}$ $-\mu_{\rm u} = \mu$ In general we have the relation: $(\mu_i = \mu + Q\mu_Q)$

$$
\left|\mu_e=-\mu_Q\right|
$$

 $N.B. \mu_e$ is not a free parameter

Neutrality requires:

eV

Example 2SC: normal BCS pairing when

$$
\mu_{\rm u} = \mu_{\rm d} \Rightarrow n_{\rm u} = n_{\rm d}
$$

But neutral matter for

$$
n_d \approx 2n_u \Rightarrow \mu_d \approx 2^{1/3}\mu_u \Rightarrow \mu_e = \mu_d - \mu_u \approx \frac{1}{4}\mu_u \neq 0
$$

Mismatch:

$$
\delta\mu=\frac{p_F^d-p_F^u}{2}=\frac{\mu_d-\mu_u}{2}=\frac{\mu_e}{2}\approx\frac{\mu_u}{8}\neq 0
$$

 \blacktriangleleft

Also color neutrality requires

As long as $\delta\mu$ is small no effects on BCS pairing, but when increased the BCS pairing is lost and two possibilities arise: possibilities arise:

- The system goes back to the normal phase
- Other phases can be formed

In a simple model with two fermions at chemical potentials μ +δ $\mu, \, \mu$ −δ μ the system becomes normal at the Chandrasekhar-Clogston point. Another unstable phase exists.

13

The point $|\delta \mu| = \Delta$ is special. In the presence of a mismatch new features are present. The spectrum of quasiparticles is

$$
E(p) = \left| \delta \mu \pm \sqrt{(p-\mu)^2 + \Delta^2} \right|
$$

For $|\delta \mu| = \Delta$, an unpairing (blocking) region opens up and gapless modes are present. present. For $|\delta \mu| < \Delta$, the gaps are $\Delta - \delta \mu$ and $\Delta + \delta \mu$

$$
E(p) = 0 \Leftrightarrow p = \mu \pm \sqrt{8\mu^2 - \Delta^2}
$$

● Solve:

4x3 fermions: 4x3 fermions:

g2SC
Same structure of condensates as in 2SC
(Huang & Showovy, 2003)
4x3 fermions:
• 2 quarks ungapped q_{ub}, q_{db}
(1)
$$
\psi_{aL}^{\alpha} \psi_{bL}^{\beta} | 0 \rangle = \Delta \varepsilon^{\alpha \beta 3} \varepsilon_{ab}
$$

- \bullet 4 quarks gapped q_{ur} , q_{ug} , q_{dr} , q_{dg}
- General strategy (NJL model):
	- Write the free energy:

$$
V(\mu,\mu_3,\mu_8,\mu_e,\Delta)
$$

Neutrality

$$
\frac{\partial V}{\partial \mu_e} = \frac{\partial V}{\partial \mu_3} = \frac{\partial V}{\partial \mu_8} = 0
$$

Gap equation
$$
\frac{\partial V}{\partial \Delta} = 0
$$

• For $|\delta \mu| > \Delta (\delta \mu = \mu_e/2)$ 2 gapped quarks become gapless. The gapless quarks begin to unpair destroying the BCS solution. But a new stable phase exists, the gapless 2SC (g2SC) phase.

• It is the unstable phase which becomes stable in this case (and CFL, see later) when charge neutrality is required.

17

• But evaluation of the gluon masses (5 out of 8 become massive) shows an instability of the g2SC phase. Some of the gluon masses are imaginary (Huang and Shovkovy 2004).

• Possible solutions are: gluon condensation, or another phase takes place as a crystalline phase (see later), or this phase is unstable against possible mixed phases.

• Potential problem also in gCFL (calculation not yet done).

$$
\left\langle 0\left|\psi_{aL}^{\alpha}\psi_{bL}^{\beta}\right|0\right\rangle =\Delta_{1}\epsilon^{\alpha\beta1}\epsilon_{ab1}+\Delta_{2}\epsilon^{\alpha\beta2}\epsilon_{ab2}+\Delta_{3}\epsilon^{\alpha\beta3}\epsilon_{ab3}
$$

Different phases are characterized by different values for the gaps. For instance (but many other possibilities exist)

$$
\begin{aligned}\n\text{CFL} : \quad \Delta_1 &= \Delta_2 = \Delta_3 = \Delta \\
\text{g2SC} : \quad \Delta_3 &= 0, \Delta_1 = \Delta_2 = 0 \\
\text{gCFL} : \quad \Delta_3 > \Delta_2 > \Delta_1\n\end{aligned}
$$

Strange quark mass effects:

- Shift of the chemical potential for the strange quarks: quarks: 2 s \mathbf{s} \mathbf{r} $\alpha \mathbf{s}$ $\bf M$ 2 $\mu_{\alpha s}^{} \Rightarrow \mu_{\alpha s}^{} \; \mu$
- Color and electric neutrality in CFL requires $\frac{1}{2}$

$$
\mu_8=-\frac{M_s^2}{2\mu},\ \ \, \mu_3=\mu_e=0
$$

• gs-bd unpairing catalyzes CFL to gCFL

$$
\delta\mu_{bd-gs}=\frac{1}{2}\big(\mu_{bd}-\mu_{gs}\big)=-\mu_8=\frac{M_s^2}{2\mu}
$$

2 $\epsilon_{\rm d-gu} = \mu_{\rm e}, \quad \delta \mu_{\rm rs-bu} = \mu_{\rm e} - \frac{\mu_{\rm s}}{2 \pi}$ M $-\text{gu}$ w_e , w_{rs-bu} w_e 2 $\delta\mu_{\scriptscriptstyle\rm rd-\scriptscriptstyle{o}u}=\mu_{\scriptscriptstyle\rm e},\;\;\;\delta\mu_{\scriptscriptstyle\rm rs-\scriptscriptstyle{bu}}=\mu_{\scriptscriptstyle\rm e} \mu$ 21

It follows:

Again, by using NJL model (modelled on one-gluon exchange):

 \bullet Write the free energy: V $\rm V(\mu,\mu_{3},\mu_{8},\mu_{e},M_{s},\Delta_{i})$

 \bullet Solve:

Neutrality
$$
\frac{\partial V}{\partial \mu_e} = \frac{\partial V}{\partial \mu_3} = \frac{\partial V}{\partial \mu_8} = 0
$$

\nGap equations $\frac{\partial V}{\partial \Delta_i} = 0$

22

- \bullet CFL \mapsto gCFL 2nd order. transition at \mathbf{M}_s $^{2}/\mu$ ~ 2Δ , when the pairing gs-bd starts breaking
- gCFL has gapless quasiparticles. Interesting transport properties

 \bullet gCFL has μ_{e} not zero, with charge cancelled by unpaired u quarks

● LOFF (Larkin, Ovchinnikov, Fulde & Ferrel, 1964): ferromagnetic alloy with paramagnetic impurities.

• The impurities produce a constant exchange field acting upon the electron spins giving rise to an effective difference in the chemical potentials of the opposite spins producing a mismatch of the Fermi momenta

According to LOFF, close to first order point (CC point), possible condensation with **non zero total momentum** \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow $\Psi(x)\Psi(x)\rangle = \Delta e^{2i\vec{q}\cdot\vec{x}}$ $2i\vec{q}\cdot\vec{x}$ $(x)\psi(x)\rangle = \Delta e$ $\vec{p}_1 = k + \vec{q}$ $= \mathbf{k} + \vec{\mathbf{q}}$ $\vec{\mathbf{p}}_2 = -\mathbf{k} + \vec{\mathbf{q}}$ $-{\rm K}$ $+$ = − $\sum \Delta_{\rm m} c_{\rm m} e^{2i\vec{q}_{\rm m}\cdot\vec{x}}$ $2i\vec{q}_m \cdot \vec{x}$ More generally More generally $\psi(x)\psi(x)\rangle = \sum \Delta_{m}c_{m}$ $=$ $\sum_{m} \Delta_{m} c_{m} e^{2i q_{m}}$ m \rightarrow \rightarrow \rightarrow $_{1} + \vec{p}_{2} = 2\vec{q}$ $+$ p₂ $=$ ${\bf p}_1+{\bf p}$ 20 $|\vec{q}|$ fixed variationally down chosen \vec{q} / $|\vec{q}|$ spontaneously

Single plane wave: Single plane wave:

 $2 E(\vec{p})-\mu \rightarrow E(\pm \vec{p}+\vec{q})-\mu \mp \delta \mu \approx \sqrt{\left(p-\mu\right)^2+\Delta^2 \mp \mu^2}$ $\mathbf{V}_{\rm F} \cdot \mathbf{q}$ $\overline{\mu} = \delta \mu - \vec{\mathrm{v}}_{_{\mathrm{F}}}\cdot \vec{\mathrm{q}}$

Also in this case, for $|\bar{\mu}| = \delta \mu - \vec{v}_F \cdot \vec{q} < \Delta$ a unpairing (blocking) region opens up and gapless modes are present modes are present

Possibility of a crystalline structure (Larkin & Ovchinnikov 1964, Bowers & Rajagopal 2002) $\psi(x)\psi(x)\rangle = \Delta \sum e^{2i\vec{q}_i \cdot \vec{x}}$

The q_i 's define the crystal pointing at its vertices.

 $|\vec{\bm{\mathsf{q}}}_\text{i}|$ =1.2δμ

Crystalline structures in LOFF

The LOFF phase is studied via a Ginzburg-Landau expansion of the grand potential

$$
\Omega = \alpha \Delta^2 + \frac{\beta}{2} \Delta^4 + \frac{\gamma}{3} \Delta^6 + \cdots
$$

(for regular crystalline structures all the Δ _q are equal)

The coefficients can be determined microscopically for the different structures (Bowers and Rajagopal (2002))

We get the equation

$$
\Omega_{\text{BCS}} - \Omega_{\text{normal}} = -\frac{\rho}{4} (\Delta_{\text{BCS}}^2 - 2\delta\mu^2)
$$

$$
\Omega_{\text{LOFF}} - \Omega_{\text{normal}} = -0.44\rho(\delta\mu - \delta\mu_2)^2
$$

$$
\Delta_{\text{LOFF}} \approx 1.15\sqrt{(\delta\mu_2 - \delta\mu)}
$$

$$
\delta\mu_1 = \Delta_{\text{BCS}} / \sqrt{2}
$$

$$
\delta\mu_2 \approx 0.754\Delta_{\text{BCS}}
$$

Small window. Opens up in QCD?

(Leibovich, Rajagopal & Shuster 2001;

Giannakis, Liu & Ren 2002)

34 cube Preferred structure: face-centered **General** analysis analysis (Bowers and Rajagopal (2002))

Effective gap equation for the LOFF phase

 $(R.C., M. Ciminale, M. Mannarelli, G. Nardulli, M. Ruggieri & R. Gatto, 2004)$

For the single plane wave $(P = 1)$ the pairing region is defined by

$$
\Delta_{\text{eff}} = \Delta\theta(E_{u})\theta(E_{d}) = \begin{cases} \Delta & \text{for } (p, \vec{v}_{F}) \in PR \\ 0 & \text{elsewhere} \end{cases}
$$

$$
E_{u,d} = \pm(\delta\mu - \vec{v}_{F} \cdot \vec{q}) + \sqrt{\xi^{2} + \Delta^{2}}, \quad \xi = p - \mu
$$

$$
\Delta = \frac{g\rho}{2} \int \frac{d\vec{v}}{4\pi} \int_{0}^{\delta} d\xi \frac{\Delta_{\text{eff}}}{\sqrt{\xi^2 + \Delta_{\text{eff}}^2}} \quad \rho = 4 \frac{\mu^2}{\pi^2}_{_{35}}
$$

How to obtain this result starting from an effective theory for fermions close to the Fermi surface? Problem:

$$
\mathfrak{L} \sim \Delta e^{2i\vec{q}\cdot\vec{r}} \psi_{-v}^{\mathrm{T}} C \psi_{v}
$$

where in the Fermi fields the large part in the momentum has been extracted

$$
p = \mu v_F + \ell
$$

Solution: appropriate average procedure over the cell size

$$
\mathfrak{L} \longrightarrow \Delta_{\rm eff} \psi_{-v}^{\rm T} C \psi_{v}
$$

Average by

$$
g_{R}(\vec{r}) = \prod_{k=1}^{3} \frac{\sin(\pi qr_k / R)}{\pi r_k}
$$

When $R/\pi \sim 1$ different from zero in a region of the order of the cell size. Condition satisfied if the gap is not too small.

For P plane waves

$$
\left\langle \psi(x)\psi(x)\right\rangle =\Delta\sum_{k=1}^P e^{2i\vec{q}_k\cdot\vec{x}}
$$

an analogous average procedure gives pairing regions and effective gap given by

$$
P_{k} = \{(p, \vec{v}_{F}) | \Delta_{E}(p, \vec{v}_{F}) = k\Delta \}
$$

$$
\Delta_{E}(p, \vec{v}_{F}) = \sum_{m=1}^{P} \Delta_{eff}(p, \vec{v}_{F} \cdot \vec{q}_{m})
$$

We obtain the following gap equation

$$
P\Delta = \frac{g\rho}{2} \sum_{k=1}^{P} \int_{P_k} \frac{d\vec{v}}{4\pi} \frac{d\xi}{2\pi} \frac{\Delta_E}{\sqrt{\xi^2 + \Delta_E^2}} =
$$

$$
= \frac{g\rho}{2} \sum_{k=1}^{P} \int_{P_k} \frac{d\vec{v}}{4\pi} \frac{d\xi}{2\pi} \frac{k\Delta}{\sqrt{\xi^2 + k^2 \Delta^2}}
$$

The result can be interpreted as having P quasi-particles each of one having a gap k $\Delta,$ k =1, ..., P.

The approximation is better far from a second order transition and it is exact for $P = 1$ (original FF case).

Evaluating the free energy at the CC point we see that the $P=6$ case (octahedron) is favored. Then the cube takes over at $\delta\mu_2^{}\sim 0.95~\Delta$

Two phase transitions from the CC point $(M_{\rm s}$ 2 $/\mu = 4 \Delta_{2SC}$) up to the cube case $(M_{\rm s}$ ²/ μ ~ 7.5 Δ_{2SC}). Extrapolating to CFL ($\Delta_{\rm 2SC}$ ~ 30 MeV) one gets that LOFF should be favored from about

 $\rm M_{s}$ $^{2}/\mu$ \sim 120 MeV up M $_{\rm s}$ 2 /μ ~ 225 MeV

 \bullet Under realistic conditions (M_s not zero, color and electric neutrality) new CS phases might exist

• In these phases gapless modes are present. This result might be important in relation to the transport properties inside a CSO.